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Abstract. We present an approach to the uniformization of certain Shimura curves by
means of automorphic functions, obtained by integration of non-linear differential equations.
The method takes as its starting point a differential construction of the modular j-function, first
worked out by R. Dedekind in 1877, and makes use of a differential operator of the third order,
introduced by H. A. Schwarz in 1873.

Introduction. Shimura curves afford a notable generalization of classical modular
curves. Whereas modular curves appear as moduli spaces of elliptic curves, Shimura
curves appear as moduli spaces of principally polarized abelian surfaces endowed with
quaternionic multiplication. From an algorithmic point of view, the fact that elliptic
curves are much better understood than abelian surfaces means that there is a funda-
mental difference between the treatment of the two topics.

The uniformization of Shimura curves and the computation of their automorphic
forms have been long-standing problems. In general, algorithms used in the modular case
do not transfer directly to the quaternionic case. The main difficulties are due to the fact
that while fuchsian groups defining modular curves contain translations, fuchsian groups
defining Shimura curves lack them. In consequence, automorphic forms and automorphic
functions will possess Fourier developments only in the modular case.

An oft-quoted example of automorphic function is the modular j-function. We provide
an outline of a differential construction of it, which goes back to R. Dedekind [3], based
on the integration of a fuchsian differential equation of the second order and Jacobi’s
theory of elliptic integrals.
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The importance of Dedekind’s construction of the j-function lies in the fact that, in
principle, it can be adapted to uniformize Shimura curves. However, it should be stressed
that to carry out this programme it is necessary to have previous knowledge of a fun-
damental domain of the curve and additional information as well, since the uniformizing
differential equation cannot be determined directly from a fundamental domain.

M. Alsina constructed fundamental domains for some Shimura curves in [1]. The the-
oretical framework of this construction consists of an interplay between arithmetic prop-
erties of Eichler orders and (binary, ternary and quaternary) quadratic forms of integral
(or algebraic integral) coefficients.

The results presented here are from an ongoing project carried out jointly with
A. Travesa and J. Guàrdia. Fuller discussions will appear in later publications.

It is worth noting that Shimura curves have received a great deal of attention in recent
years, mainly due to their role in A. Wiles’ proof of Fermat’s Last Theorem.

1. Fuchsian groups of the first kind. We first recall some basic definitions con-
cerning the hyperbolic 2-space. We consider the Riemann sphere P1 = C ∪ {∞}. The
special linear group SL(2,C), of complex 2× 2-matrices with determinant equal to one,
acts naturally on P1 as a group of homographic transformations. An element α =

[
a b
c d

]

of SL(2,C) acts as

α(z) =
az + b

cz + d
, for z ∈ P1.

This action factorizes through the projective linear group PSL(2,C) = SL(2,C)/〈−I〉.
All the directly conformal homeomorphisms of P1 are obtained in this way.

The complex upper-half plane, H = {z ∈ C : Im(z) > 0}, is a reference model for the
hyperbolic 2-space, once it is endowed with the hyperbolic distance

d(z1, z2) =
∣∣∣∣arc cosh

(
1 +
|z1 − z2|2

2z1z2

)∣∣∣∣ ,

and the SL(2,R)-invariant 2-form d(y−1dx) = y−2dx ∧ dy. The groups SL(2,R) and
PSL(2,R) = SL(2,R)/〈−I〉 act on H, as already stated, and yield all the orientation-
preserving isometries of H.

On the basis of the number and nature of their fixed points, homographic transfor-
mations α ∈ SL(2,R)\〈−I〉 are classified in three types: hyperbolic, elliptic and parabolic.
Hyperbolic transformations (|tr(α)| > 2) have two fixed points, both lying on R ∪ {∞}.
Elliptic transformations (|tr(α)| < 2) have two fixed points, which are complex conju-
gate; one of them lies in H. Parabolic transformations (|tr(α)| = 2) have one fixed point
exactly, located on R ∪ {∞}. The corresponding Jordan forms of these transformations
are of the shape:[

λ1

λ2

]
, λ1 6= λ2;

[
eiθ

e−iθ

]
, θ ∈ R;

[±1 1
0 ±1

]
.

Let us now fix a discrete subgroup Γ ⊆ SL(2,R). A point z ∈ H is called elliptic if it
is the fixed point of an elliptic transformation. A point z ∈ R∪ {∞} is called a cusp if it
is the fixed point of a parabolic transformation. We denote by PΓ the set of cusps of Γ.
PΓ might very well be the empty set.
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The group Γ acts on the set of its cusps. Thus, it also acts on

H∗ := H ∪ PΓ.

Endowed with a suitable topology and complex structure, the quotient space Γ\H∗ be-
comes a Riemann surface and the projection mapping π : H∗ → Γ\H∗ is analytic.

A group Γ is defined as fuchsian of the first kind when the Riemann surface Γ\H∗ is
compact.

By a theorem of Siegel, fuchsian groups of the first kind are those for which the
hyperbolic volume of Γ\H∗ is finite. We shall assume henceforth that this is always the
case.

Attached to the group Γ, there is a projective curve, X(Γ), and a meromorphic map-
ping,

jΓ : H∗ → X(Γ)(C),

which factorizes in a bi-rational isomorphism of Γ\H∗ into X(Γ)(C).
For a point w = π(z) ∈ Γ\H∗, let Γw ⊂ PSL(2,R) denote its isotropy group under

the Γ-action and ew = ]Γw its order. We have that ew = ∞ if z is a cusp; 1 < ew < ∞
if z is an elliptic point; and ew = 1, otherwise. The genus g of X(Γ) can be calculated
through the formula

1
2π

vol(Γ\H∗) = 2g − 2 +
∑

w∈X(Γ)

(
1− 1

ew

)
.

Every subgroup Γ′ ⊆ Γ of finite index gives rise to a finite morphism ϕ : X(Γ′) →
X(Γ), of degree n = [Γ : Γ

′
]. The genus g′ of X(Γ′) is obtained from the well-known

Hurwitz formula:

2g′ − 2 = n(2g − 2) +
∑

w∈X(Γ′)

(ew,ϕ − 1), where ew,ϕ := [Γϕ(w) : Γ
′
w].

Definition 1.1. By a fundamental domain for the Γ-action on H we mean a subset
D ⊆ H ∪ R ∪ {∞} such that

i) D is closed and connected,
ii) H =

⋃
γ∈Γ γ(D),

iii) D = U , U open set, U = int(D),
iv) γ(U) ∩ U = ∅, for any γ ∈ Γ, γ 6= ±I.

If the shape of D is that of a hyperbolic polygon, then we call D a fundamental polygon
for Γ.

Every fuchsian group Γ possesses a fundamental polygon. In general, a great deal of
information for Γ\H∗, or X(Γ), may be deduced from a careful observation of a funda-
mental polygon.

2. Automorphic functions and automorphic forms. Put GL+(2,R) = {α ∈
GL(2,R) | det(α) > 0}. Attached to an element α =

[
a b
c d

]
of GL+(2,R), an automorphic

factor
j(α, z) = cz + d

is defined; this is a holomorphic function on H without zeros.



16 P. BAYER

Let k be an integer. For any function f : H → P1, we may consider the action

(f |kα)(z) = det(α)k/2j(α, z)−kf(αz), z ∈ H.
Fix a fuchsian group Γ. A meromorphic function f(z) on H is called a Γ-automorphic

form of weight k if it is meromorphic at every cusp of Γ and satisfies the functional
equation

f |kγ = f, for all γ ∈ Γ.

We denote by Ak(Γ) the C-vector space of all Γ-automorphic forms of weight k.
Automorphic forms of weight zero are called automorphic functions. The field A0(Γ) is

the field of meromorphic functions of the Riemann surface Γ\H∗. It is therefore isomorphic
to the field of rational functions on the corresponding projective curve:

A0(Γ) ' C(X(Γ)).

More generally, there is a one to one correspondence between automorphic forms of even
weight 2m on Γ\H∗ and meromorphic differential forms of degree m on X(Γ):

A2m(Γ) ' Ωm(X(Γ)), f 7→ ωf .

Here ωf stands for the differential form which satisfies the equality f(z)(dz)m = ωf ◦ π.
When Γ is contained in the modular group SL(2,Z), automorphic forms (respectively,

functions) are simply designated as modular forms (respectively, modular functions).
The first example of a modular function for SL(2,Z) is provided by the j-function:

j(z) = 1728
g2(z)3

∆(z)
, z ∈ H.

Here
g2(z) = 60

∑

m,n
(m,n)6=(0,0)

1
(m+ nz)4 , g3(z) = 140

∑

m,n
(m,n)6=(0,0)

1
(m+ nz)6

denote the Eisenstein series, which are modular forms of weights 4 and 6, respectively,
and

∆(z) = g2(z)3 − 27g3(z)2

denotes the discriminant modular form, which is of weight 12.
For a point τ ∈ H, the value j(τ) is an invariant of the elliptic curve

Eτ : Y 2 = 4X3 − g2(τ)X − g3(τ).

The set Eτ (C) of all complex points of this curve is in one to one correspondence with
those of the torus C/[1, τ ]. The uniformization is carried over the Weierstraß functions:

C/[1, τ ] ' Eτ (C) ⊂ P2, z 7→ (℘τ (z), ℘′τ (z), 1).

3. A differential approach to automorphic functions. Although the topic seems
to be practically forgotten today, the connection between automorphic functions and
ordinary differential equations was much investigated in the past. Among the pioneer
studies we find contributions of R. Dedekind and H. Poincaré. Both mathematicians were
profoundly influenced in their research by the work of L. Fuchs [6] on ordinary differential
equations.
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In 1877, Dedekind [3] constructed a special function, which he called Valenz, by in-
tegration of a second order differential equation of fuchsian type. Dedekind’s valence
function equals the function j, up to multiplication by a scalar.

The work of Poincaré on automorphic functions began in 1881 and was the focus
of numerous publications collected in the second volume of his Œuvres. To be exact,
Poincaré did not denominate these functions automorphic but fuchsian, in Fuchs’ honor.
The name automorphic is due to F. Klein and is the term that has prevailed over the
years.

The space Ak(Γ) of automorphic forms of weight k is not closed under the usual
derivation. Specifically, the derivative D(f, z) of an automorphic function f(z) is not an
automorphic function but an automorphic form of weight two. The exact behaviour of
an automorphic form of weight k under derivation is given below.

Proposition 3.1. If f(z) is an automorphic form of weight k, then

kf(z)D2(f, z)− (k + 1)D(f, z)2

is an automorphic form of weight 2k + 4.

The main tool in our approach to the differential treatment of automorphic functions
will be the use of Fuchs theory, together with a rational ordinary differential opera-
tor of order three, obtained by a suitable modification of an operator introduced by
H. A. Schwarz [12].

Definition 3.2. Let f(z) denote a non-constant smooth function.

1. The schwarzian derivative of f is defined as

Ds(f, z) =
2D(f, z)D3(f, z)− 3D2(f, z)2

D(f, z)2 .

2. The automorphic derivative of f is defined as

Da(f, z) =
Ds(f, z)
D(f, z)2 .

A multivalued function defined on P1 is said to be PGL(2,C)-multivalued if any
pair of its branches is always projectively related. Examples of PGL(2,C)-multivalued
functions occur by inversion of automorphic functions.

Proposition 3.3. Let f(z), g(z) denote non-constant smooth functions whose com-
position g ◦ f is defined. The automorphic derivative satisfies the chain rule:

Da(g ◦ f, z) = Da(g, f(z)) +
Da(f, z)
D(g, f(z))2 .

Proposition 3.4. Suppose that f(z) = x is a smooth function whose inverse function
is PGL(2,C)-multivalued. Then the following assertions hold.

1. The schwarzian derivative Ds(f−1, x) is univalued and

Ds(f−1, x) = −Da(f, z), f−1(x) = z.
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2. The automorphic derivative Da(f, z) of a Γ-automorphic function, f(z), is again a
Γ-automorphic function. That is to say, the following equality holds:

Da(f, γ(z)) = Da(f, z), for all γ ∈ Γ.

As a consequence of the above proposition, we see that automorphic derivatives fit to
automorphic functions and schwarzian derivatives fit to their inverses.

The following theorem, due to Poincaré, recurs throughout the papers in [10].

Theorem 3.5 (Poincaré). Let Γ be a fuchsian group of the first kind. Let f(z) = x be
a non-constant Γ-automorphic function and z = f−1(x) be its inverse. Then the functions

η1(x) :=
f−1(x)

D(f−1, x)1/2
, η2(x) :=

1
D(f−1, x)1/2

yield a fundamental system of solutions of a linear differential equation

D2(η, x) + S(x, y)η = 0.

Here S(x, y) stands for a rational function. The functions x, y are related by means of an
algebraic equation

F (X,Y ) = 0.

We see from the theorem that the multivalued function f−1 can be obtained as a
quotient of two fundamental solutions of a linear differential equation of the second order.
In its turn, the automorphic function f can be obtained as a solution of the non-linear
equation of the third order

Da(x, z) + S(x, y) = 0.

Therefore, in order to calculate an automorphic function f it suffices to know its auto-
morphic derivative −S(x, y). However, this can be a rather difficult task.

Let us restrict ourselves to the case of genus g = 0. Then there exists a rational
function v in C(x, y) which generates this field over C. Therefore, there exists a rational
function R(v) such that S(x, y) = R(v).

Suppose that we are aware of a fundamental domain for the Γ-action on H. If this
is given by a z-polygon P whose sides are identified by pairs and whose internal angles
equal αiπ, then

R(v) =
∑ 1− α2

i

(v − ai)2 +
∑ Ai

v − ai
,

as can be easily verified. The summation extends over all singular values ai of v, and Ai
are constants. If ∞ is an ordinary value of v, then

i)
∑
Ai = 0,

ii)
∑
aiAi +

∑
(1− α2

i ) = 0,
iii)

∑
a2
iAi +

∑
ai(1− α2

i ) = 0.

If ∞ is a singular value of x corresponding to a vertex of the polygon with angle equal
to κπ, then

i)
∑
Ai = 0,

ii)
∑
aiAi +

∑
(1− α2

i )− (1− κ2) = 0.
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In general, these relations do not suffice to determine all the constants involved. The key
point is that, in some cases, the symmetries of the function v(z) we are looking for may
allow a complete determination of R(v).

4. Dedekind’s valence function. Next we will examine Dedekind’s valence func-
tion in accordance with the scheme of the section above.

Dedekind (op. cit.) starts with an operator

[v, z] :=
−4√
dv
dz

d2

dv2

√
dv

dz

which, in our notation, corresponds to

[v, z] = −Da(v, z) = Ds(z, v).

Next, he looks for a function v : H → P1 which, being invariant under the action of
PSL(2,Z), satisfies

v(i) = 1, v(e
2πi
3 ) = 0, v(∞) =∞.

From the observation of the fundamental hyperbolic triangle for the SL(2,Z)-action on
the upper-half plane, he deduces an equality of the form

[v, z] =
3

4(v − 1)2 +
8

9v2 +
A1

v − 1
+
A2

v
.

The constants Ai are determined by taking into account the behaviour at infinity (cf.
section 3). We obtain

[v, z] =
36v2 − 41v + 32

36v2(1− v)2 .

In order to recognize the valence function, Dedekind shows that the function

ω := const. v−
1
3 (1− v)−

1
4

(
dv

dz

) 1
2

satisfies the hypergeometric equation

v(1− v)
d2ω

dv2 +
(

2
3
− 7

6
v

)
dω

dv
− ω

144
= 0.

Its solutions are linear combinations of the Gauss hypergeometric series

F (1/12, 1/12, 2/3; v), F (1/12, 1/12, 1/2; 1− v).

Moreover, since the function v has to be invariant under the translation z 7→ z+1, it may
be developed as a power series in the variable q = e2πiz, already considered by Jacobi.

In fact, Dedekind goes much further in that paper. He justifies the existence of a
polynomial equation, FN (X,Y ) = 0, with integral coefficients, which is fulfilled by the
pair of functions (v(z), v(z/N)).

For our purposes, we will consider a formal series v(q) =
∑∞
−1 Cnq

n, with indeter-
minate coefficients, and compute them by integration of the differential equation of the
third order

Da(v, q) +
36v2 − 41v + 32

36v2(1− v)2 = 0.
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Then, from a direct computation we will obtain

v(q) = 1728 j(q).

If we are interested in the differential equation satisfied by the j-function, it suffices
to integrate the differential equation

Da(j, q) +R(j) = 0,

where

R(j) =
j2 − 1968j + 2654208

j2(j − 1728)2 .

This is obtained through the initial conditions

j(i) = 1728, j(e
2πi
3 ) = 0, j(∞) =∞.

5. Quaternion algebras, orders and fuchsian groups. In this section, we present
some examples of arithmetic fuchsian groups obtained through quaternion orders. The
details of their calculation can be found in [1].

Let a, b be non-zero rational numbers. We consider the quaternion algebra

H =
(
a, b

Q

)
= 〈1, i, j, k〉; i2 = a, j2 = b, ij = −ji = k,

defined over the rational field Q. We shall suppose that H is indefinite, with a > 0.
Accordingly,H may be embedded in the matrix algebra M(2,R), of the real 2×2 matrices.
We shall fix the embedding Φ : H ↪→M(2,R) defined as

Φ(x+ yi+ xj + tk) =
[
x+ y

√
a z + t

√
a

b(z − t√a) x− y√a

]
.

Let Qp denote the field of the p-adic numbers. A place p of Q is said to ramify in H

if H ⊗ Qp is a division algebra. The discriminant DH of H is defined as the product of
all the places where the algebra H ramifies:

DH =
∏

vp ram

p.

Since we have supposed that H is indefinite, it is unramified at infinity and DH equals
the product of an even number of different primes.

Examples 5.1. 1. For D = 1, the algebra H :=
( 1,−1
Q
)

is isomorphic to the rational
matrix algebra M(2,Q). This is the only case in which H has zero divisors and is not a
division algebra.

2. The quaternion algebra HA(p) :=
(
p,−1
Q
)
, where p ≡ 3 (mod 4) is a prime number,

has discriminant D = 2p. The lowest values are D = 6 and D = 14.
3. The quaternion algebra HB(p, q) :=

(
p,q
Q
)
, where p, q are prime numbers, q ≡

1 (mod 4) and the Legendre symbol
(
p
q

)
is equal to −1, has discriminant D = pq. The

lowest values are D = 10 and D = 15.

By definition, an order of a quaternion algebra is a subring O ⊆ H which is of Z-rank
equal to 4. The so-called Eichler orders are obtained as the intersection of two maximal
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orders. Their elements are integral over Z. They are classified by their level, which is
an integer N prime to D. In our case, Eichler orders of level N are determined up to
conjugation in H. We shall denote by O(D,N) a representative in their conjugation class.
The orders O(D, 1) are maximal.

Examples 5.2. The following examples correspond to Eichler orders of level N
square-free for the quaternion algebras considered above.

1. If H = M(2,Q), take

O0(1, N) =
{[

a b

cN d

]
: a, b, c, d ∈ Z

}
.

2. If H = HA(p), take

OA(2p,N) = Z
[
1, i, Nj,

1 + i+ j + k

2

]
, N |p− 1

2
.

3. If H = HB(p, q), take

OB(pq,N) = Z
[
1, Ni,

1 + j

2
,
i+ k

2

]
, N |q − 1

4
, gcd(N, p) = 1.

The subgroup of the multiplicative group of O0(1, N) consisting of those matrices
with determinant equal to one is the well-known congruence group of level N , Γ0(N). It
is a fuchsian group of the first kind.

More generally, quaternion orders are a source for fuchsian groups. For an Eichler
order O(D,N), the subgroup of the multiplicative group consisting of those quaternions
of reduced norm equal to one, Γ(D,N), is also a fuchsian group of the first kind. All these
groups belong to a wider class: that of the arithmetic fuchsian groups.

Examples 5.3. 1. The group of units of reduced norm equal to one of the order
O0(1, N) is given by

Γ(1, N) = Γ0(N) =
{
γ =

[
a b

Nc d

]
: a, b, c, d ∈ Z, det γ = 1

}
.

2. The group of units of reduced norm equal to one of the order OA(2p,N) is given
by

Γ(2p,N) =
{
γ =

1
2

[
α β

−β′ α′

]
: α, β ∈ Z[

√
p],

α ≡ β ≡ α√p (mod 2), N |
(

tr(β)− β − β′√
p

)
, detγ = 1

}
.

Here α′ denotes the galois conjugate of an element α in the field Q(
√
p).

3. The group of units of norm equal to one of the order OB(pq,N) is given by

Γ(pq,N) =
{
γ =

1
2

[
α β

qβ′ α′

]
: α, β ∈ Z[

√
p],

α ≡ β(mod 2), N | α− α
′ − β + β′

2
√
p

, detγ = 1
}
.
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6. Shimura curves and their moduli interpretation. The seminal work for the
study of curves attached to quaternionic fuchsian groups is due to G. Shimura. From 1959
onwards, he established their moduli interpretation, characterized their canonical models
and investigated the main properties fulfilled by their L-functions.

Associated to the congruence subgroup Γ0(N), we have the modular curve X0(N). It
is a moduli space for pairs (E,G) consisting of an elliptic curve E and a cyclic subgroup
G ⊆ E of order N .

We keep the embedding Φ : H ↪→M(2,R), choose a maximal order O(D, 1), and fix
a positive involution α→ α∗ of H.

The curves associated to the fuchsian groups Γ(D,N) are called quaternionic Shimura
curves. Shimura proved that they possess a canonical model, X(D,N), defined over Q.
The values of the canonical mapping

jD,N : H → X(D,N)(C)

correspond to classes [(A, i, C, G)] of polarized abelian surfaces endowed with quaternionic
multiplication (QM) and level structure. More precisely:

i) A/C is an abelian variety of dimension 2.
ii) We have embeddings of rings i : O(D, 1) ↪→ End(A), H ↪→ End0(A) = End(A)⊗Q.
iii) C is a weak polarization on A whose Rosatti involution is compatible with the

positive involution on H.
iv) G is a cyclic O(D, 1)-module of order N 2 contained in the set A[N ] of the N -torsion

points of A.

To define complex multiplication points (CM) for Shimura curves, let us consider a
quadratic imaginary number field

F = Q(
√
d), d < 0,

and an order R(d,m) of conductor m in its ring of integers.
A point [(A, i, C, G)] is said to be a CM-point by R(d,m) if, and only if,

End(A, i, C, G) ' R(d,m).

If this is the case, we have that

End0(A, i, C, G) = F,

and there exists an embedding ϕ : F ↪→ H such that

H ⊗ F 'M(2, F ),

i. e. the field F splits the algebra H.
Canonical models are characterized by their CM-points. The important diophantine

property is that their coordinates lie in class fields: if a point z of H is a fixed point of
ϕ(F ∗), then

jD,N (z) = [(A, i, C, G)] ∈ X(D,N)(F ab),

F ab being the maximal abelian extension of F .
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Although many important issues remain unexplored, an increasing amount of liter-
ature today is devoted to the study of Shimura curves. We mention some of the main
results obtained up to now.

Integral models for Shimura curves have been studied by Y. Ihara (1969, 1971);
Y. Morita (1981); H. Carayol (1986) and K. Buzzard (1997).

Equations for Shimura curves are known in only a few cases. The first examples were
computed by A. Kurihara (1974, 1994) and also by B. W. Jordan and R. Livné (1981).

Uniformization problems in the complex case have been treated by Y. Ihara (1974);
J. F. Michon (1980); D. Krammer (1996); N. Elkies (1998); M. Alsina (1999) and S. Johans-
son (2001).

The p-adic uniformization of Shimura curves has been studied by I. V. Cerednik (1976)
and V. G. Drinfeld (1976).

Results on hyperelliptic and bielliptic Shimura curves have been obtained by N. Ishii
(1975); J. F. Michon (1981); A. P. Ogg (1983, 1985) and V. Rotger (2002).

Connections of Shimura curves with modular curves and their applications to Fer-
mat’s Last Theorem are due to K. A. Ribet (1980, 1990); F. Diamond-R. Taylor (1994)
and F. Diamond (1997). In fact, although they do not appear explicitly in Wiles’ famous
paper on FLT, their role in the proof cannot be ignored.

Applications of Shimura curves to the theory of error-correcting-codes were stressed
by M. A. Tsfasman-S. G. Vlăduţ-T. Zink (1982). But, it should be pointed out that, in
order to use them effectively, a more explicit knowledge of their closed fibres would be
necessary.

Diophantine problems on Shimura curves over several fields have been solved by
B. W. Jordan-R. Livné (1984-87, 1999); A. P. Ogg (1985); S. Kamienny (1990); N. Elkies
(1998) and T. Sasaki (2000).

Connections with p-adic L-functions and the Birch and Swinnerton-Dyer conjecture
have been developed by M. Bertolini-H. Darmon (1998).

7. A fundamental polygon for X(6, 1). Let us fix a quaternion algebra H =
(
a,b
Q
)
.

The Eichler theory on arithmetic of quaternion algebras deals with embeddings

ϕ : R(d,m) ↪→ O(D,N)

of quadratic orders in quaternion orders. It provides a useful algebraic tool to study some
of the most basic properties of the curves X(D,N). Once the theory is translated in terms
of binary quadratic forms, it allows many explicit calculations. Embeddings with d > 0
yield hyperbolic transformations γ ∈ Γ(D,N). For d < 0, they allow the computation of
CM-points. For d = −1,−3, they give rise to elliptic points.

Let ε be a fundamental unit of Q(
√
a). Put ξ = ε if its norm is equal to 1, and ξ = ε2

if its norm equals −1. Then the first power hs of h =
[
ξ
ξ′
]

such that hs ∈ Γ(D,N)
generates the isotropy group Γ(D,N)∞. Moreover, for each r ∈ R+, the ring-shaped
region

S(r, ξ2sr) =
{
z ∈ H : r ≤ |z| ≤ ξ2sr

}

is a fundamental domain for the group Γ(D,N)∞.
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The following theorem summarizes the main properties of a fundamental polygon for
the Shimura curve X(6, 1).

Theorem 7.1 (Alsina [1], cf. Figure 1)).

1. The hyperbolic hexagon P(6, 1) whose vertices are given by

P1 =
−
√

3 + ι

2
, P2 =

−1 + ι

1 +
√

3
,

P3 = (2−
√

3)ι, P4 =
1 + ι

1 +
√

3
,

P5 =

√
3 + ι

2
, P6 = ι,

where ι2 = −1, is a fundamental polygon for the action of Γ(6, 1) on H.
2. All the vertices in 1. are elliptic. The corresponding elliptic transformations fixing

them are equal to

γP1 =
[√

3 2
−2 −

√
3

]
, γP2 = 1

2

[
1 +
√

3 3−
√

3
−3−

√
3 1−

√
3

]
,

γP3 =
[

0 −2 +
√

3
2 +
√

3 0

]
, γP4 = 1

2

[
1 +
√

3 −3 +
√

3
3 +
√

3 1−
√

3

]
,

γP5 =
[√

3 −2
2 −

√
3

]
, γP6 =

[
0 1
−1 0

]
.

3. The hyperbolic volume of P(6, 1) is given by
∫

Γ(6,1)\H

dx ∧ dy
y2 =

2π
3
.

The curve X(6, 1) is of genus g(6, 1) = 0.

Fig. 1
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4. The isotropy group Γ(6, 1)∞ is generated by

h =
[

2 +
√

3 0
0 2−

√
3

]
.

5. The fundamental polygon P(6, 1) is included in S(r1, r3) and S(r2, r4), both funda-
mental domains for Γ(6, 1)∞, where r1 = 7 − 4

√
3, r2 = 2 −

√
3, and r3 = 1, r4 =

2 +
√

3.
6. The sides of P(6, 1) are identified in pairs: (P2P3, P2P1) by γP2 , (P3P4, P5P4) by

γP4 , and (P5P6, P1P6) by γP6.
7. The polygon P(6, 1) contains the following elliptic cycles:
{P1, P3, P5}, of order e = 2; {P2}, {P4}, of order e = 3; {P6}, of order e = 2.

8. The group Γ(6, 1) = Γ(6, 1)/〈−I〉 can be described by generators and relations in
accordance with

〈γP2 , γP4 , γP6 : γ3
P2

= γ3
P4

= γ2
P6

= (γ−1
P2
γP6γP4)2 = I〉.

9. The CM-points of parameters d = 6 and m = 1 (called special) are

P0 =
(
√

6−
√

2)ι
2

,

P7 =
−
√

3 +
√

6ι
3

∼ P8 =

√
3 +
√

6ι
3

.

10. The polygon P(6, 1) is invariant under the involution

w6 :=
1√
6

[
0 −3 +

√
3

3 +
√

3 0

]
.

8. Uniformization of X(6, 1). In this section, we indicate a possible way to calculate
a uniformizing function j6,1 for the curve X(6, 1). The function j6,1 has to be understood
as an analogue of the modular function j = j1,1.

The normalizer group Γ
+

(6, 1) of Γ(6, 1) in PSL(2,R) is obtained by adding to the
group Γ(6, 1) three involutions w2, w3, w6. They are defined through quaternions of norm
equal to 2, 3 and 6, respectively.

A closer examination of the fundamental polygon P(6, 1) reveals that the Γ
+

(6, 1)-
action on H originates a splitting of P(6, 1) in eight hyperbolic triangles. By using them
appropriately, it is possible to obtain fundamental polygons for the three quotient curves

X ′(6, 1) := X(6, 1)/〈w6〉, X ′′(6, 1) := X(6, 1)/〈w2〉,
X ′′′(6, 1) := X(6, 1)/〈w3〉,

as well as for the quotient curve

X+(6, 1) := X(6, 1)/〈w2, w3〉.
The five fundamental polygons obtained in total give rise in turn to five differential

equations of fuchsian type. Their constants have been computed to fit together.
By integrating the attached five differential equations of the third order, five auto-

morphic functions have been obtained, which also depend on certain constants. A careful
observation of these functions in the neighbourhood of the special CM-points, and of
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the vertices of P (6, 1), makes it possible to write the necessary initial conditions to be
fulfilled.

At this point, it only remains to choose the right variable to develop the solutions
above in power series. When this is done, the functions appear with rational coefficients.
In this way we obtain

j(6,1)(q) = 6q − 60
3!
q3 − 98352

5!
q5 +

31583520
7!

q7 +
32129374464

9!
q9

− 50955333603840
11!

q11 − 39712797584898048
13!

q13

+
276361426443834593280

15!
q15 − 36203401544839069630464

17!
q17

+ O(q19)

where q = iπ(6,1)
z−P0
z+P0

.
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