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Abstract. We present some facts, observations and remarks concerning the problem of
finiteness of the rings of constants for derivations of polynomial rings over a commutative ring
k containing the field Q of rational numbers.

1. Definitions and basic facts. Throughout this paper k is a commutative ring
containing Q. Let A be a commutative algebra over k with identity. A k-linear mapping
d : A→ A is called a k-derivation of A if it satisfies the Leibniz rule: d(ab) = ad(b)+bd(a).

Let d be a k-derivation of A. W denote by Ad the kernel of d, that is,

Ad = Ker d = {a ∈ A; d(a) = 0}.
This set is a k-subalgebra of A which we call the ring of constants of d. If A is a domain
and k is a field, then we denote by A0 the field of quotients of A and we denote also by
d the unique extension of d to A0. In this case Ad0 is a subfield of A0 containing k.

Let D be a family of k-derivations of A. Then we have the ring of constants AD =⋂
d∈D A

d = {a ∈ A; d(a) = 0 for all d ∈ D}. We will mostly consider derivations of a
polynomial ring in a finite set of variables. In such a case the rings of the form AD are
not interesting for us. It is known ([36], [35]) that in this case every ring AD is of the
form Ad for some k-derivation d of A.

We say that a k-subalgebra B of A is d-stable if d−1(B) ⊆ B, that is, if for any a ∈ A
we have: d(a) ∈ B ⇒ a ∈ B. The algebra A is of course d-stable and the intersection of
d-stable subalgebras is d-stable. So always there exists the smallest d-stable subalgebra
of A. It is easy to see ([41]) that this subalgebra is equal to

Nil(d) := {a ∈ A; ∃
n>0

dn(a) = 0}.
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We say that d is locally nilpotent if A = Nil(d). Thus, d is locally nilpotent if and only if
A has no proper d-stable subalgebras.

Assume now that A = k[X] := k[x1, . . . , xn] is the polynomial ring over k. In this
case we know a description of all k-derivations of A. If d is a k-derivation of k[X], then
we have the polynomials f1 := d(x1), . . . , fn := d(xn), belonging to k[X], and then

d = f1
∂

∂x1
+ · · ·+ fn

∂

∂xn
.

Every k-derivation d of k[X] is uniquely determined by a sequence (f1, . . . , fn) of poly-
nomials from k[X]. If d is a k-derivation of k[X], then d is locally nilpotent if and only if
x1, . . . , xn ∈ Nil(d). If n = 2 and k is reduced (that is, without nonzero nilpotents), then
we have the following useful criterion due to van den Essen and Berson ([16] 33, [2]).

Theorem 1.1. Let d be a k-derivation of k[x, y], where k is a reduced ring containing
Q. Put

m := max
{

degx d(x), degy d(x), degx d(y), degy d(y)
}
.

Then d is locally nilpotent if and only if dm+2(x) = dm+2(y) = 0.

Locally nilpotent derivations of polynomial rings play an important role in algebra
and algebraic geometry. It is well known that many open famous problems may be for-
mulated using locally nilpotent derivations and their rings of constants. Various facts and
results concerning this subject we may find in the following books and papers: van den
Essen ([16]), Makar-Limanov ([29]), Kraft ([28]), Drensky ([14]), Berson ([1]), Maubach
([31]), van Rossum ([43]), Wang ([49]), the author ([35]), and in the papers of Daigle,
Derksen, Deveney, Finston, Freudenburg, Hadas, Janssen, Matsumura, Miyanishi, Stein,
Tyc, Zurkowski, and many others.

2. The fourteenth problem of Hilbert. Let k be a field of characteristic zero,
n > 1, k[X] := k[x1, . . . , xn] the polynomial ring over k, and k(X) := k(x1, . . . , xn) the
field of rational functions over k. Assume that L is a subfield of k(X) containing k. The
fourteenth problem of Hilbert is the following question ([33], [34]).

Question 2.1. Is the ring L ∩ k[X] finitely generated over k?

In 1954 Zariski ([52]) proved that the answer is affirmative if tr.degkL 6 2. It is
known, by a famous counterexample of Nagata ([33], [34]), that if tr.degkL > 4, then it
is possible to obtain a negative answer. If tr.degkL = 3, then the problem is still open.

Assume that d is a k-derivation of k[X]. Then we have the field L :=
(
k[X]d

)
0, the

field of quotients of the constant ring k[X]d, which is a subfield of k(X) containing k.
The intersection L ∩ k[X] is equal to k[X]d. So, in this case, the fourteenth problem of
Hilbert is the following question.

Question 2.2. Is the ring k[X]d finitely generated over k?

In this question k is of characteristic zero. If char(k) > 0, then it is easy to show ([37])
that the answer is affirmative. So, let again char(k) = 0. Using the above mentioned
result of Zariski it is not difficult to show (see [37]) that if n 6 3, then the answer is
affirmative. What does happen for n > 4?
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In 1993 Derksen ([11]) showed that the ring from the Nagata counterexample is of
the form k[X]d for some derivation d of k[X] with n = 32. Thus, he proved:

Theorem 2.3 (Derksen). There exists a k-derivation d of k[X] := k[x1, . . . , x32] such
that k[X]d is not finitely generated over k.

If G is a subgroup of Autk(k[X]), the group of all k-automorphisms of k[X], then we
denote by k[X]G the subalgebra of invariants of G, that is,

k[X]G = {f ∈ k[X]; σ(f) = f for all σ ∈ G}.
In 1994 the author, inspired by the above Derksen theorem, proved:

Theorem 2.4. If G ⊆ GLn(k) is a connected algebraic group, then there exists a k

derivation d of k[X] such that k[X]G = k[X]d.

In 1990 Roberts ([42]) gave a new counterexample to the fourteenth problem of Hilbert
with n = 7. In 1994 Deveney and Finston ([13]) realized the Roberts counterexample in
the following form.

Theorem 2.5 (Deveney and Finston). Let d be the k-derivation of k[X] := k[x1, x2,

x3, y1, y2, y3, y4] defined by d(x1) = d(x2) = d(x3) = 0 and

d(y1) = x3
1, d(y2) = x3

2, d(y3) = x3
3, d(y4) = (x1x2x3)2.

Then the ring k[X]d is not finitely generated over k.

Using this theorem one can easily deduce that if n > 7, then there always exists a
k-derivation d of k[X] such that the ring of constants k[X]d is not finitely generated
over k.

Observe that the derivation d from the above theorem is locally nilpotent. This deriva-
tion has no slice. We say that a locally nilpotent k-derivation d of a k-algebra A has a slice
if there exists an element s ∈ A such that d(s) = 1. It is well known (see for example [16]
or [35]) that if A is a finitely generated k-algebra and d is a locally nilpotent k-derivation
of A having a slice, then the ring of constants Ad is finitely generated over k.

Similar examples of derivations for n > 7 one can find, for instance, in [27] and [19].
Later, in 1998, Freudenburg ([22]) constructed a locally nilpotent derivation with the
same property for n = 6.

Theorem 2.6 (Freudenburg). Let d be the k-derivation of k[X] := k[x1, x2, y1, y2, y3,
y4] defined by d(x1) = d(x2) = 0 and

d(y1) = x3
1, d(y2) = x3

2y1, d(y3) = x3
2y2, d(y4) = x2

1x
2
2.

Then the ring k[X]d is not finitely generated over k.

In 1999, Daigle and Freudenburg ([8], see also [23]) gave a similar example with n = 5.

Theorem 2.7 (Daigle and Freudenburg). Let d be the k-derivation of the polynomial
ring k[X] := k[a, b, x, y, z] defined by d(a) = d(b) = 0 and

d(x) = a2, d(y) = ax+ b, d(z) = y.

Then the ring k[X]d is not finitely generated over k.
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Observe that also in this case the derivation d is locally nilpotent. So, if n 6 3, then
k[X]d is always finitely generated over k, and if n > 5, then there exists a k-derivation
(even locally nilpotent) of k[X] with non-finitely generated ring of constants. For n = 4
the problem is open. In this case there is no counterexample for arbitrary derivations
and we do not know if k[X]d is finitely generated for locally nilpotent derivations. In the
last case we know, by the result of Maubach ([30]), that k[X]d is finitely generated if d
is triangular and monomial. More precisely,

Theorem 2.8 (Maubach). Let d be a k-derivation of k[X] := k[x1, x2, x3, x4] such
that d(x1), d(x2), d(x3), d(x4) are monomials and d(x1) ∈ k, d(x2) ∈ k[x1], d(x3) ∈
k[x1, x2] and d(x4) ∈ k[x1, x2, x3]. Then the ring k[X]d is generated by at most 4 elements.

Recently Daigle and Freudenburg ([10]) proved that the ring of constants of any
triangular derivation of k[x1, x2, x3, x4] is finitely generated over k. This is obtained as
a corollary of the following more general result concerning triangular R-derivations of
R[x, y, z] for certain rings R.

Theorem 2.9 (Daigle and Freudenburg). Let R be a k-affine Dedekind domain or a
localization of such a ring. If d is any triangular R-derivation of R[x, y, z], then the ring
of constants R[x, y, z]d is finitely generated as an R-algebra.

Let n,m ≥ 1 and let k[X,Y ] := k[x1, . . . , xn, y1, . . . , ym] be the polynomial ring over
a field k of characteristic zero. Let k[X] := k[x1, . . . , xn]. A k-derivation d : k[X,Y ] →
k[X,Y ] is called elementary monomial if it is of the form

d = a1
∂

∂y1
+ · · ·+ am

∂

∂ym
,

where a1, . . . , am are monomials belonging to k[X]. The derivation d from Theorem 2.5
is elementary monomial. Here n = 3 and m = 4, and the ring of constants k[X,Y ]d is
not finitely generated over k. A. van den Essen and T. Janssen, in [19], proved that if
n+m ≤ 5, then the ring of constants of every elementary monomial derivation is a finitely
generated k-algebra. They proved also that if m ≥ 4, then for any n ≥ 3 there exists
a elementary monomial derivation which the ring of constants is not finitely generated
over k. Some interesting facts concerning elementary monomial derivations one can find
in [49].

Recently Khoury ([26]) proved that if n+m = 6, then the ring of constants of every
elementary monomial derivation is finitely generated over k. Moreover, he shows that, in
this case, such rings of constants are generated by at most six elements which are either
the variables x1, . . . , xn or linear with respect to y1, . . . , ym.

3. The minimal number of generators. Let d be a k-derivation of k[X] =
k[x1, . . . , xn], where k is a ring containing Q. If k[X]d 6= k and k[X]d is finitely gen-
erated over k then we denote by γ(d) the minimal number of polynomials in k[X] r k

which generate k[X]d over k. Moreover, we assume that γ(d) = 0 iff k[X]d = k, and
γ(d) = ∞ iff k[X]d is not finitely generated over k. We already know from the previ-
ous section that there exist a natural number n and a k-derivation d of k[X] such that
γ(d) =∞.
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If k is not a domain, then there always exist k-derivations of k[X] (even for n = 1)
with non-finitely generated ring of constants. It follows from the following proposition
which we may find in [16] or [43].

Proposition 3.1. Assume that k contains two nonzero elements a and b such that
ab = 0. Let d be the k-derivation of k[X] defined by

d(x1) = ax1, d(x2) = 0, . . . , d(xn) = 0.

Then γ(d) =∞. More exactly, k[X]d = k[x2, x3, . . . , xn, bx1, bx
2
1, bx

3
1, . . .].

If d = 0, then it is clear that γ(d) = n. If n = 1, k is a domain and d 6= 0, then of
course γ(d) = 0. Now we assume that k is a domain, d 6= 0 and n > 2.

It is known ([51], [15]) that if k is a field then every Dedekind k-subalgebra of k[X]
is a polynomial ring in one variable over k. As a consequence of this fact we obtain

Theorem 3.2. Let d be a nonzero k-derivation of k[X] = k[x1, . . . , xn], where k is a
field of characteristic zero. If tr.degk(k[X]d) 6 1, then γ(d) 6 1.

Note also the following similar result of Russell and Sathaye ([44]) for locally nilpotent
derivations.

Theorem 3.3 (Russell and Sathaye). Let k be a UFD and let d be a nonzero locally
nilpotent k-derivation of k[X]. Then γ(d) = 1.

As a consequence of Theorem 3.2 we get

Corollary 3.4. Let k be a field of characteristic zero. If d is a nonzero k-derivation
of k[x, y], then γ(d) 6 1.

The same corollary is true when k is a UFD. If d is locally nilpotent, then it follows
from Theorem 3.3 (see [7]). If d is arbitrary, then it is a result of Berson ([1], see also [16]
21).

Theorem 3.5 (Berson). Let k be a UFD containing Z. If d is a nonzero k-derivation
of k[x, y], then γ(d) 6 1.

If k is not a UFD (even if k is noetherian), then the following example shows that
Theorem 3.5 does not always hold.

Example 3.6 (Berson). Let k := C[t2, t3]. Consider the k-derivation d of k[x, y] de-
fined by

d(x) = t3, d(y) = −t2.
Then k is not a UFD, and k[x, y]d is not finitely generated over k.

Observe that the derivation d from the above example is locally nilpotent. Similar
examples of locally nilpotent derivations of k[x, y] with non-finitely generated rings of
constants one can find in [3] and [31].

We say that a k-derivation d of k[X] is irreducible if the image d(k[X]) is not contained
in a principal proper ideal of k[X]. The following theorem of Bhatwadekar and Dutta ([3])
gives a necessary and sufficient condition for the ring of constants of an irreducible locally
nilpotent derivation of k[x, y] to be isomorphic to a polynomial ring in one variable over k.
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Theorem 3.7 (Bhatwadekar and Dutta). Let k be a noetherian domain containing
Q, and let d be a locally nilpotent k-derivation of k[x, y]. The following conditions are
equivalent.

(1) d is irreducible and γ(d) = 1.
(2) The polynomials d(x) and d(y) either form a regular k[x, y]-sequence or are co-

maximal in k[x, y].

Bhatwadekar and Dutta ([3]) proved also other interesting facts concerning locally
nilpotent k-derivations of k[x, y] and the number γ(d). Now we present some of these
facts.

Let I be an ideal of a noetherian domain R. Let AssR(R/I) = {P1, . . . , Pr} be the set
of all the associated prime ideals of I and let S be the multiplicative subset of R defined
as S := Rr (P1 ∪ . . . ∪ Pr). Then the n-th symbolic power I(n) of I is defined to by the
ideal

I(n) := R ∩ In(S−1R).

We denote by R(I) the symbolic Rees algebra of I, that is, R(I) is the R-subalgebra of
the polynomial algebra R[t] (in one variable t over R) such that each element u of R(I)
is of the form

u = ant
n + · · ·+ a1t+ a0,

with a0 ∈ I(0) = R, a1 ∈ I(1), . . ., an ∈ I(n). In other words, R(I) is the graded algebra

R(I) =
⊕

n>0

I(n)tn.

Let us recall (see for example [25]) the notion of a reflexive R-module. Let R be a ring
and M an R-module. Let M∗ := HomR(M,R) denote the dual R-module of M . Consider
also the R-module

M∗∗ = (M∗)∗ = HomR(M∗, R) = HomR(HomR(M,R), R).

Then we have the R-homomorphism ΦM : M →M∗∗ defined by

ΦM (m)(ϕ) := ϕ(m),

for all m ∈ M and ϕ ∈ M∗. We say that M is reflexive if ΦM is an isomorphism of
R-modules. It is well-known that if R is a field, then every finite dimensional vector
space over R is a reflexive R-module.

Theorem 3.8 (Bhatwadekar and Dutta). Let k be a noetherian normal domain con-
taining Q and let d be a nonzero locally nilpotent k-derivation of k[x, y].

Then k[x, y]d has the structure of a graded ring

k[x, y]d =
⊕

n>0

An

with A0 = k and An a finite reflexive k-module of rank one for every n.
In fact, when k is not a field, there exists an ideal I of unmixed height one in k such

that k[x, y]d is isomorphic to the symbolic Rees algebra R(I) as a graded k-algebra.
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Conversely, let k be as above and let I be an unmixed ideal of height one in k. Then
there exists a locally nilpotent k-derivation d of k[x, y] whose ring of constants k[x, y]d is
isomorphic to R(I) as a graded k-algebra.

As a consequence of this theorem we obtain:

Theorem 3.9 (Bhatwadekar and Dutta). Let k be a one-dimensional noetherian
normal domain containing Q. Then for any locally nilpotent k-derivation d of k[x, y]
the ring of constants k[x, y]d is finitely generated over k.

If k is a domain, then we denote by Cl(k) and Pic(k), the class group of k and its
Picard subgroup, respectively.

Theorem 3.10 (Bhatwadekar and Dutta). Let k be a noetherian normal domain
containing Q such that the group Cl(k)/Pic(k) is torsion. Then for any locally nilpo-
tent k-derivation d of k[x, y] the ring of constants k[x, y]d is finitely generated over k.

Using a result of Cowsik [5] and the above facts we get

Theorem 3.11 (Bhatwadekar and Dutta). Let k be a noetherian normal domain
containing Q with Krull-dim(k) = 2. Then the following two conditions are equivalent.

(1) The group Cl(k)/Pic(k) is torsion.
(2) For any locally nilpotent k-derivation d of k[x, y] the ring of constants k[x, y]d is

finitely generated over k.

If Krull-dim(R) > 2, then the following example shows that the above condition (1) is
not necessary for the kernel of every locally nilpotent R-derivation of k[x, y] to be finitely
generated over k.

Example 3.12 ([3]). Consider the ring

k := C[x1, x2, x3, x4]/(x1x2 − x3x4).

It is well known that Cl(k) = Z and Pic(k) = 0. So, Cl(k)/Pic(k) is not a torsion
group and Krull-dim(k) = 3. If I is an unmixed ideal of height one in k, then it is possible
to show that I(n) = In for any n > 0. Hence the symbolic Rees algebra of I coincides with
the ordinary Rees algebra of I, so R(I) is finitely generated over R. Now, by Theorem 3.8,
the ring of constants of every locally nilpotent k-derivation of k[x, y] is finitely generated
over k. �

Now let n = 3. We already know from the previous section that if k is a field, then
γ(d) <∞. However in this case the number γ(d) is unbounded. Strelcyn and the author
([38]) proved:

Theorem 3.13. If n > 3 and r > 0, then there exists a k-derivation d of k[X] such
that γ(d) = r.

In some cases the number γ(d) is bounded. Note the following consequence of Theo-
rem 3.5.

Theorem 3.14. Let d be a nonzero k-derivation of k[x, y, z], where k is a UFD con-
taining Z. If d(x) = 0, then γ(d) 6 2.
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For locally nilpotent derivations over a field the number γ(d) is also bounded.

Theorem 3.15 (Miyanishi [32]). If d is a nonzero locally nilpotent derivation of k[x,
y, z], where k is a field of characteristic zero, then k[x, y, z]d = k[f, g] for some alge-
braically independent polynomials f, g ∈ k[x, y, z].

There exists also the following homogeneous version of this theorem.

Theorem 3.16 ([53], [6]). Let d be a nonzero homogeneous locally nilpotent deriva-
tion of k[x, y, z]. Assume that the degrees of x, y, z are positive. Then k[x, y, z]d = k[f, g],
for some homogeneous polynomials f, g ∈ k[x, y, z].

This was first proved by Zurkowski [53] in the case k is algebraically closed; Zurkowski
does not assert the homogeneity of f and g in his statement of the theorem, but this is
included in his proof ([21] 172).

Proposition 3.17 ([6]). Let f, g ∈ k[x, y, z], where k is a field of characteristic zero.
Assume that k[f, g] is the kernel of some locally nilpotent derivation of k[x, y, z]. Then
the polynomials f and g are irreducible in k[x, y, z], where k denotes the algebraic closure
of k.

Let us end this section with the following two recent results for n = 4.

Theorem 3.18 ([12]). If k is a field of characteristic zero and d is a nonzero trian-
gular derivation of k[x1, x2, x3, x4] with a slice, then γ(d) = 3.

Theorem 3.19 ([9]). For any integer n > 3 there exists a triangular derivation d of
k[x1, x2, x3, x4] (where k is a field of characteristic zero) such that n 6 γ(d) 6 n+ 1.

4. The Weitzenböck theorem and its generalizations. Let k be a field of char-
acteristic zero. The classical result of Weitzenböck [50] states that every linear action of
the additive group (k,+) on An has a finitely generated algebra of invariants. A mod-
ern proof of this result is due to Seshadri [45]; cf. [33] pp. 36-40 and Tyc ([48]). In the
language of derivations this is equivalent to the following.

Theorem 4.1 (Weitzenböck). Let d be a k-derivation of k[X] = k[x1, . . . , xn] such
that

d(xi) =
n∑

j=1

aijxj for i = 1, . . . , n, with aij ∈ k.

If the matrix [aij ] is nilpotent, then k[X]d is finitely generated over k.

It turns out that the assumption of nilpotency of the matrix [aij ] is not essential. It
is true also for an arbitrary matrix ([33], [47]). We may prove also the following theorem.

Theorem 4.2 ([39]). If d is a k-derivation of k[X] = k[x1, . . . , xn] such that

d(xi) =
m∑

j=1

aijxj + bi for i = 1, . . . , n, with aij ∈ k and bi ∈ k,

then k[X]d is finitely generated over k.
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If, in the above theorem, k is replaced by a UFD, then in general it is not true that
the ring of constants is finitely generated (see Theorem 2.7).

All the known proofs of the Weitzenböck theorem are not constructive. Given a linear
k-derivation it is not easy to describe its ring of constants even if we assume that its
matrix is nilpotent. In 1989 L. Tan in [46] gave a method of computing generators of the
ring of constants for some linear locally nilpotent k-derivations of k[X]. Later, in 1992,
van den Essen ([17], [18]) showed that this method works in a more general case. He gave
an algorithm computing a finite set of generators of the ring of constants for any locally
nilpotent k-derivation (of a finitely generated k-domain), in the case when the finiteness
of the ring of constants is known. An important role in his algorithm play Gröbner bases.

Let δ be the Weitzenböck derivation of k[X] := k[x1, . . . , xn], that is,

δ(x1) = 0, δ(x2) = x1, δ(x3) = x2, . . . , δ(xn) = xn−1.

An algebraic description of the rings of the form k[X]δ, for n 6 6, is given in [40]. In
[20] we may find a finite set of polynomials which is proposed as a generating set of
k[X]δ. But, as shows L. Tan in [46], it is not a generating set. Full lists of generators, for
n 6 5, are described (in a slightly modified form) in [46]. The generators for n 6 6 can be
found in the tables of Cerezo [4]. The author, in [35], using the van den Essen algorithm,
presented a similar list for n 6 6. Cerezo also computed a system of generators of minimal
length for the case n = 7 (the minimal length is 23, the degrees of these generators go
up to 18).

Assume that n > 2 and let α = (α1, . . . , αn−1) be a sequence of positive integers. Let
d be the derivation of k[X] defined by

d(x1) = 0, d(x2) = xα1
1 , d(x3) = xα2

2 , · · · , d(xn) = x
αn−1
n−1 .

This derivation we call the generalized Weitzenböck derivation of type α. If α = (1, . . . , 1)
then, by the Weitzenböck theorem, the ring of constants of the above derivation is finitely
generated over k.

Question 4.3. Is the ring of constants of every generalized Weitzenböck derivation
of k[X] finitely generated over k?

We do not know any answer to this question. There are no counterexamples. If n 6 3,
then the answer is affirmative, because we know that, in this case, every derivation of
k[X] has a finitely generated ring of constants. If n = 4, the answer is also affirmative by
a result of Maubach [30] (see Theorem 2.8). For n > 5 the problem is open.

If a generalized Weitzenböck derivation of k[X] of type (1, α2, . . . , αn−1) has a finitely
generated ring of constants, then every generalized Weitzenböck derivation of k[X] of
type (c, α2, . . . , αn−1), for any integer c > 1, has a finitely generated ring of constants. It
was proved by Maubach ([31] for n = 4, [16] 236 Ex. 6). Using the same idea as in the
Maubach proof we may prove the following proposition.

Proposition 4.4. Let k be a ring containing Q and let k[t, u,X] := k[t, u, x1, . . . , xn]
and k[u,X] := k[u, x1, . . . , xn] be the polynomial rings over k. Let β(t) be a monic poly-
nomial from k[t] of degree c > 1, and let f1, . . . , fn be polynomials belonging to k[u,X].
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Consider two derivations d and δ of k[t, u,X] defined by




d(t) = 0,
d(u) = t,

d(x1) = f1,
...

d(xn) = fn,





δ(t) = 0,
δ(u) = β(t),
δ(x1) = f1,

...
δ(xn) = fn.

If k[t, u,X]d is finitely generated over k, then k[t, u,X]δ is also finitely generated over k.
More exactly, assume that k[t, u,X]d = k[g1, . . . , gm]. Then

(∗) k[t, u,X]δ = k[t][ϕ(g1), . . . , ϕ(gm)],

where ϕ : k[t, u,X] → k[t, u,X] is the k-algebra endomorphism such that ϕ(t) = β(t),
ϕ(u) = u and ϕ(xi) = xi for all i = 1, . . . , n.

Proof. Let ϕ be the endomorphism as in this proposition. Observe that ϕ is injective
and δϕ = ϕd. It is enough to prove the equality (∗). The inclusion ⊇ is obvious.

Assume that h ∈ k[t, u,X]δ and consider the unique presentation

h = h0 + h1t+ · · ·+ hc−1t
c−1,

in which the polynomials h0, . . . , hc−1 belong to A := k[β(t), u,X] := k[β, u, x1, . . . , xn].
Then we have

0 = δ(h) = δ(h0) + δ(h1)t+ · · ·+ δ(hc−1)tc−1.

It is clear that δ(A) ⊆ A. Since such a presentation is unique, we have

δ(hi) = 0 for all i = 0, 1, . . . , c− 1.

The polynomials h0, . . . , hc−1 belong of course to the image of ϕ. Thus, there exist
H0, . . . , Hc−1 ∈ k[t, u,X] such that

hi = ϕ(Hi), for all i = 0, . . . , c− 1.

Then ϕd(Hi) = δϕ(Hi) = δ(hi) = 0, and hence, since ϕ is injective, d(Hi) = 0 for
all i = 0, 1, . . . , c − 1. Whence, each Hi belongs to k[g1, . . . , gm], so hi = ϕ(Hi) ∈
k[ϕ(g1), . . . , ϕ(gm)], and consequently h =

∑
hit

i ∈ k[t][ϕ(g1), . . . , ϕ(gm)]. �
Note added in proof. (1) In 2001, Gene Freudenburg ([24]) presented a survey of

counterexamples to Hilbert’s Fourteenth Problem, including recent counterexamples in
low dimension constructed with locally nilpotent derivations.

(2) A part of the facts from this paper was presented at the Conference on Differential
Galois Theory (Będlewo, Poland, May 28th–June 1st 2001) organized by Teresa Crespo
and Zbigniew Hajto. The author thanks the organizers for the excellent conference.
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