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Abstract. Let L(y) = 0 be a linear differential equation with rational functions as coef-
ficients. To solve L(y) = 0 it is very helpful if the problem could be reduced to solving linear
differential equations of lower order. One way is to compute a factorization of L, if L is reducible.
Another way is to see if an operator L of order greater than 2 is a symmetric power of a second
order operator. Maple contains implementations for both of these. The next step would be to
see if L is a symmetric product of two lower order equations. In this document we will show how
to find the formulas needed to solve this problem for the smallest case, where the order of L is
4. This case is already non-trivial; to find the formulas the help of a computer algebra system
was needed.

1. Problem description. Let L ∈ C(x)[∂] be a linear homogeneous differential
operator of order n with rational functions as coefficients, where ∂ denotes d

dx . Denote
by V (L) = {y ∈ Ω|L(y) = 0} the solution space of L. Here Ω is a differential field that
contains C(x) as well as n linearly independent solutions of L, where n is the order of
L (the highest derivative in L). We could take as Ω the field of fractions of the analytic
functions at x = p, where p is chosen as a point that will be a regular point for all
operators L under consideration. Then the dimension of V (L) is n = order(L).

If L1 and L2 are operators, then the symmetric product L = sp(L1, L2) of L1, L2 is
defined as the monic operator L such that:

V (L) = SPAN{y1y2|y1 ∈ V (L1), y2 ∈ V (L2)}.

It is known that such an operator L ∈ C(x)[∂] exists and is unique, see [2]. If n1, n2,
n are the orders of L1, L2, L then:

n1 + n2 − 1 ≤ n ≤ n1n2.
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Here is an example how the symmetric product L can be computed with Maple:

Example A:

> restart:
> with(DEtools):
> _Envdiffopdomain := [Dx, x]:
> # remark: this means that d/dx is denoted by Dx
> L1 := Dx^2+2/x*Dx+x;

L1 := Dx2 + 2
xDx+ x

> L2 := Dx^2 - x;

L2 := Dx2 − x
> L := symmetric_product(L1,L2);

L := Dx4 +
3
x
Dx3 − 3

x2Dx
2 + 4x2

The equations corresponding to L1 and L2 are given by the command diffop2de. If
y1(x) and y2(x) satisfy these equations:

> diffop2de(L1,y1(x))=0; diffop2de(L2,y2(x))=0;

xy1(x) +
2
x

(
∂

∂x
y1(x)

)
+

∂2

∂x2 y1(x) = 0

−xy2(x) +
∂2

∂x2 y2(x) = 0

then y(x) := y1(x)y2(x) will satisfy the equation of the symmetric product:

> diffop2de(L,y(x))=0;

4x2y(x)− 3
x2

(
∂2

∂x2 y(x)
)

+
3
x

(
∂3

∂x3 y(x)
)

+
∂4

∂x4 y(x) = 0

For brevity, write symmetric product as sp. It is well known that:

sp(∂ − d, ∂n + a∂n−1 + · · ·) = ∂n + (a− nd)∂n−1 + · · ·(1)

where the dots refer to lower order terms. If y is non-zero solution of ∂ − d then 1/y is a
solution of ∂ + d, and so it follows that:

sp(sp(∂ + d, L1), sp(∂ − d, L2)) = sp(L1, L2)(2)

for any operators L1, L2 ∈ C(x)[∂] and any d ∈ C(x). If

L = sp(∂2 + a1∂ + b1, ∂
2 + a2∂ + b2)(3)

for some a1, a2, b1, b2 ∈ C(x), then by taking d = (a2 − a1)/4 in equation (2) it follows
that there exist a,B1, B2 ∈ C(x) such that

L = sp(∂2 + a∂ +B1, ∂
2 + a∂ +B2).(4)

So we may assume that the coefficients of ∂1 in the two second order operators are the
same. Note that if a,B1, B2 satisfies (4) then so does a,B2, B1. We wish to reduce the
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number of possibilities. For this purpose we will rewrite (4) as:

L = sp(L1, L2) = sp(∂2 + a∂ + b+
√
c, ∂2 + a∂ + b−√c)(5)

where a = (a1 +a2)/2, b = (B1 +B2)/2, and c = ((B1−B2)/2)2 are elements of C(x). In
this paper we are interested in solving fourth order equations, and L has order 4 if and
only if c 6= 0, which we shall assume.

Main problem. The problem to be solved in this document is the following: Given
a monic operator L ∈ C(x)[∂] of order 4, decide if there exist a, b, c ∈ C(x) such that
equation (5) holds. If so, find such a, b, c.

Application. If we can find such a, b, c, then solving L has been reduced to solving
two second order operators L1, L2. A basis of V (L) is then obtained by multiplying the
elements of the bases of V (L1) and V (L2).

2. An easier subproblem: The case a = 0. We will first calculate formulas for
finding b, c under the simplifying assumption that a = 0.

L = sp(L1, L2) = sp(∂2 + b+
√
c, ∂2 + b−√c)(6)

> L1, L2 := Dx^2 + b(x)+sqrt(c(x)), Dx^2 + b(x)-sqrt(c(x)):
> L := symmetric_product(L1, L2);

L := Dx4 − 1
2

( ∂
∂xc(x))Dx3

c(x)
+ 4b(x)Dx2

− 2(( ∂
∂xc(x))b(x)− 3( ∂

∂xb(x))c(x))Dx
c(x)

+
−( ∂

∂xc(x))( ∂∂xb(x)) + 4c(x)2 + 2( ∂2

∂x2 b(x))c(x)
c(x)

Now we can write the coefficient of Dx3 = ∂3 as

C = −1
2
c′

c
, hence c′ = −2Cc(7)

so that we can substitute c′ = −2Cc into L:

> collect(subs(diff(c(x),x) = -2*C(x)*c(x),L),Dx,normal);

Dx4 + C(x)Dx3 + 4b(x)Dx2 + (4C(x)b(x) + 6 ∂
∂xb(x))Dx

+ 2C(x)
∂

∂x
b(x) + 4c(x) + 2

∂2

∂x2 b(x)

So, if L is of the form (6), then the values of C = C(x) and b = b(x) are easily determined:

C(x) = coeff(L,Dx, 3) = coefficient of Dx3(8)

b(x) =
1
4

coeff(L,Dx, 2) =
1
4
· coefficient of Dx2(9)

At this point, we can use the coefficient of Dx1 as a first check: If this coefficient is
not equal to 4Cb + 6b′ then L cannot be of the form (6) for any functions b, c in any
differential field extension of C(x). Assume that the coefficient of Dx1 passes the check.
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Then we need to calculate c = c(x). It is clear how to find it:

c =
1
4

(coeff(L,Dx, 0)− 2b′C − 2b′′)

Then equation (7) gives us a second check: test if C equals − 1
2
c′

c . Again, if this test fails,
then L cannot have form (6) for any b, c. It is easy to see that if L does have form (6),
then it will pass both checks and b, c will be found.

We will now illustrate the a = 0 subproblem by two examples. In the first example,
L is of the form (6). In the second example it is not.

Example 1.

> L := Dx^4-2/x*Dx^3+4*Dx^2-8/x*Dx+4*x^4;

L := Dx4 − 2
xDx

3 + 4Dx2 − 8
xDx+ 4x4

> C:=coeff(L,Dx,3); b:=1/4*coeff(L,Dx,2);

C := −2/x

b := 1

> 4*C*b+6*diff(b,x) = coeff(L,Dx,1);

−8/x = −8/x

Now the first check is that this equation holds, i.e. that lhs− rhs (lefthand side minus
righthand side) equals 0:

> first_check := normal(lhs(%)-rhs(%));

first check := 0

> c := 1/4*(coeff(L,Dx,0) - 2*C*diff(b,x) - 2*diff(b,x,x) );

c := x4

> C = -1/2*diff(c,x)/c;

−2/x = −2/x

> second_check := normal(lhs(%)-rhs(%));

second check := 0

Both checks pass, therefore L is the symmetric product of L1 and L2 below:

> sqc := sqrt(c, symbolic);

sqc := x2

> L1:=Dx^2 + b + sqc; L2:=Dx^2 + b - sqc;

L1 := Dx2 + 1 + x2

L2 := Dx2 + 1− x2
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> symmetric_product(L1,L2); # equals L

Dx4 − 2
x
Dx3 + 4Dx2 − 8

x
Dx+ 4x4

Example 2 (same L as in example A).

> L := Dx^4+3/x*Dx^3-3/x^2*Dx^2+4*x^2;

L := Dx4 + 3
xDx

3 − 3
x2Dx

2 + 4x2

> C:=coeff(L,Dx,3): b:=1/4*coeff(L,Dx,2):
> 4*C*b+6*diff(b,x) = coeff(L,Dx,1):
> first_check := normal(lhs(%)-rhs(%));

first check := 0

> c := 1/4*(coeff(L,Dx,0)-2*C*diff(b,x)-2*diff(b,x,x)):
> C = -1/2*diff(c,x)/c:
> second_check := normal(lhs(%) - rhs(%));

second check := 4
1
x

The second check fails. So in example 2, there exist no b, c for which equation (6)
holds. However, this operator is the same as in example A. And so there do exist a, b, c
such that equation (5) holds.

There exists a well known trick to eliminate the coefficient of ∂n−1 where n = order(L).
This can be done by: sp(Dx− coeff(L,Dx, n− 1)/n, L) if L is monic.

In many algorithms for linear differential equations, the input is first normalized with
this trick. The two second order operators L1, L2 in equation (5) are normalized precisely
when a = 0. We could normalize L1, L2 if we knew what L1, L2 are, but we only know L.
We may hope that normalizing L would have the same effect, however, one easily finds
out that it is not so by trying an example:

Example 2a (normalize L from example 2).

> n:=4:
> L:=symmetric_product(Dx - coeff(L,Dx,n-1)/n, L);

L := Dx4 − 15
8x2Dx

2 +
15
8x3Dx+

1024x6 − 315
256x4

> C:=coeff(L,Dx,3): b:=1/4*coeff(L,Dx,2):
> 4*C*b+6*diff(b,x) = coeff(L,Dx,1):
> first_check := normal(lhs(%)-rhs(%));

first check :=
15
4x3

The normalized L already fails the first check, so it is not of form (6).

Remark 1. sp(∂ − a, sp(L1, L2)) = sp(sp(∂ − a/2, L1), sp(∂ − a/2, L2)). So if L is
of form (5), and if we knew the value of a, then sp(∂ − a, L) is of form (6) and then the
problem becomes easy.

Corollary 1. Finding a (if it exists) is equivalent to solving the main problem.
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3. Formula for the general case. The corollary could be used in the following way:
Apply a transformation L := sp(∂ − a(x), L) where a(x) is an undetermined function.
Then compute first check and second check. Equating both to zero gives two non-linear
differential equations in a(x). We could try to simplify these equations and hope to find
a linear differential equation. Note that a(x) is related to the ∂n−1 coefficient, and from
equation (8) we see that we could also work with this coefficient by using C(x) or c(x)
(see equation (7)). Taking c(x) makes the equations easier (the equations derived from
first check and second check), but they are still both non-linear which makes solving diffi-
cult. The question now is: can these equations be reduced to linear differential equations,
and if so, how?

To answer this question, we took the easiest possible 4th order operator, which is
L = ∂4, and then computed all a, b, c for which equation (5) holds, see http://www.math.
fsu.edu/˜hoeij/papers/symprod/idea symprod for details. The conclusion of this compu-
tation was that there exists no linear differential equation for a(x), b(x), or c(x), and
that there does exist a linear differential equation for c(x)−1/4, at least for the special
case L = ∂4. This is the key for solving the problem, because all one has to do now is to
use first check to compute an equation for c(x)−1/4 for an arbitrary 4th order operator
L, and one obtains the following result:

Proposition 1. Let L = ∂4 + A4∂
3 + A3∂

2 + A2∂ + A1. If L is of form (5), then
c−1/4 is a solution of the operator:

L3 = 20∂3 + (8A3 − 12A′4 − 3A2
4)∂ + 12A′3 − 8A2 + 4A3A4 − 10A′′4 −A3

4 − 9A4A
′
4.

Proof. To verify the proposition, compute L in formula (5) in terms of a(x), b(x), c(x)
and their derivatives. Then take the coefficients A1, . . . , A4 of L and determine L3 from
the given formula. Then calculate L3(c(x)−1/4) and simplify it to zero. This would be a
very tedious and non-instructive computation if done by hand, but it can be done with
very little effort with a computer algebra system. A Maple worksheet that contains this
computation can be downloaded from http://www.math.fsu.edu/˜hoeij/papers.html

Note: If L is normalized (i.e. if A4 = 0) then we can use the shorter formula

L3 =
5
2
∂3 +A3∂ +

3
2
A′3 −A2.

Proposition 2. i is a non-zero solution of L3 if and only if

sp
(
∂ − 1

4
A4 +

1
2
i′

i
, L

)

satisfies first check.

Proof. Again, a very tedious and non-instructive computation if done by hand, but
trivial with the help of a computer algebra system. Just take L = ∂4+A4(x)∂3+A3(x)∂2+
A2(x)∂ + A1(x), compute the symmetric product with ∂ − 1

4A4(x) + 1
2 i
′(x)/i(x), then

compute first check like in section 2. The result is precisely the formula for L3. This
computation also shows how this formula was found.

This leads to the following algorithm.
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4. The algorithm

Input: L = ∂4 +A4∂
3 +A3∂

2 +A2∂ +A1 ∈ C(x)[∂].
Output: a, b, c ∈ C(x) such that equation (5) holds, if such a, b, c exist.
Step 1: Compute L3 with the formula from section 3.
Step 2: Find all i for which L3(i) = 0 and i4 ∈ C(x).
Step 3: Compute the set of all i′/i ∈ C(x) for all i 6= 0 from step 2.
Step 4: For each such i′/i, test if sp(∂ − 1

4A4 + 1
2
i′

i , L) satisfies second check.
Step 5: If so, then we can find L1, L2 for which sp(∂ − 1

4A4 + 1
2
i′

i , L) meets condi-
tion (6). Replace L1 and L2 by sp(∂+ 1

8A4− 1
4
i′

i , L1) and sp(∂+ 1
8A4− 1

4
i′

i , L2). Then (5)
holds.

Remarks.

• Step 2 : Recall that i = c−1/4 must be a solution of L3, and c ∈ C(x) hence i4 must
be in C(x). Note that one can replace C(x) in the algorithm by another differential
field, provided that an algorithm for step 2 is available.
• Step 3 : As an algebraic set, this set is either:

1. A finite set with 0, 1, 2 or 3 points.
2. A projective line, so the i′/i are parametrized by homogeneous parameters

(s : t) ∈ P 1(C).
3. A disjoint union of a projective line and one point.
4. A projective plane, then the i′/i are parametrized by (s : t : u) ∈ P 2(C).

• Step 4 : i′/i depends on parameters in cases 2, 3, and 4, which means we need
to translate second check into homogeneous polynomial equations for s, t (in cases
2, 3) or for s, t, u (in case 4).
• Implementation: The algorithm is implemented in dsolve in Maple7. To view the

code type the following in Maple7:

> interface(verboseproc=2):
> print(‘dsolve/diffeq/higherorder/is_sympr_o2‘);

Cases 2, 3, 4 have not been fully implemented (it will consider only 2 points on the
line or 3 points on the plane). The reason is that if L is reducible then it will be
treated by DFactor, and if L is irreducible then cases 2, 3, 4 are rare. However, in
order to have a complete procedure these cases must be implemented. It is easy to
do so, and the efficiency would not be bad because no Gröbner basis is needed to
solve the polynomial equations because the number of homogeneous variables is at
most 3, so they can be solved with resultants and gcd’s.

5. An example

L(y) =
4
x2 y(x) +

4
x2

d2

dx2 y(x) +
5
x

d3

dx3 y(x) +
d4

dx4 y(x) = 0.

The formula for L3 gives:

L3(y) = −16
x3 y(x) +

17
x2

d

dx
y(x) + 20

d3

dx3 y(x) = 0
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which has a basis of exponential solutions, but (up to constant factors) only one solution
whose 4th power is rational: i = x1/2. So i′/i = 1

2x and we find:

sp
(
∂ − 1

4
A4 +

1
2
i′

i
, L

)
= ∂4 +

1
x
∂3 +

1
x2 ∂

2 − 2
x3 ∂ + 2

2x2 + 1
x4 .

The latter passes first check and second check, so it is of the form (6), and we find
L1 = ∂2 + (1/4 − x)/x2, L2 = ∂2 + (1/4 + x)/x2. Then L must be of the form (5), and
we find L1 = ∂2 + 1

x∂ − 1
x , L2 = ∂2 + 1

x∂ + 1
x . Solving these L1, L2 and multiplying their

solutions results in the following basis of V (L):

{K(0, 2
√
x) · J(0, 2

√
x),I(0, 2

√
x) · J(0, 2

√
x),

K(0, 2
√
x) · Y (0, 2

√
x),I(0, 2

√
x) · Y (0, 2

√
x)}

where J, Y are the Bessel functions of the first and second kind, and I,K are the modified
Bessel functions of the first and second kind. On a Pentium with 266 MHz, the computa-
tion time for finding L1, L2 from L was 0.25 seconds, of which 0.20 seconds was spent on
finding the solution i = x1/2 of L3, and 0.05 seconds on computing symmetric products.

6. Related problems. One can also ask when a 4th order operator L can be trans-
formed into some operator M (meaning that the D-modules for L and M are isomorphic)
where M is a symmetric product of second order operators. A solution to this problem
is given in [1]. Since this problem is more general than the problem discussed in this
document, it is to be expected that its solution will cost more CPU time. Indeed, this
problem reduces to factoring a 6th order operator (the second exterior power of L) which
takes considerably longer than solving a 3rd order operator L3.

Another interesting problem is how to transform a 3rd order operator into a symmetric
power of a 2nd order operator whenever possible. Singer showed that this is equivalent
to finding a point, with coefficients in C(x), on a certain conic. Doing this efficiently (no
Gröbner basis) requires an algorithm from number theory for finding a point on a conic.

The algorithm presented in this document is fast, and so it is of practical value for
a differential solver because if it fails (if L is not a symmetric product) then little com-
putation time has been lost. Similar problems for higher order operators will (unless one
spends considerably more effort to optimize the algorithms) take much more computation
time, making it less practical for a differential solver.
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