
PDES, SUBMANIFOLDS AND
AFFINE DIFFERENTIAL GEOMETRY

BANACH CENTER PUBLICATIONS, VOLUME 57
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2002

AFFINOR STRUCTURES IN THE OSCILLATION THEORY

BORIS N. SHAPUKOV

Department of Geometry, University of Kazan
420008 Kazan, Russia

E-mail: Boris.Shapukov@ksu.ru

Abstract. In this paper we consider the system of Hamiltonian differential equations, which
determines small oscillations of a dynamical system with n parameters. We demonstrate that this
system determines an affinor structure J on the phase space TRn. If J2 = ωI, where ω = ±1, 0,
the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type.
In the Euclidean case (Rn = En) we obtain the Hopf bundle and its analogs. The bases of these
bundles are, respectively, the projective (n − 1)-dimensional spaces over algebras of complex,
double and dual numbers.

1. Introduction. Geometry and topology have various connections with analytical
mechanics. The Newtonian mechanics essentially uses the Euclidean structure of space,
and the relativistic mechanics used from the outset the Minkowski geometry that had
been already developed. On the other hand, the Riemannian geometry was initiated not
only by the relativity theory, but by applications to the mechanics of conservative systems,
as well. The geometrical interpretation of Euler-Lagrange equations and the Calculus of
Variations gave rise to the Finsler geometry and its generalizations. It should be noted
that the determining equations generate geometrical structures on associated spaces. In
the last three decades new essential results were achieved in the field of Hamiltonian
mechanics with the use of algebraic, geometrical, and topological methods. In this con-
nection we should mention results due to V. Arnold [1], J. Marsden and A. Weinstein
[2], A. Fomenko [3] et al., on integration of Hamiltonian equations, admitting symmetry
groups.

We demonstrate the way geometry appears in oscillation theory. In what follows we
shall restrict our consideration to small oscillations. Our basic assumptions are those
given in [4].
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1) The system under consideration depends on n parameters, and is conservative.
This means that we have a Lagrangian manifold M , and, with respect to Lagrangian
coordinates x = (xi), the kinetic energy T and the potential energy V are written as

T =
1
2
aij(x)ẋiẋj > 0, V = V (x).(1)

Recall that T endows M with a Riemannian metric ds2 = aij(x)dxidxj . A point x0 ∈M
is called an equilibrium position if gradV |x0 = 0. Certainly, we can suppose that this
point has zero coordinates, i. e. xi0 = 0.

2) At the initial time the system is in a neighborhood of x0, and the initial velocity
is small. Then, up to second order, we get the pair of quadratic forms with constant
coefficients

T =
1
2
aijẋ

iẋj =
1
2

(Aẋ, ẋ), V =
1
2
bijx

ixj =
1
2

(Bx, x) .(2)

From the geometrical point of view, this means that in a small neighbourhood of x0

the Riemannian manifold M can be replaced with the tangent plane endowed with the
Euclidean metric. In Tx0M we shall use the induced Cartesian coordinates (xi). Thus
locally we obtain a linearization of the problem. Then we also get a linearization of the
Lagrange equations

d

dt

∂T

∂ẋi
− ∂T

∂xi
= − ∂V

∂xi
,

the following linear system of ordinary differential equations (ODE)

ẍ = Cx, C = −A−1B.(3)

Note that the vector field Cx is potential if and only if the operator C is symmetric.
The system (3) is equivalent to the system of 2n equations

ẋ = y, ẏ = Cx.(4)

or, if we set z = (x, y), to the system

ż = Jz, J =
(

0 In
Cn 0

)
,(5)

defined on the phase space. Note that this bundle with the canonical projection p :
TEn → En is trivial and its total space is isomorphic to the product En × En = E2n

with the metric z2 = x2 + y2.
Each solution of (4) is a phase curve, an integral curve of the vector field v = (y, Cx),

i.e. an orbit of one-parameter group of transformations z(t) = exp(tv)z. Since the system
is conservative, the curve z(t) lies on a level surface of constant total energy E = T + V .
For the initial data z(0) = z, the solution is z(t) = eJtz. Then the curve x(t) = pz(t) is
a solution of the equations (3).

We shall use some algebraic notions (for details see [5]). Each two-dimensional asso-
ciative commutative algebra with unit has the form A = {a = a1 +κa2 |κ2 = ω = ±1, 0},
where a1, a2 ∈ R, and 1, κ are basic elements of A. For ω = −1 we get the algebra
C = R(i) of complex numbers, for ω = 1 the algebra R(e) of double numbers (or, of
paracomplex numbers), and for ω = 0 the algebra R(ε) of dual numbers.
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Let us consider an R-linear representation of A in the algebra of endomorphisms of
R2n such that 1 → I = Id, κ → J . This representation is uniquely determined by the
affinor (linear operator) J such that J2 = ωI. The affinor structure J is said to be of
elliptic type if ω = −1, of hyperbolic type if ω = 1, and of parabolic type if ω = 0. Let
G ⊂ GL(2n,R) be the subgroup of linear automorphisms of R2n which commute with
J . Then the Klein space (R2n, G) is called a biplanar space of the corresponding type. A
canonical basis {e1, . . . , en, Je1, . . . , Jen} such that the affinor J has the matrix

J =
(

0 In
ωIn 0

)
,

where In is the identity n×n-matrix, is defined up to transformations of G. With respect
to this basis, each vector z ∈ R2n can be written as z = (x, y), x, y ∈ Rn.

A biplanar space can be considered as a module Ln(A) over A. The multiplication is
given as follows:

(a1 + κa2)z = a1z + a2Jz, ∀z ∈ R2n.

Conversely, for a finitely generated free A-module Ln(A), one can consider the vector
space Ln(A) over R as a biplanar space R2n with affinor Jz = κz. Thus we can write
z = x+ κy rather than z = (x, y).

2. Simple examples. The following two examples are given in [1] (pp. 23–24).

a) Let n = 1. The equation ẍ = −x describes an oscillation in a neighborhood of the
equilibrium 0 ∈ E1. In the phase space this equation generates the system

ẋ = y, ẏ = −x.(6)

In this case the affinor structure J has the form J =
(

0
−1

1
0

)
, J2 = −I, and is an operator

of complex structure in TE1. We have T = 1
2 ẋ

2, V = 1
2x

2, E = 1
2 (x2 + y2). In terms of

complex variables, if we set z = x+ iy, (6) is written as ż = −iz. For the initial condition
z(0) = z the solution is the phase curve z(t) = e−itz, or, in terms of real variables,

x(t) = x cos t+ y sin t, y(t) = −x sin t+ y cos t .

These are circles in E2, which are orbits of the group SO(2). Note that in this case the
first integral gives the complete solution of the problem: 2E = x2 + y2 = R2.

b) Let n = 2. The equations ẍ = −x, x = (x1, x2) describe the oscillation of a spherical
pendulum in E2. In the phase space they give the system

ẋ1 = y1, ẋ2 = y2, ẏ1 = −x1, ẏ2 = −x2.(7)

In this case z = (x1, x2, y1, y2), and the affinor structure J =
(

0
−I2

I2
0

)
, J2 = −I, is a

complex structure in TE2. We have

T =
1
2

((ẋ1)2 + (ẋ2)2) , V =
1
2

((x1)2 + (x2)2).

Here it is useful to use the complex variables. If we set zk = xk + iyk, then, according
to (7), we have żk = −izk. From this we obtain that zk(t) = e−itzk. Each curve lies on
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a sphere S3(R) ⊂ TE2

2E = (x1)2 + (x2)2 + (y1)2 + (y2)2 = R2,

and is an orbit of a subgroup of rotations SO(2) ⊂ SO(3). Finally, for each R we have
the principal Hopf bundle πR : S3(R) → S2 with projection πR : (z1, z2) → (z1 : z2).
Note that S2 is diffeomorphic to the complex projective line CP 1. The other projection
p : TE2 → E2 maps each phase curve to an integral curve of the original equation. The
integral curves are ellipses. For the initial conditions x = (c1, c2), y = (c3, c4), they have
the equations

((c2)2 + (c4)2)(x1)2 + ((c1)2 + (c3)2)(x2)2 − 2(c1c2 + c3c4)x1x2 + (c2c3 − c1c4)2 = 0.

3. Biplanar structures and analogs of the Hopf bundle. Now, regardless of
the oscillation theory, we shall consider the second order linear system of ODE

ẍ = Cx, x = (x1, x2, . . . xn) ∈ Rn,(8)

where C is a real n × n-matrix. Further, let us consider the phase space of this system,
i.e. TRn. This is a trivial bundle over Rn, and TRn ∼= Rn×Rn. We set y = ẋ, and write
this system in the form (4).

Now we shall investigate special cases of affinor structures in TRn, which are of
geometric interest. Suppose J is such that J2 = ωI, where ω = ±1, 0. Then the following
three cases are possible:

a)C = −In, b)C = In, c)C = 0.

a) We obtain the system

ẋ = y, ẏ = −x, J =
(

0 In
−In 0

)
.(9)

This affinor defines a complex structure in the phase space TRn, and we obtain the
biplanar space B2n of elliptic type. Note that the pair {I, J} gives a representation of the
algebra C = R(i). This space contains a pair of complex conjugate n-eigenplanes (the
absolute planes) x + iy = 0 and x − iy = 0, which correspond to n-multiple eigenvalues
λ = ±i of J . Therefore, it is convenient to consider the complex vector space Ln(i) with
complex coordinates zk = xk + iyk. Then complex straight lines L(z) = {z, iz}, z 6= 0,
stratify the space Ln0 (i) = Ln(i) \ {0}, and give fibres of a nontrivial principal bundle
π : Ln0 (i) → Pn−1(i) over the complex projective space with projection π(z) = (z1 : z2 :
. . . : zn). The action of the structure group C0 = C \ {0} is given by z′ = az.

Then (9) takes the form ż = −iz, and the solutions are z(t) = e−itz. In terms of real
geometry, we have a principal bundle π : B2n

0 → Pn−1(i) whose fibres form a 2(n − 1)-
parametric family of 2-dimensional planes L2(z) = {z, Jz} (the absolute congruence)
with the parametric equations u = λx + µy , v = −µx + λy. The phase curves have the
equations

x(t) = x cos t+ y sin t, y(t) = −x sin t+ y cos t ,

and are orbits of a one-parameter group SO(2). These curves lie on the 2-planes mentioned
above.
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Now we take a Euclidean space Rn = En with metric ds2 = 2Tdt2 and the or-
thonormal coordinates (xk). As the operator C is symmetric, there exists a potential
V = 1

2

∑n
k=1(xk)2, and the system (9) has the first integral E = T +V . Each phase curve

lies on a level hypersphere S2n−1(R) ⊂ B2n
0 given by the equations

2E =
n∑

k=1

((xk)2 + (yk)2) = R2 .

Therefore, each phase curve is a section L2(z)∩ S2n−1(R), a great circle of hypersphere.
Finally, for each radius R, we get the Hopf bundle πR : S2n−1(R)→ Pn−1(i).

b) We have the system

ẋ = y, ẏ = x, J =
(

0 In
In 0

)
.(10)

This case is analogous to the previous one. Since J2 = I, this affinor defines a double
structure in the phase space TRn, and we get the biplanar space B2n of hyperbolic type.
The pair {I, J} gives a representation of the algebra R(e) (e2 = 1) of double numbers.
B2n contains a pair of real n-eigenplanes (the absolute planes) x + y = 0 and x − y =
0, which correspond to the n-multiple eigenvalues λ = ±1 of J . We consider the free
R(e)-module Ln(e) with coordinates zk = xk + eyk. Then the free R(e)-modules of
rank 1 (straight lines) L(z) = {z, ez}, |z|2 = zz̄ = x2 − y2 6= 0 form a congruence in
Ln0 (i) = Ln(i) \ {|z| = 0} and define a nontrivial principal bundle π : Ln0 (e)→ Pn−1(e).
The base is a projective space over the algebra of double numbers except the points
corresponding to the isotropic straight lines which lie on the cone |z|2 = x2−y2 = 0. The
structure group R0(e) = {a : |a|2 6= 0} is the Lie group of invertible elements of R(e),
and the action of R0(e) is z′ = az.

In the double space the equations (10) take the form ż = ez, and their solutions are
z(t) = eetz.

In terms of real geometry, we have a principal bundle π : B2n
0 → Pn−1(e) whose fibres

are the 2-planes L2(z) = {z, Jz} with parametric equations u = λx+ µy , v = µx+ λy ,
x2 − y2 6= 0. These fibres form a 2(n − 1)-parametric family (the absolute congruence).
The solutions give the phase curves

x(t) = x cosh t+ y sinh t, y(t) = x sinh t+ y cosh t .

These curves are orbits of the 1-parametric group SO(1, 1), and they lie in the 2-planes
mentioned above.

Now suppose that the space is Euclidean. As operator C is symmetric, there exists
the potential V = − 1

2

∑n
k=1(xk)2, and the system (10) has the first integral E = T + V .

The phase curves lie on the level surfaces which constitute a one-parameter family of
hyperboloids S2n−1

n (R) given by the equations

2E =
n∑

k=1

(−(xk)2 + (yk)2) = ±R2 .

Therefore, the phase curves are diametrical sections L2(z)∩S2n−1
n (R). These hyperboloids

can be also considered as hyperspheres of real radius or pure imaginary radius in the
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pseudo-Euclidean space E2n
n of type (−n, n). Therefore we have a hyperbolic analog of

the Hopf bundle πR : S2n−1
n (R)→ Pn−1(e) .

c) We have the system

ẋ = y, ẏ = 0, J =
(

0 In
0 0

)
.(11)

This case is singular. Since J2 = 0, this affinor defines a dual structure in the phase space
TRn, and the pair {I, J} gives a representation of the algebra R(ε), (ε2 = 0) of a dual
numbers. We obtain the biplanar space B2n of parabolic type. This space contains the real
n-eigenplane y = 0 (the absolute plane) corresponding to the n-multiple eigenvalue λ = 0
of J . We consider the free R(ε)-module Ln(ε) with coordinates zk = yk + εxk, ε2 = 0.
Then pairs {z, εz}, |z|2 = y2 6= 0 define a congruence of dual straight lines of parabolic
type in Ln0 (ε). These lines are orbits of the Lie group R0(ε) = {a ∈ R(ε) : |a|2 6= 0} of
invertible elements of the algebra R(ε). The action of this Lie group is z′ = az. Note, that
these straight lines are the fibres of a nontrivial principal bundle π : Ln0 (ε) → Pn−1

0 (ε).
The base is a dual projective space over the R(ε) except the points corresponding to
isotropic straight lines, i. e. the the straight lines in the the absolute n-plane |z|2 = y2 = 0.

In the dual space the equations (11) take the form ż = εz, and, for the initial condition
z(0) = z, we obtain z(t) = eεtz. Since eεt = 1 + εt, we have that each straight line has
the equation z(t) = (1 + εt)z.

In terms of real geometry, we have a principal bundle π : B2n
0 → Pn−1

0 (ε) whose
fibres constitute the absolute congruence of 2-planes L2(z) with parametric equations
u = λy, v = λx + µy. And the solutions give the straight lines x(t) = x + ty , y(t) = y.
These are orbits of the one-parameter group R which lie in the absolute 2-planes. If the
space Rn is Euclidean, these straight lines lie in the level surfaces

Q : y2 = R2 , R 6= 0.

These surfaces form a one-parameter family of elliptic cylinders. Therefore, in this case
each phase curve is the section L2(z)∩Q, i.e. the phase curves form a 2(n−1)-parameter
family of rectilinear generators of these cylinders. For any R we again have a principal
bundle πR : Q → Pn−1

0 (ε). Cylinders Q can be also considered as hyperspheres in the
semi-Euclidean space. Therefore we have a parabolic analog of the Hopf bundle.

Thus, we arrive at the following results.

Theorem 1. The phase space of oscillator (8), where C = ±In, 0, is a biplanar space
of elliptic, hyperbolic, or parabolic type.

Theorem 2. The phase curves of oscillator (8) fibre the level surfaces of total energy.
Each level surface is the total space of a principal fibre bundle whose base is a projective
(n− 1)-dimensional space over the algebra of complex, double, or dual numbers.

4. Unsolved problems. First of all, it is important to investigate other affine struc-
tures. For example, since

J2k =
(
Ck 0
0 Ck

)

,

J2k+1 =
(

0 (−1)k+1Ck

Ck+1 0

)

,
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for affinors such that Ck = ωIn, k < n, the phase space is possibly fibred by k-planes
containing phase curves, and we get other analogs of Hopf bundles.

It is interesting to study small oscillations in the pseudo-Euclidean space. The results
are of importance for Special Relativity. In this case the kinetic energy of the system
is an indefinite quadratic form. Hence the affinor structure J which arises in the phase
space in general has not only real eigenvalues but complex ones, as well. This situation
also occurs in the general theory of linear differential equations.

The more interesting problem is to apply geometrical methods to non-linear oscilla-
tions. In the framework of conservative systems the kinetic and potential energy given
by (1) determine a Riemannian space with metric ds2 = 2(E − V )aijdxidxj , where
the system trajectories are geodesic lines. Then Geometry gives a possibility to connect
non-linear effects with Riemannian curvature.
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