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Abstract. We relate centroaffine immersions f : Mn → Rn+1 to horizontal immersions
g of Mn into S2n+1

n+1 (1) or H2n+1
n (−1). We also show that f is an equiaffine sphere, i.e. the

centroaffine normal is a constant multiple of the Blaschke normal, if and only if g is minimal.

1. Introduction. In the present paper, we study centroaffine spheres Mn in Rn+1

and horizontal immersions Mn in S2n+1
n+1 (1) and H2n+1

n (−1). The basic existence and
uniqueness theorems for those submanifolds together with the necessary preliminaries are
derived in Sections 2 and 3. As it turns out, both are essentially determined by a sym-
metric tensor field on Mn satisfying certain properties. In Section 4, under the additional
assumption that Mn is simply connected, we use then these existence and uniqueness
theorems to relate the two types of submanifolds. This allows us to translate theorems ob-
tained about centroaffine spheres to corresponding theorems about horizontal immersions.

In particular for surfaces M2 we obtain a relation between negative definite cen-
troaffine spheres with vanishing Tchebychev form (elliptic affine spheres in the terminol-
ogy of [4]) and minimal ’horizontal ‘isometric immersions of M 2 in S5

3(1). Notice that,
from the basic formulas derived in Section 3, such immersions always have ellipse of cur-
vature a circle. More surprisingly however is that also non-horizontal minimal immersions
can play a role in affine differential geometry. Indeed, it was shown in [3] how starting
from an arbitrary minimal Riemannian immersion with ellipse of curvature a circle in
S5

3(1), it is possible to construct a 3-dimensional elliptic affine hypersphere.

2. Centroaffine differential geometry. First, we recall the basic facts about cen-
troaffine hypersurfaces. However, in order to obtain in the definite case always a positive
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definite metric, we slightly deviate from the standard approach. For more details and
proofs see [6]. Let M be an n-dimensional C∞-manifold and let f : M → Rn+1 be a
non-degenerate hypersurface immersion whose position vector is nowhere tangent. Then
f can be regarded as a transversal field along itself and we call ξ = −εf the centroaffine
normal, where ε = ±1. Following Nomizu, we call f together with this normalization a
centroaffine hypersurface. We get the centroaffine structure equations:

DXf∗(Y ) = f?(∇XY ) + h(X,Y )ξ, (1)

DXξ = −εf∗(X). (2)

Here we choose ε = 1 unless the signature of the second fundamental form with respect
to f is less than n

2 in which case we choose ε = −1. Here D denotes the canonical flat
connection of Rn+1, ∇ is a torsionfree connection on M , called the induced centroaffine
connection, and h is a non-degenerate symmetric (0,2)-tensor field, called the centroaffine
metric. So (M,h) is a semi-Riemannian manifold and the signature of the metric signh
satisfies signh ≤ n

2 . The corresponding integrability conditions (equations of Gauss (3)
and Codazzi (4)) are

R(X,Y )Z = h(Y, Z)X − h(X,Z)Y, (3)

(∇h)(X,Y, Z) = (∇h)(Y,X,Z), (4)

where (∇h)(X,Y, Z) = Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). If we define

C(X,Y, Z) = (∇h)(X,Y, Z),

we get a totally symmetric (0,3)-tensor field, called the cubic form.
Denote by ∇̂ the Levi-Civita connection of h, by R̂, R̂ic and κ̂ the curvature tensor,

the Ricci tensor and the normalized scalar curvature of ∇̂, respectively. The difference
tensor K, which is defined by

KXY = K(X,Y ) = ∇XY − ∇̂XY, (5)

is a symmetric tensor field related to the cubic form by C(X,Y, Z) = −2h(KXY, Z).
Hence for every X, KX is selfadjoint with respect to h. Furthermore, we define the
Tchebychev form T , the Tchebychev vector field T ] and the Pick invariant J by

nT (X) = traceKX , (6)

h(T ], X) = T (X), (7)

4n(n− 1)J = 4h(K,K) = h(C,C). (8)

We call M an equiaffine sphere if and only if the Tchebychev form vanishes identically.
It is well known that in that case, the centroaffine normal is a constant multiple of the
Blaschke equiaffine normal. It is also well known that

h(KXY, Z) = h(Y,KXZ), (9)

R̂(X,Y )Z = KYKXZ −KXKY Z + ε(h(Y, Z)X − h(X,Z)Y ), (10)

(∇̂K)(X,Y, Z) = (∇̂K)(Y,X,Z), (11)

κ̂ = J + ε− n
n−1h(T ], T ]), (12)

where ε is as defined before. Then, we have the following existence theorem:
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Theorem 1. Let (M,h) be an n-dimensional simply connected semi-Riemannian
manifold with signh ≤ n

2 . Let ε = ±1 and let K be a symmetric tensor field on M

satisfying (9), (10), (11). Then there exist a centroaffine immersion f : Mn → Rn+1

with ξ = −εf as affine normal, h as affine metric and ∇ = K + ∇̂, where ∇̂ is the Levi
Civita connection of the metric h, as induced affine connection. Moreover, the immersion
f is unique up to centroaffine transformations.

Proof. In order to obtain the existence part, we define a connection ∇ on M by

∇XY = K(X,Y ) + ∇̂XY,
where ∇̂ is the Levi Civita connection of the semi-Riemannian metric h. Then, we have
that

(∇h)(X,Y, Z) = Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

= h(∇̂XY, Z) + h(Y, ∇̂XZ)− h(K(X,Y ), Z)

− h(∇̂XY, Z)− h(Y,K(X,Z))− h(Y, ∇̂XZ)

= −2h(K(X,Y ), Z).

Hence by (9) we deduce that (∇h)(X,Y, Z) is totally symmetric. Next, we have that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

= K(X,∇Y Z) + ∇̂X∇Y Z −K(Y,∇XZ)

− ∇̂Y∇XZ −K([X,Y ], Z)− ∇̂[X,Y ]Z

= K(X,K(Y, Z))−K(Y,K(X,Z)) + R̂(X,Y )Z

+ (∇̂K)(X,Y, Z)− (∇̂K)(Y,X,Z)

= ε(h(Y, Z)X − h(X,Z)Y ).

Finally, we define the affine shape operator by S = εI. Applying now the general existence
theorem of [2], we obtain that there exists an affine immersion f : Mn → Rn+1 and a
transversal vector field ξ such that we can write

DXf∗Y = f∗∇XY + h(X,Y )ξ,

DXξ = −f∗SX = −εX.
Since DX(f + εξ) = 0, we obtain that if necessary by applying a translation, we may
assume that f is centroaffine.

Next, we show the uniqueness part. Let f1, f2 : Mn → Rn+1 be two immersions
satisfying the assumptions of the theorem. Applying the uniqueness theorem [1], see also
[2], we have that f1 and f2 are related by an affine transformation. It then follows from
(1) and the definition of ξ that the translation component is zero. Hence f1 and f2 are
related by a centroaffine transformation.

3. Horizontal submanifolds. We denote by p = (x1, y1, x2, y2, . . . , xn+1, yn+1) a
point of R2n+2 and define a product structure P on R2n+2 by

P (x1, y1, . . . , xn+1, yn+1) = (y1, x1, . . . , yn+1, xn+1).
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We then introduce a metric 〈., .〉 on R2n+2 by

〈(v1, w1, . . . , vn+1, wn+1), (ṽ1, w̃1, . . . , ṽn+1, w̃n+1)〉 =
n+1∑

i=1

viṽi −
n+1∑

i=1

wiw̃i. (13)

Hence sign 〈., .〉 = n + 1. It immediately follows from (13) that for vectors x and y we
have that

〈Px, Py〉 = −〈x, y〉 . (14)

In particular this implies that

〈x, Px〉 = −
〈
Px, P 2x

〉
= −〈Px, x〉 .

Hence
〈x, Px〉 = 0. (15)

We also deduce that (DV P )W = 0, where D is the standard connection on R2n+2
n+1 . Let

S2n+1
n+1 (1) and H2n+1

n (−1) be the spaces respectively defined by

S2n+1
n+1 (1) = {p ∈ R2n+2| 〈p, p〉 = 1}

and
H2n+1
n (−1) = {p ∈ R2n+2| 〈p, p〉 = −1}.

It immediately follows that S2n+1
n+1 (1) is an umbilical hypersurface of R2n+2, with −p as

normal and that the signature of the induced metric is n+1. Similarly, it follows that also
H2n+1
n (−1) is an umbilical hypersurface with normal p and with signature of the induced

metric equal to n. We denote by M̃(1) = S2n+1
n+1 (1) and by M̃(−1) = H2n+1

n (−1). We
now say that an immersion f : Mn → M̃(ε), where ε = ±1, is horizontal if and only if
Pf is orthogonal to f∗TpM . Notice that it follows from (15) that Pf is always a tangent
vector field to M̃(ε). Decomposing the connection D into a tangent component, a normal
component which is tangent to M̃(ε) and a component in the direction of the position
vector, we see that

DXf∗Y = f?(∇XY ) + α(X,Y )− 〈X,Y 〉 εf, (16)

DXη = −f∗AηX +∇⊥Xη, (17)

where X,Y are tangent vector fields and η is a normal vector field to M tangent to M̃(ε).
The symmetric bilinear form α is the second fundamental form of the immersion f in
M̃(ε) and ∇⊥ is the normal connection of the immersion f in M̃(ε). Since for a horizontal
immersion, we have that 〈Pf,X〉 = 0, for any tangent vector field X, we deduce that

0 = 〈Pf∗(Y ), X〉+ 〈Pf, α(X,Y )〉 .
From (14) it follows that the first term is skewsymmetric in X and Y , whereas the second
term is symmetric. Hence we obtain that

〈Pf∗(X), Y 〉 = 0, 〈Pf, α(X,Y )〉 = 0.

Hence APf = 0 and P maps the tangent space into the normal space of M in M̃(ε).
Therefore the normal space to M in M̃(ε) is spanned by Pf and Pf∗TM . Deriving the
first equation of (3), and identifying M with its image in R2n+2

n+1 we deduce that

0 = 〈PX,α(Y, Z)〉 − 〈APXZ, Y 〉 . (18)
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Since P is parallel with respect to D, we deduce that

0 = (DXP )f = DXPf − PDXf = ∇⊥XPf − PX.

Hence

∇⊥XPf = PX. (19)

Similarly, we get that

0 = (DXP )Y = DXPY − PDXY,

= ∇⊥XPY −APYX − P∇XY − Pα(X,Y ) + ε 〈X,Y 〉Pf.
Hence,

∇⊥XPY = P∇XY − ε 〈X,Y 〉Pf, APYX = −Pα(X,Y ).

Finally, we recall that the equations of Gauss, Codazzi and Ricci for submanifolds of a
semi-Riemannian space form state that

R(X,Y )Z = ε(〈Y, Z〉X − 〈X,Z〉Y ) +Aα(Y,Z)X −Aα(X,Z)Y,

(∇α)(X,Y, Z) = (∇α)(Y,X,Z),
〈
R⊥(X,Y )η1, η2

〉
= 〈[Aη1 , Aη2 ]X,Y 〉 .

We introduce a symmetric bilinear form β on M by

β(X,Y ) = −Pα(X,Y ) = APYX = APXY.

We also write βXY = βYX = β(X,Y ). From (18) it follows that

〈β(X,Y ), Z〉 is symmetric in X, Y and Z. (20)

It now follows from (19) and (3) that we can rewrite

R(X,Y )Z = ε(〈Y, Z〉X − 〈X,Z〉Y )−APAPY ZX +APAPXZY (21)

= ε(〈Y, Z〉X − 〈X,Z〉Y −APXAPY Z +APYAPXZ (22)

= ε(〈Y, Z〉X − 〈X,Z〉Y )− β(X, β(Y, Z)) + β(Y, β(X,Z)) (23)

= ε(〈Y, Z〉X − 〈X,Z〉Y )− [βX , βY ]Z, (24)

From (19), (3) and the Codazzi equation it follows that

(∇β)(X,Y, Z) = ∇Xβ(Y, Z)− β(∇XY, Z)− β(X,∇Y Z) (25)

= −∇XPα(Y, Z) + Pα(∇XY, Z) + Pα(Y,∇XZ) (26)

= −P∇⊥Xα(Y, Z) + ε 〈X,Pα(Y, Z)〉 f + Pα(∇XY Z) + Pα(Y,∇XZ) (27)

= −P (∇α)(X,Y, Z)− ε 〈PX,α(Y, Z)〉 . (28)

Since 〈PX,α(Y, Z)〉 = 〈X, β(Y, Z)〉 is totally symmetric in X, Y and Z, we deduce that
∇β is totally symmetric if and only if ∇α is totally symmetric. We now can formulate
the basic existence and uniqueness theorems for horizontal submanifolds.

Theorem 2. Let f1, f2 : M → M̃(ε) be two isometric horizontal immersions. Suppose
that βf1 = βf2 . Then there exists an isometry A of M̃(ε) such that Af1 = f2.
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Proof. Let p ∈M . We define an isometry Ap of M̃(ε) by

Apf1(p) = f2(p), Apf1∗(X(p)) = f2∗(X(p)),

ApPf1(p) = Pf2(p), ApPf1∗(X(p)) = Pf2∗(X(p)).

Now, we show that A is independent of the choice of p. Using the previous equations, it
follows that

(DXA)f1 = DX(Af1)−ADXf1 = DXf2 −Af1∗X = 0,

(DXA)(Pf1) = DX(Pf2)−ADX(Pf1) = Pf2∗X −APf1∗X = 0,

(DXA)(f1∗(Y )) = DXf2∗Y −ADXf1∗Y

= f2∗(∇XY ) + αf2(X,Y )−Af1∗(∇XY )−Aαf1(X,Y )

= −Pf2∗(βf2(X,Y )) +APf1∗(βf1(X,Y )) = 0,

(DXA)(Pf1∗Y ) = DXPf2∗(Y )−ADXPf1∗Y = PDXf2∗(Y )−APDXf1∗Y

= Pαf2(X,Y )−APαf1(X,Y ) = −f2∗β
f2(X,Y ) +Af1∗β

f1(X,Y ) = 0.

This completes the proof of the theorem.

Theorem 3. Let (M, 〈., .〉) be a simply connected semi-Riemannian manifold. Let β
be a symmetric bilinear vector valued 2 form on M such that

(i) 〈β(X,Y ), Z〉 is totally symmetric,
(ii) ∇β is totally symmetric,
(iii) R(X,Y )Z = ε(〈Y, Z〉X − 〈X,Z〉Y )− [βX , βY ]Z.

Then there exists a horizontal isometric immersion f : M → M̃(ε) with second funda-
mental form α such that β(X,Y ) = −Pα(X,Y ).

Proof. We define a bundle NM over M by NM = TM ⊕ R ⊕ R and we define a
mapping P : TM ⊕NM → TM ⊕NM by

P (X, 0, 0, 0) = (0, X, 0, 0) (29)

P (0, X, 0, 0) = (X, 0, 0, 0) (30)

P (0, 0, 1, 0) = (0, 0, 0, 1) (31)

P (0, 0, 0, 1) = (0, 0, 1, 0), (32)

a section f = 0⊕ 0⊕ 1 of NM . We introduce a metric on NM by

〈PX,PY 〉 = −〈X,Y 〉 〈PX, f〉 = 0 〈X,Pf〉 = 0,

〈X, f〉 = 0 〈PX,Pf〉 = 0 〈X,PY 〉 = 0,

〈Pf, Pf〉 = −ε 〈Pf, f〉 = 0 〈f, f〉 = ε.

Next, we define a connection ∇⊥ on NM by

∇⊥XPY = P∇XY − ε 〈X,Y 〉Pf,
∇⊥Xf = 0, ∇⊥XPf = PX.

Then we define a second fundamental form

γ : TM × TM −→ NM : (X,Y ) 7→ γ(X,Y ) = −Pβ(X,Y ) + 〈X,Y 〉 εf
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with corresponding Weingarten operators given by

APXY = β(X,Y ), APfY = 0, AfY = −Y,
for X,Y tangent to M .

A straightforward computation then shows that the Gauss, Codazzi and Ricci equa-
tions are satisfied and hence by the existence and uniqueness theorem for immersions
into real space forms, there exist an isometric immersion g : Mn −→ R2n+2

n+1 with 〈., .〉 as
induced metric and a bundle isomorphism such that we can identify NM with the normal
bundle of g in R2n+2

n+1 . Since DX(g − f) = 0, we see that after applying a translation, we
may assume that g = f . Hence

〈g, g〉 = 〈f, f〉 = ε,

and g(Mn) ⊂ M̃(ε). Since g = f is normal to M̃(ε), we deduce that the second funda-
mental form α of Mn in M̃(ε) is given by α(X,Y ) = −Pβ(X,Y ).

Finally, in order to show that Mn is horizontal, it is sufficient to show that the
mapping P , defined in the beginning of the proof, is parallel along Mn. We have

(DXP )Y = DXPY − PDXY = ∇⊥XPY −APYX − P∇XY − Pγ(X,Y )

= −ε 〈X,Y 〉Pf − β(X,Y ) + β(X,Y ) + ε 〈X,Y 〉Pf,
(DXP )PY = DXY − PDXPY = P (PDXY −DXPY ) = −P (DXP )Y = 0,

(DXP )f = DXPf − PDXf = PX − PX = 0,

(DXP )Pf = −P (DXP )f = 0.

4. A correspondence theorem. In this section, we relate the two types of sub-
manifolds studied in the previous sections. First, we show:

Theorem 4. Let M be a simply connected manifold. Let f : Mn → Rn+1 be a
centroaffine sphere with difference tensor K and induced metric h. Then there exists
a unique isometric horizontal immersion g : (Mn, h) → M̃(ε) with second fundamental
form α(X,Y ) = −PK(X,Y ).

Proof. The uniqueness part follows immediately from Theorem 2. To obtain the exis-
tence, we notice that (9), (10) and (11) state that K is a symmetric bilinear form on the
semi-Riemannian manifold (M,h) satisfying the conditions of Theorem 3.

The converse is stated in the next theorem:

Theorem 5. Let M be a simply connected manifold. Let g : (Mn, 〈..〉) → M̃(ε) be a
horizontal isometric immersion with second fundamental form α. Assume that index 〈., .〉
≤ n

2 . Then there exist a unique f : M → Rn+1 centroaffine sphere such that the difference
tensor K satisfies K = −Pα.

Proof. The uniqueness part is clear from Theorem 1, whereas the existence part follows
by combining (20), (24) and (28) with Theorem 1.

From the above theorems and (6) it is clear that f is an equiaffine sphere if and only
if g is minimal. Applying the above theorems now for example to the results of [7], [8]
and [4], we obtain the following corollaries:
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Corollary 1. Let (M, 〈., .〉) be a Riemannian manifold and let g : Mn → S2n+1
n+1 (1)

be an isometric horizontal minimal immersion. If Mn has constant sectional curvature,
then Mn is totally geodesic.

Corollary 2. Let (M, 〈., .〉) be a complete Riemannian manifold and g : Mn →
S2n+1
n+1 (1) a minimal isometric horizontal immersion. Then Mn is totally geodesic.

Corollary 3. Let (M, 〈., .〉) be a Riemannian manifold and g : Mn → H2n+1
n (−1)

a minimal isometric horizontal immersion. Assume that Mn has constant sectional cur-
vature. Then either

(i) Mn is totally geodesic, or
(ii) g(Mn) is congruent to an open part of

(sinhu1, coshu1, . . . , sinh un, coshun, sinh−(u1 + . . .+ un), cosh−(u1 + . . .+ un)).

Similarly, the classification of minimal horizontal semi-Riemannnian immersions with
constant sectional curvature follows from the proof of the Magid-Ryan conjecture in [8].
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