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Introduction. We show how to determine effectively the (Picard-Vessiot-) Galois
group of an ordinary linear differential equation over Q(t). Model-theoretically, let V be
the solution set to the equation in a universal domain for differential fields, and let C
denote the solution set to x′ = 0. We show how to find Aut(V/Q(t), C).

Algorithms given by Picard can be used to show how to determine the invariants
of the Galois group relative to a field L, acting on V ⊗d for bounded d, provided d and
[L : Q(t)] are bounded. Let G(d, L) be the subgroup of GL(V ) fixing these invariants.
Then for some d, L one has Aut(V/Q(t)) = G(d, L). The problem is to find the right d, L.

Our approach is to first look for d1 such that Aut(V/Q(t), C) /G(d1,Q(t)), and the
quotient is a finite extension of a multiplicative torus T . Such a d1, we show, can be found
on the basis of dim(V ) alone. It is essential at this point to work over Q(t) rather than
the algebraic closure Q(t)a, in order to apply Picard; but with this done we pass to the
connected components of the identity; Aut(V/Q(t)a, C) /G(d1,Q(t))0, and the quotient
is a torus. This torus, viewed as a sub-torus of a canonical toric quotient of G(d1,Q(t))0,
can be determined by methods specific to inverse logarithmic derivatives; cf. [5], [22], [1].
That determines Aut(V/Q(t)a). At this point it is an easy matter to retrieve Aut(V/Q(t)),
and the Picard-Vessiot group. It is an inevitable characteristic of this method that it deals
with a (positive-dimensional) torus T even when Aut(V/Q(t), C)) involves no such torus
(or is even finite); connected tori are treated in preference to their large finite subgroups.

In §V, we exploit the same ideas in order to prove a characteristic 0 function-field
analog of a conjecture of Grothendieck’s regarding specializations of linear differential
equations modulo primes of the ground field.
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Appendix B explains the theory of definable automorphism groups used in this paper
(the liaison group of two definable sets). The initial goal was purely expository; it was a
pleasant surprise to realize that the theorem, originally conceived under a blanket stability
assumption, can be proved for any first order theory. It is presented in this way. Ziv Shami,
in part in collaboration with Bradd Hart, motivated by simple theories, independently
made a similar discovery (with some additional restrictions, cf. his forthcoming preprint).

The appendix also discusses the equivalence of the Picard-Vessiot group with the
model-theoretic formulation.

This paper was conceived in Będlewo, in the course of the Banach Center meeting
on differential Galois theory. To prepare for the meeting, I read Vessiot’s superb survey
[23]. On p. 160, Vessiot states: “F. Marotte [15] a donné une méthode pour déterminer
le groupe de rationalité d’une équation linéaire donnée: il ramène cette détermination à
la recherche des intégrales d’une certaine équation linéaire auxiliaire qui ont une dérivée
logarithmique rationnelle.” To my 20th century ears, this meant that Marotte gave a
proof of the universal validity of his method. However, Michael Singer assured me that
Marotte’s thesis contains no general algorithm. Indeed, Vessiot continues surprisingly:
“F. Marotte a appliqué sa méthode aux équations d’ordre 2, 3, et 4” and nowhere claims
that the method is known to work in general.

Some of the 20th century sequel was explained to me by Michael Singer, over many
lunch and coffee breaks during the meeting. There is no chance at all that this article
would have existed without the Będlewo meeting and this friendly instruction; may I
express my warmest thanks and appreciation to Singer and to the organizers of this most
useful and delightful meeting, Teresa Crespo and Zbigniew Hajto. Many thanks also to
Julia Hartmann and Anand Pillay for other explanations that I was sometimes slow to
understand, and to the referee for his or her excellent comments.

I wrote the paper in order to learn, and assumed that all ideas in it will be known
to the experts. But only after seeing [22] did I realize how very closely this was the
case. In particular, the group Gt (the minimal normal subgroup of G such that G/Gt

is toric-by-finite) occurs in [22] (it is denoted KerXG0 there), and its centrality is made
fully clear. The paper [5] solves the decision problem in the completely reducible case.
The reader is referred to [5] and [22] for correct references and often, undoubtedly, better
proofs of many statements made here.

Characteristic 0 differential algebra was the paradigmatic example for Robinson’s
“model theoretic foundations for algebra”, and that framework remains very convenient.
We will thus use a universal domain K for differential fields of characteristic 0 (a saturated
model of DCF0, the model completion of the theory of differential fields of characteristic
0). Consider for instance the set of sums f1 + f2, where f1 is a solution of a linear
differential equation L1 and f2 of another equation L2. This set is itself the set of solutions
of an equation L; this follows quickly from Robinson’s quantifier-elimination, as L is
by definition given by a first-order formula, L(y) = (∃x1, x2)(L1(x1) & L2(x2) & y =
x1 + x2). It is convenient not to need special proofs of the various such facts of this type
that come up.

A good deal of later model theory illuminated the same arena: ω-stability, orthogo-
nality and regular types, geometric stability. We will require none of this.
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Here is the essential information required regarding definable automorphism groups:
Let

k = {x ∈ K : x′ = 0}.
By the quantifier-elimination, k is a “pure” algebraically closed field, in the sense that
any definable subset of k in the structure K is already definable in k. Working in K, let
V be a k(t)-definable k-space, dimk V = n. Any automorphism σ of K fixing k(t) induces
an automorphism of V , denoted σ|V . Let

G = {σ|V : σ ∈ Aut(K/k(t))} ≤ GL(V )}.
Then G is definable. It follows from the purity of k (and the fact that Zariski-constructible
subgroups are Zariski-closed) that G is an algebraic subgroup of GL(V ). G acts on the
set of bases of V bases of V , regularly on each orbit P . The opposite group AutG(P ) =
{h ∈ Sym(P ) : (∀g ∈ G) hg = gh} also acts regularly on P ; this group is definably
isomorphic to a group H(k), H an algebraic group over K. One has G = AutH(P ), i.e.
G is the group of automorphisms of P as an H-torsor.

Some very elementary facts about linear algebraic groups are used, but all facts about
linear differential equations are proved from scratch. We hope this will benefit of the model
theoretic reader (and writer) and not disturb too much those from differential Galois
theory. Readers from both fields are referred to Marker’s article in [14] for explanations
of the other.

In Appendix A, I take the occasion to respond to a question voiced elegantly in the
Będlewo meeting: how is it possible, at the beginning of the 21st century, to continue to
use universal domains?

Notation. The word “differential” will always refer to ordinary differential equa-
tions, i.e. to a single derivation. K denotes a universal domain for differential fields of
characteristic 0 (cf. Appendix A, or ignore this point and view K as an arbitrary, en-
largeable differential field). k is the field of constants of K. (We basically use the letters k
and C interchangeably; we use k when we have the internal field structure in mind.) The
derivative of an element x ∈ K is denoted x′, but when we need a letter for the operator
x 7→ x′, we use the letter D. t ∈ K is a fixed element with t′ = 1; so (k(t)a, d/dt) is
embedded into K. The equations we will consider will have parameters in k(t)a.

In §III, II-F and V-A, we will work purely algebraically, and no derivation will inter-
vene. Elsewhere, the words “A-definable” used without further qualification will always
mean: defined by (a finite Boolean combination of) differential equations with coefficients
in A.

We will write H ≤ G when H is a subgroup (or if appropriate subspace, or subfield) of
G. H /G means that H is a normal subgroup of G. H0 denotes the connected component
(of the unit element) in the algebraic group H, i.e. the smallest closed subgroup of
finite index in H. Ht denotes the kernel of all multiplicative characters of H0 (over any
extension field), i.e. the smallest closed normal subgroup of H0 such that H0/Ht is a
multiplicative torus. It is the subgroup of H generated by the unipotent elements.

U∗ is the dual of a finite-dimensional vector space U . U bases denotes the set of bases
of U (a Zariski open subset of Un).
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Nd(U) is the family of Zariski closed subsets of U defined by a set of polynomials each
of degree at most d. (A polynomial of degree d is a linear combination of products of at
most d linear functionals on U .)

V will always denote a finite-dimensional definable k-vector space. It is a DCF0-
definable k-subspace of a vector space V defined in ACF0 (though in §II-F, III we will
not need to remember this information). GL(V ) is the group of units of the endomorphism
ring Endk(V ); it admits a basis-dependent isomorphism with the matrix ring GLn(k).

If V ≤ V , then V is defined within V by a linear differential equation x(n) =∑
i<nMix

(i), with Mi ∈ End(V ); conversely such an equation defines a finite-dimen-
sional V .

Ga, Gm denote the additive and multiplicative group (schemes), respectively, so that
Ga(K) is the additive group of K.

A substructure of an algebraic structure (ring, group, vector space, ...) is a subset
closed under the (ring, group, vector space ...) operations.

Within a differential field (K,+, ·, D), Dlog will denote the definable map: x 7→ x′/x;
for a set C ⊂ K, we denote: Dlog(C) = {Dlog(c) : c ∈ C}.

I. Picard’s algorithm.1 We begin with a reading of some pages of Picard’s Traité
d’analyse (pp. 553-562 of the 3rd edition, [17]). I felt the need to fill in a couple of points
in Picard’s treatment; perhaps these points (P1.1, P1.2 below) are evident if one reads
the pages before 553. We also bring out the generality of the result (corollaries 1.5, 1.6;
these may have to do with work of Darboux cited in [23]).

Lemma 1.0. Assume V is defined over L ⊃ k(t). There exists an injective definable
k-vector space homomorphism V → K, defined over a finite extension field of L. The
image of V is contained in a k(t)-definable finite-dimensional k-vector subspace of K.

Proof. If V is any DCF0-definable k-vector space, defined over L, V embeds into some
ACF0-definable vector space V defined over L, definably in DCF0. V has a basis defined
over L′, a finite Galois extension of k(t) containing L. 2

We proceed to prove two claims using differential dimension and order; model theorists
who prefer can use the ω and constant coefficient of the U -rank, or the Morley rank.

Claim 1. L is Kolchin dense in K.

Proof. L contains k[t, . . . , tn], hence contains k-spaces of arbitrarily large dimension,
and hence cannot have finite differential order. As any proper Zariski closed subset of K
has finite differential order, the Zariski closure of L must equal K.

Claim 2. A generic element of V ∗ is injective on V .

1 The main steps of the procedure can already be gleaned in Riemann’s “Two general theorems
on linear differential equations with algebraic coefficients” (dated 20 Feb. 1857 in the collected
works) though the question considered there was somewhat different.

2 (With thanks to the referee.) By [20], Chapter X, Proposition 3 one may take L′ = L. As
a result, V is L-definably isomorphic to a k-vector subspace of K. We will not require this fact
here.
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Proof. Let d = dim(V ). Let

G = {(u, v) : 0 6= u ∈ V, v ∈ V ∗, v(u) = 0}.
The left projection π1 : G → V maps G into V , a Kolchin closed set of differential
dimension 0; while each fiber is a proper subspace of V , hence has differential dimension
d− 1. Thus G has differential dimension ≤ d− 1, and hence so does π2(G); so a generic
element of V ∗ is not in π2(G).

Using the two claims, an element f ∈ V ∗ can be found with coordinates in L′, whose
kernel meets V trivially. This proves the first statement. Now let f1, . . . , fn be the conju-
gates of f under the action of Gal(L′/k(t)); then V ′ =

∑n
i=1 fi(V ) is k(t)-definable and

finite-dimensional.

Proposition 1. Let V be a finite-k-dimensional k(t)-definable Kolchin closed subspace
of Kn. Let l < dim(V ). One can effectively find a quantifier-free formula φ(v, u, w) in the
language of differential fields (v a variable ranging over V , u = (u1, . . . , ul) ranging over
the constants, w a single variable) such that if U is a k(t)-definable Kolchin closed linear
subspace of V of dimension l, then for some b1, . . . , bl ∈ k, b = (b1, . . . , bl), we have

U = {v ∈ V : φ(v, b, t)}.
Remarks 1.1. (a) We paraphrase this as: “the t-definable subspaces of V are uni-

formly definable.” But note that the proposition asserts not only that these subspaces
can be defined by a formula of a fixed form with parameters in k(t), but also that these
parameters themselves have “bounded height” in the sense of function fields (i.e. they
are rational functions of bounded degree of denominator and numerator).

In terms of foliations (on the total space of a vector bundle over a curve), the unifor-
mity means that all integral curves lie in a bounded algebraic family of curves.

(b) It comes to the same thing to say that there is a finite number of formulas φ,
rather than just one, capturing all k(t)-definable subspaces; and perhaps this is a more
natural way of putting it. (The transition from a finite number of formulas to one is
trivial, but contrived.)

(c) Let k0 be an algebraically closed subfield of k. If V is k0(t)-definable, then in the
Proposition, one can take bi ∈ k0. This follows from an elementary submodel argument.

(d) As in Lemma 1.0, we may assume V ⊂ K.
(e) On the other hand, taking a prolongation, we may instead assume that V is defined

by first-order formulas, v′ = Mv with M a matrix with entries in k(t). If V ⊂ V , this
may be achieved by replacing V by V dimV and V by the image of V under the map
v 7→ (v, v′, . . . , vdimV−1).

(f) The assumption V ⊂ Kn can be dispensed with; see corollary 1.6 below.
(g) An equivalent formulation: Let Grl(V ) be the set of l-dimensional subspaces of V .

It can also be viewed as a Kolchin closed set. The set of elements of Grl(V ) defined over
k(t) is a-priori a countable union of Kolchin constructible sets. The Proposition asserts
that it is in fact a constructible set.

Example 1.2. It is not the case that φ varies uniformly with V ; when V moves in a
definable family, φ need not do the same. Thus for instance if V = {(x1, x2) : tx′1 = nx1,
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x′2 = 0}, then
U = {(x1, x2) ∈ V : x1 = tnx2}

is a t-definable subspace, whose evident definition φ(x1, x2, w) depends non-uniformly
on n.

Lemma 1.3. Proposition 1 reduces to the case l = 1.

Proof. We may assume V is defined by a first-order equation, v′ = Mv (1.1e). Thus
the natural map V⊗kK 7→ V is injective. (In fact V is Zariski dense in V , and V n is
Zariski dense in V n; thus there exist K-linearly independent v1, . . . , vn ∈ V .) It follows

that ΛlV 7→ ΛlV is injective too. ΛlV can be identified with V ′ = Ga
n0!

l!(n0−l)! . The image
V ′ of ΛlV in ΛlV is a Kolchin closed linear subspace of V ′, of finite-dimension over the
constants. The l-dimensional K-subspaces of V are in 1-1-correspondence with a certain
definable set of 1-dimensional K-subspaces of V ′; the correspondence takes the space
generated by {v1, . . . , vl} to the one generated by v1 ∧ . . .∧ vl. The same correspondence
carries l-dimensional subspaces of V to 1-dimensional subspaces of V ′, in a k(t)-definable
manner. Thus if the 1-dimensional k(t)-definable subspaces of V ′ are uniformly definable,
then so are the l-dimensional k(t)-definable subspaces of V .

Corollary 1.4. Let V be a finite-k-dimensional k(t)-definable Kolchin closed sub-
space of Kn. The k(t)-definable elements of Nd(V ) are uniformly definable, in the sense
of Proposition 1. In particular they form a Kolchin constructible set whose definition can
be found effectively in a definition of V .

Proof. By 1.1 (d), we may assume V ⊂ K. Modifying as in 1.1 (e), we can take instead
V ⊂ V , V = Kn, and V = {v ∈ V : v′ = Mv} for some matrix M over k(t). Then the
map V⊗kK → V is an isomorphism. Thus every k-linear map on V extends to a K-linear
map on V . Let V ∗ = {T ∈ V ∗ : (∀v ∈ V )T (v) ∈ k}. Then V ∗ is a finite-dimensional
k-subspace of V ∗, and is definably isomorphic to the k-dual space of V . Note that V ∗

has a k(t)-definable basis, the dual basis to that of V . Thus Proposition 1 applies to V ∗.
Similarly comparing k- and K-symmetric powers, we see that Proposition 1 holds also
for the space

Hd =
d∑

i=0

Symi(V ∗)

of polynomials of degree ≤ d on V . Now make an element S of Nd(V ) correspond to the
subspace Hd(S) of elements of Hd vanishing on S; apply Proposition 1 to Hd.

Remark 1.5. If in 1.5, V is defined over k0(t), then so is the Kolchin constructible
set of the conclusion (it is invariant under automorphisms preserving k0(t)).

Corollary 1.6. Let V be a finite-k-dimensional definable k-vector space, defined
over a finite extension L0 of k(t). Let l < dim(V ). There exists a quantifier-free formula
φ(v, u) in the language of differential fields (v a variable ranging over V , u = (u1, . . . , ul))
such that if U is an L0-definable Kolchin closed linear subspace of V of dimension l, then
for some b1, . . . , bl ∈ L0, b = (b1, . . . , bl), we have

U = {v ∈ V : φ(v, b)}.



GALOIS GROUP OF A LINEAR DIFFERENTIAL EQUATION 103

Moreover the bi can be taken to have bounded height, or equivalently to consist of a fixed
generator of L0/k(t) together with t and elements of k.

Proof. By Lemma 1.0, over a finite Galois extension L of k(t), there exist defin-
able monomorphisms f : V → V ′, with V ′ a k(t)-definable finite-dimensional k-vector
subspace of K. We first show that the L-definable l-dimensional subspaces of V ′ are
uniformly definable. Let d = [L : k(t)], G = Aut(L/k(t)). Pick a ∈ L with L = k(t, a).
a, a′ . . . , a(d) are linearly dependent over k(t), so there exists a nonzero linear differential
operator with coefficients in k(t) vanishing on a, hence a finite-dimensional k(t)-definable
subspace E of K containing a (and thus also the conjugates Ga). Let Ea ⊂ E2 be the
subspace generated by (1, a). If U is an l-dimensional subspace of V ′, defined over L,
let Ua = (U × Ea) ⊂ K3, and let {Ui} be the family of conjugates of Ua under G. Let
Z = Z(U) = ∪iUi. Then Z ∈ Nd(V ′×E). By 1.5, the Z(U) are uniformly definable. From
Z(U) one can recover the family of d subspaces making it up as irreducible components.
From this family and the element a, one finds the unique one of the form U × Ea; and
this gives the required U , in a uniform manner.

Thus there exists a fixed formula φ such that for any L-definable subspace U , for
some b = (b1, . . . , bm) ∈ L, U is defined by φ(v, b) . Now consider an L0-definable U . Let
G1 = Aut(L/L0). Then U is equally defined by φ(v, σ(b)) for any σ ∈ G1. Now the set Gb
has size at most [L : L0], and is coded by a bounded tuple e = (e1, . . . , em) of elements of
L0 (where m depends only on [L : L0]). In other words for some formula ρ(y, z) we have
y ∈ Gb iff ρ(y, e). Thus U is defined by: (∃y)(ρ(y, e)&φ(v, y)). This proves 1.6.

Now for the proof of Proposition 1; by Lemma 1.3 we are reduced to the one-
dimensional case. Now if U is a 1-dimensional k-space defined over k(t), then u′/u has a
fixed value b for nonzero u ∈ U ; and b ∈ k(t). So the 1-dimensional subspace is coded by
b, and the problem becomes to show that b is a uniformly definable element of k(t) (i.e.
has bounded height).

This is the form in which Picard phrases the problem:

P Given a linear differential equation L(x) = 0 over k(t), find all h ∈ k(t) such that
L(x) = 0 has a solution (in some differential extension field of (k(t), d/dt) satisfying
x′/x = h.

The diophantine sensitivity mentioned in 1.2 occurs already (and only) within a sub-
algorithm considered (justifiably) as evident by Picard:

Lemma P1.1. Given a linear differential equation L(x) = 0 over k(t),

{f ∈ k[t] : L(f) = 0}
is uniformly definable. In other words, the degree of a polynomial solution f is bounded.
This bound is moreover computable from the coefficients of L.

Proof. Since L is homogeneous, we can take f to have the form f = tn+an−1t
n−1+. . . ,

and we need to bound n. Moreover we can take L(x) =
∑
cix

(i), with ci ∈ k[t]. Separating
the ci into monomials and collecting terms differently, write L(x) =

∑kmax
k=0 Lk(x), where

Lk(x) =
∑

i+j=k

cijt
ix(j)
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and cij 6= 0 for some i+ j = kmax. We obtain

L(f) =
( ∑

i+j=kmax

cij
n!

i!(n− i)! t
n+kmax

)
+ lower terms in t.

Thus ∑

i+j=kmax

cij
n!

i!(n− i)! = 0.

With cij fixed, this can be viewed as a polynomial in n of degree ≤ kmax. It has at most
kmax solutions for n.

One also needs:

Lemma P1.2. Let L be a given linear ODE over k(t), defining a space V . Let W =
{x′/x : x ∈ V, x 6= 0}. (So W is a k(t)-definable set of Morley rank (and differential
order) dim(V )− 1.) Let γ ∈ k, and fix a negative integer −m. Give k((t−γ)) the natural
derivation; it is continuous on k[[t − γ]] and extends d/dt. Let S be the set solutions of
W in k((t− γ)) of the form

s = c−m(t− γ)−m + c−(m−1)(t− γ)−(m−1) + . . .+ c−1(t− γ)−1 + h

with h ∈ k[[t − γ]]. Then there exists an effectively computable finite set F = F (L,m, γ)
such that for any s ∈ S, we have (c−m, . . . , c−1) ∈ F .

Proof. We may assume γ = 0. We use induction on m, thus supposing we have the
algorithm for m− 1.

Claim: It suffices to prove this for c−m alone.
For suppose this is done. Take any of the finitely many possible values c of c−m; we

need to determine the possible values of c−(m−1), . . . , c−1. Let u 6= 0 solve u′/u = −ct−m.
Replace V by V ′ = V u. Then W ′ = W − ct−m; and S′ = {(s − ct−m) : s ∈ S}. By the
algorithm for m − 1, we know how to determine a finite set containing all possibilities
for c−(m−1), . . . , c−1 where c−(m−1)t

−(m−1) + . . .+ c−1t
−1 + h ∈ S′, some h ∈ k[[t]]; this

solves our problem.
As for c−m, we compute the equation of W . Let D denote the differentiation operator.

V is defined by
Dny + P1D

n−1y + . . .+ Pny = 0

with Pi ∈ k(t). We have s = y′/y with y ∈ V . Writing S for the operator of multiplication
by s, we have Dy = Sy, and inductively

Di+1y = [(D + S)i(s)]y.

Thus by the equation for y ∈ V , we have [(D+S)n−1+P1(D+S)n−2+. . .+Pn](s)y = 0
and so

[(D + S)n−1 + P1(D + S)n−2 + . . .+ Pn](s) = 0.

The most negative exponent with nonzero coefficient of (D + S)i−1(s) is clearly that
of t−im. If m ≥ 2, the coefficient is ci−m. If −m = −1, the coefficient is more complicated,
but can be expressed as a polynomial in c−m of the form c−mi+(lower terms in c−m).
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Let ai, di be such that Pi = dit
ai + ui, with ui ∈ tai+1k[[t]]. Let ν be the least value

taken by ai − im, and let I be the set of indices i such that ai − im = ν. Let j be the
maximal element of I. If m ≥ 2, the coefficient of tν in the entire sum is

∑

i∈I
dic−m

i.

If m = 1, it is more complicated, but still it is a polynomial in c−m with leading term
djc−mj . This gives a nonzero polynomial in c−m of degree j ≤ n− 1; and the polynomial
vanishes at c−m. The set of roots of the polynomial is computable, and finite, and includes
all possible values for c−m.

With these in hand we can follow the argument in Traité d’analyse, proving Proposi-
tion 1 (with 1.1(d) assumed). Briefly, we consider solutions y ∈ V with y′/y ∈ Q(t); we
bound the poles of y′/y as in P1.2, and then find a finite set containing all possible polar
parts of y′/y at poles of the equation itself; we write y′/y = e + R, where e is one of
finitely many explicit possibilities, and R has distinct simple poles, with integer residues.
We note that we can compute the equation for zV , where z′/z = −e; and that R is the
logarithmic derivative of a polynomial solution of this auxiliary equation. See [17] for the
full argument.

II-F. The finite part. Here, and in §III, we do not need to remember the differential
structure. The underlying structure has the form (k, V, . . .), where k is an algebraically
closed field and V is a vector space over k of fixed finite dimension. The ellipsis de-
notes possible additional sorts, that do not concern us; we do however assume that k is
fully embedded, i.e. that in the full structure, every definable subset of kn, possibly with
parameters from (k, V, . . .), is a Zariski constructible set.

We let L be a substructure of (k, V, . . .). L is said to be algebraically closed (in the
model-theoretic sense) if any finite subset of k,V or of another sort interpretable in this
structure, defined over L, is contained in L.

A torus in GL(V ) is a subgroup T of GL(V ) that becomes isomorphic to Gmn, after
fixing a basis of V and possibly extending the base field. A character of a definable
subgroup H of GL(V ) is a definable homomorphism f : T → Gm(k).

Remark 2F.1. In the application, k will be the field of constants of a differen-
tially closed field K of characteristic 0, while V will be a definable k-space, solution
set of a linear differential equation. In this case, elimination of imaginaries in K im-
plies that it suffices to consider the home sort (elements of K); elimination of quantifiers
implies that it suffices to consider sets defined by differential polynomials; and inspec-
tion shows that such definable sets are finite only when they are contained in the set
of roots of an ordinary polynomial in L[T ]. Thus a differential subfield L of a differen-
tially closed field of characteristic 0 is algebraically closed model-theoretically iff L = La

field-theoretically.

Lemma 2F.2. Let H ≤ GLn be a linear algebraic group over an algebraically closed
field, defined with parameters a. Given a definition Ha of H with parameters a, one can
effectively find a definition Fa of F = H0, the connected component of the identity in H.
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Moreover, one can effectively find a formula θ(x) such that θ(a), and such that whenever
θ(b), (Hb)0 = Fb.

Proof. This is in fact proved classically for any variety V : one can effectively and
uniformly find a formula for the equivalence relation: “x, y lie in the same components
of V ” (cf. [7], [10] for model theoretic proofs and references). For our needs, one can also
use the methods of (characteristic 0) linear groups. Sketch:

(1) Consider first the case that H is a commutative group consisting of semi-simple
elements. Say [H : H0] = m. The map x 7→ xm maps H onto H0; as H0 ' Gml, there
exists a surjective homomorphism g : H → Gml. This last fact can be expressed by a
first-order formula φ true of a; hence it holds for all a′ with φ(a′), and moreover the pair
(m,φ) can be searched for, and found effectively (as it is guaranteed to exist). Now if
φ(a′) holds, then H0

a′ = Ha′
m (the set of mth powers in Ha′).

(2) If H = Ha is commutative, then H0 = HuHt
0 where Hu, Ht are the unipotent

and semi-simple parts, respectively.
(3) In general, H0 =< ∪g∈H(CH(CH(g)))0 >, where CH(X) = {h ∈ H : (∀x ∈ X)

hx = xh}.

Lemma 2F.3. (a) Assume L is algebraically closed. Then Aut(V/L, k) has no proper
definable subgroups of finite index.

(b) Let H = {g ∈ GL(V ) : gRi = Ri}, where Ri ⊂ V mi is an L-definable relation.
Then (given L, V,R1, . . . , Rl) one can effectively compute a finite extension L′ of L, and
Q ⊂ V dim(V ) defined over L′, such that the subgroup of GL(V ) fixing Q is H0.

Proof. (a) Follows from (b), since Aut(V/L, k) must fix Q.
(b) Let P be an orbit of H on V bases. If σ is an automorphism of the universal domain

fixing L and k, then σ(Ri) = Ri, so σ|V ∈ H. Thus σ(P ) = P . It follows that P = Pc can
be defined over L with parameters c from k. The set of c′ such that Pc′ is a nonempty
L-definable subset of k, being a constructible set, has a point c′ rational over a finite
extension L′ of L. Let P ′ = Pc′ .

Using 2F.2, identify H0. The set of orbits of H0 on P ′ is finite; each is therefore defined
over a finite extension L′′. Let Q be one of them. Then H0 = {g ∈ GL(V ) : gQ = Q}.

Lemma 2F.4. Let H = H0 be a definable subgroup of GL(V ), defined over a model-
theoretically algebraically closed base set L. Then, though V may have no basis defined
over L, every definable character of H is L-definable.

Proof. The character group of V is countable; so the connected definable group
Aut(V/L, k) can only act on it trivially. (More explicitly: as H is L-definable, Aut(V/L, k)
≤ NGL(V )(H). But the action of NGL(V )(H) on H/Ht factors through a finite group, by
rigidity of this torus. So the connected group Aut(V/L, k) acts trivially on H/H t, hence
on the characters.)

II-T. The toric part. We return to the universal domain for differentially closed
fields of characteristic 0. The main goal of this section is:
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Proposition 2. Let V be a linear Kolchin closed set defined over Q(t)a. Let H = H0

be a Q(t)a-definable subgroup of GL(V ), and assume Aut(V/Q(t)a, C) ≤ H. Let Ā be the
image of Aut(V/Q(t)a, C) in H0/Ht. Then Ā can be determined effectively.

In a slightly different formulation, this is due to Singer [5], based on [16], [1]. See [22],
Proposition 2.4. We repeat some of the proof here in order to set up the terminology.

Lemma 2.1 (Kolchin). Let G be an algebraic group defined over the differential field
L0. Assume H1(Gal(Lalg0 /L0), G(L0

alg)) = 0 (e.g. this holds if G = Gm or G = Ga or
L0 = La0).

(i) Let there be given a (differentially) definable regular action of G(K) on an affine
Kolchin closed set P , defined over L0. Then P is the trivial torsor, i.e. it has an L0-
rational point.

(ii) Let there be given a (differentially) definable regular action of G(k) on an affine
Kolchin closed set P , defined over L0. Then P is L0-isomorphic to an L0-definable coset
of G(k) in G(K).

(iii) In particular, if G = Gm, P is L0-definably isomorphic to {x : x′/x = e}, some
e ∈ L0.

Proof. (i) This is a famous theorem of Kolchin. (Sketch of proof: by taking prolonga-
tions, find Zariski-closed (G1, P1)—a group and a torsor—such that (G,P ) are Kolchin
closed, Zariski-dense in (G1, P1). P1 is trivial, as can be seen by successively factoring
from G1 normal subgroups with trivial H1. Factor out the unipotent “jet” part of G1;
this gives a map to (G2, P2), where G2 is isomorphic to G, but also where P2 is trivial,
since P1 is. But this quotient map is bijective on G, and thus on P .)

(ii) P induces an L0-definable G(K)-torsor P ∗ = P ×H G(K). By (i) P ∗ is L0-
isomorphic to G(K). Thus P is L0-definably isomorphic to a G(k)-subtorsor of G(K),
i.e. to a coset.

(iii) This is the form of cosets of Gm(k) in Gm(K).

Lemma 2.2. Let V,H be as in Proposition 2. Let χ : H → Gm(k) be an L-definable
multiplicative character of H. Fix an H-orbit P of V bases, defined over L. Then there
exists an L-definable differential regular function γ on P such that Dlog γ takes a constant
value e on P , e ∈ L, and

γ ◦ h = χ(h)γ

for h ∈ H.

Proof. H acts regularly on P , and Gm(k) acts regularly on P/Ker(χ). By 2.1,
P/Ker(χ) is differentially rationally isomorphic to (Dlog)−1(e) for some e ∈ L. Let
γ denote the composition

P → (P/Ker(χ))→ (Dlog)−1(e).

The equation γ ◦ h = χ(h)γ expresses the fact that we have morphisms of torsors. The
fact that γ is everywhere defined on P (and not only a differentially rational function)
follows from the transitivity of H on P , the regularity of χ and the functional equation.
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Corollary 2.2C. Let V,H be as in Proposition 2. Let χ : H → Gm(k)l be an
L-definable surjective homomorphism. Fix an H-orbit P of V bases, defined over L. Then
there exist e1, . . . , el ∈ L, Qi = {x : x′/x = ei}, Q =

∏l
i=1Qi, and an L-definable

morphism of differential algebraic varieties γ : P → Q such that

γ ◦ h = χ(h)γ

for h ∈ H. Moreover, χ(Aut(V/La, C)) = Aut(Q/La, C).

Proof. The first part is merely 2.2, applied separately to each χi = pri ◦χ, pri the ith
projection, and put together again. For the “moreover”, we identified Aut(Q/La, C) with
a subgroup of Gm(k)l in the obvious way. Let φ be an automorphism of the universal
domain, over L. Then φ fixes γ, and so, being an automorphism,

γ ◦ (φ|P ) = (φ|Q) ◦ γ.
Comparing this to the equation γ ◦ h = χ(h)γ, we see that if h = φ|V then φ|Q acts by
multiplication by χ(h). This shows both that χ carries Aut(V/La, C) to Aut(Q/La, C),
and that it does so surjectively.

Note Dlog(L) is a Q-subspace of (L,+), if L is closed under roots. At all events we
write: rk Dlog(L) = dimQQ⊗Dlog(L).

Lemma 2.3. Let Qa(t) ≤ L ≤ Q(t)a. Let ei ∈ L, and

P = {(x1, . . . , xn) : xi′/xi = ei}.
Let ∆ be the group of characters χ of Gml, χ(x1, . . . , xn) =

∏
xdii , such that

∑
diei ∈

Dlog(L). Then

Aut(P/L,C) = ∆∗ = {a ∈ Gml : ∀χ ∈ ∆. χ(a) = 1}.
Proof. It suffices to show the dual statement, that χ ∈ ∆ iff χ(Aut(P/L,C)) = 1.

Write x = (x1, . . . , xl), χ(x) =
∏
xi
di . If χ ∈ ∆, Dlogχ(x) =

∑
diei = Dlog f for some

f ∈ L. So Dlog f−1χ(x) = 0, hence χ(x) = cf−1 for some c ∈ C. So if if σ ∈ Aut(P/L,C),
σ(xi) = cixi, then χ(x) = σ(χ(x)) = χ(σ(x)) = χ(c1, . . . , cl)χ(x). Thus χ(c1, . . . , cl) = 1.

Conversely, if χ(Aut(P/L,C)) = 1, then by reversing the calculation we see that
σ(χ(x)) = χ(x) for each σ ∈ Aut(P/L,C); so χ(x) ∈ L. It follows that Dlogχ(x) =∑
diei, so

∑
diei ∈ Dlog(L). Thus χ ∈ ∆.

In the application of Lemma 2.3, we will not need to know Aut(P/L,C), but only
the connected component of the unit element of this group. (Finite quotients being dealt
with separately.)

Lemma 2.30. In the situation of Lemma 2.3, let ∆0 = {a ∈ Zn : ma ∈ ∆, some 0 6=
m ∈ N} be the relatively divisible hull of ∆ in Zn. Then Aut(P/L,C)0 = (∆0)∗.

Proof. ∆0/∆ is a finitely generated torsion group, hence finite. Thus ∆∗/(∆0)∗ is
finite, and we have to show that (∆0)∗ is connected. If H is a closed subgroup of (∆0)∗

of finite index, let χ be a character of Gml such that χ(H) = 1. Then χ(∆0)∗ is finite, so
some multiple of χ is trivial on (∆0)∗, hence is in ∆0; as ∆0 is divisible, χ ∈ ∆0. Thus

(∆0)∗ = ∩χ∈∆0Ker(χ) ⊂ ∩χ(H)=1Ker(χ) = H.
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We are thus led to the problem of determining Dlog(L), and more generally, given
e1, . . . , el ∈ L, of finding {(d1, . . . , dl) :

∑
diei ∈ Dlog(L)}. To state this geometrically, we

view L as the function field of a (smooth, complete) curve X, and recall some standard
notions regarding X.

Let F be the free Abelian group on generators X, F0 = {∑mpp ∈ F :
∑
mp = 0}.

Given D ∈ F , D =
∑

p∈X mpp (with mp = 0 for all but finitely many p ∈ X), let Ω(D) be
the space of all 1-forms on X with a pole of order at most mp at each p. Then Ω(D) is a
finite-dimensional k-space. Let Ωlog be the Q-space of forms of the form df/f , f ∈ k(C)a,
and let Ωlog(D) = Ωlog ∩ Ω(D). Define

res : Ω(D)→ k⊗ZF0, ω 7→
∑

p

resp(ω)p.

Given f ∈ k(X), let div(f) be the divisor of f . Let div(k(X)) be the group of all divisors of
functions in k(X). The Jacobian J of X can be identified with Pic0(X) = F0/div(k(X));
let ab : F0 → J be the natural map, and extend it to ab : (Q⊗ZF0)→ Q⊗ZJ .

Lemma 2.4. Given 1-forms ω1, . . . , ωl on a curve X over k, the group
{
d = (d1, . . . , dl) ∈ Ql : (∃f ∈ k(X)a)

∑
diωi = df/f

}

can be effectively determined.

Proof. We refer the reader to the proof of Proposition 2.4 of [22] (but I think one
should read “no nonzero residues” in place of “holomorphic” there). An outline of that
proof follows. An alternative, without explicit use of residues, is possible along the lines
of 5A.12.

Fix D such that each ωi ∈ Ω(D). Define an additive map v : Zl → Ω(D) by v(n) =
n · ω =

∑
niωi. The problem is to determine v−1(Ωlog(D)).

1. Every element of Ωlog has rational residues. Determine A1 = v−1res−1(Q⊗ZF0).
So v−1(Ωlog(D)) ⊂ A1.

2. Let A2 be the kernel of (ab ◦ res ◦ v)|A1. As res(df/f) = div(f), ab ◦ res vanishes
on Ωlog. Thus v−1(Ωlog(D)) ⊂ A2.

To determine A2 is to find a basis for the linear relations among the images of the
generators of A1, holding in J . Here [16] or [1] are called upon to show that this is
effective.

Here one could also use methods analogous to those of 5A.8(3), presumably less
efficient, but softer in that they avoid use of transcendence methods.

3. For each g ∈ A2, res(v(g)) = (fg) for some rational function g; g 7→ dlog(fg) is a
well-defined homomorphism v′ : Zl → Ω(D). Let v′′ = v − v′. Then v(g) ∈ Ωlog(D) iff
v′′(g) ∈ Ωlog(D) iff v′′(g) = 0 (the latter, because v′′(g) has no nonzero residues, while
dlog(f) always has nonzero residues unless it is zero). So it remains to find ker(v′′); this
can be done by determining v′ on a set of generators.

Proof of Proposition 2. Find a finite extension L of Q(t) with V,H defined over L, and
also with some H-orbit P ⊂ V bases defined over L. The latter is possible by (b) of the
proof of Lemma 2F.3. Enlarge L a bit further so as to find an L-definable isomorphism
χ : H/Ht → Gm(k)l for some l (cf. 2F.4). Find γ : P → Q as in Corollary 2.2C. Since
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P, χ, γ,Q etc. are known to exist and can be recognized effectively, they can be found
effectively. (The proof provides a better algorithm than this general reasoning.) As χ is
an isomorphism, it suffices to find the image of Aut(V/Q(t)a, C) under χ. By 2.2C, this
is Aut(Q/Q(t)a, C). Lemmas 2.30 and 2.4 conclude the argument.

III. Uniformly definable subgroups of linear algebraic groups. The framework
is that of II-F; a structure (k, V, . . .), k an algebraically closed field, V is a k-vector space
of fixed finite dimension. After adding parameters for a basis of V , this becomes (bi-
interpretable with) the theory of k. While the collection of 0-definable sets changes if one
adds parameters for a basis, the collection of definable families of definable sets does not
really change (each is cofinal in the other), so where only the question of uniformity of
a family is concerned, we will feel free to work with GLn rather than GL(V ). However
this freedom in the proofs does not extend to the statements; we may require 3.8 below
in cases that V does not have a rational basis.

Most of what we do uses only finite Morley rank, and undoubtedly with more infor-
mation the description can be improved. (The reference to Morley rank here extends the
generality of some of the statements, but is mostly due to habit; restricting to algebraic
groups, one can equally well read “dimension”.)

Definition. Let φ(x, y) be a formula such that for any b, φ(x, b) defines a subgroup
of GL(V ). The familyF of subgroups defined in this way is called a uniformly definable
family of subgroups (via the formula φ).

Lemma 3.1. Let F be a uniformly definable family of subgroups of GL(V ). Then so
is:

(a) The family F∩ of all intersections of (finitely many) elements of F .
(b) The family F0 of connected components of the unit element of groups in F .
In fact, the family of pairs of groups

{(M,M0) : M ∈ F}
is also uniformly definable.

(c) The family of subgroups generated by a (finite) set of elements of F 0.

In each of these cases, the passage from a definition of F to that of the new family is
effective.

Proof. (a) is valid for stable groups; it is called the Baldwin-Saxl lemma. The point is
that for some integer M , any intersection of elements of F is an intersection of at most
M of them. To give an algebraic proof, and to explain how to compute M , let V ⊂ An
be any algebraic subset of N -dimensional affine space, and let {Wc : c} be any uniformly
definable family of Zariski closed subsets of V . Then each Wc is the zero set of an ideal
Ic of the polynomial ring in N variables; and by uniformity, it is generated by a set Sc
of polynomials of bounded total degree d (this degree can be read off of a quantifier-free
definition of W ). Now the space P (d,N) of polynomials of degree at most d in N variables
has some finite dimension M . Clearly the union of any set of sets Sc generates the same
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subspace as a subset of M of them; hence also the same ideal. Thus the intersection of
any collection of the sets Wc is also the intersection of M of them.

(b) This is Lemma 2F.2.
(c) is a case of the indecomposability theorem; cf. e.g. [18] for Zilber’s proof for groups

of finite Morley rank, or [12] for a proof for algebraic groups. The group generated by
any number of elements of F0 is already generated by at most n2 of them, and in fact
has the form AA−1, A = A1A2 . . . Am where m ≤ n2 and each Ai ∈ F0.

Notation. Let F be a uniformly definable family of subgroups of GL(V ). If H is any
Zariski closed subset of GL(V ), let HF be the intersection of all G ∈ F with H ⊂ G.

Example 3.2. (a) Let G = GL(V ) (or any stable group). Let CG(A) be the centralizer
in G of a set A. Then Fz = {CG(A) : A} is a uniformly definable family of subgroups of
G. More generally, if F is a uniformly definable family of subgroups, then so is

{CF (Y ) : F ∈ F , Y an arbitrary subset of G}.
(b) LetG be an algebraic group over k, char(k) = 0. There exists a uniformly definable

family Fad such that for any connected subgroup A of G, NG(A) ∈ Fad.
Proof of (b). Consider the adjoint action of G on the Lie algebra. NG(A) is the

subgroup stabilizing the Lie algebra of A. In particular it is the stabilizer of a subspace;
this is a uniformly definable family.

(c-1) The family of maximal connected Abelian subgroups (and of maximal Abelian
subgroups) of a given group G is uniformly definable.

Proof. If A is a maximal Abelian subgroup, then A = CG(CG(A)), so A is an intersec-
tion of centralizers of single elements. Thus A lies inside the uniformly definable family
Fz of 3.2(a). Moreover A is maximal Abelian iff it is a maximal Abelian element of Fz .
The latter is a definable condition, so it cuts out a uniformly definable subfamily of Fz .
The connected case follows by 3.1(c).

(c-2) If A varies uniformly among connected Abelian subgroups of G, then so does
the semi-simple part of A, T (A).

Proof. T (A) is the set of semi-simple elements of A.

The family of all tori (or even, all copies of Gm within Gm2) is not uniformly definable.
However:

(c-3) The family Fmt(G) of maximal tori of G is uniformly definable. So is the family
Fimt(G) of intersections of maximal tori of G. If G itself moves in a uniformly definable
family, then these families are definable uniformly in a parameter for G.

Proof. If H ∈ Fmt(G), then H = T (A) where A is a maximal connected Abelian
subgroup of G; so (c-1,c-2) give a formula for Fmt(G). By 3.1(a), Fimt(G) is also uniformly
definable.

(c-4) More generally, if F1,F2 are uniformly definable, then so is Fmt:F1/F2 defined
as:

{H : (∃H1 ∈ F1, H2 ∈ F2)(H1 /H2, H1 ≤ H ≤ H2, H/H1 ∈ Fmt(H2/H1)}.
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Proof. Write the formula for Fmt(H1/H2), pull back to H1, to get a formula for

{H : H1 /H2, H1 ≤ H ≤ H2, H/H1 ∈ Fmt(H2/H1)}.
Quantify existentially over H1 ∈ F1, H2 ∈ F2 to get the required formula.

(d) The family of copies of the additive group Ga within GL(V ) is uniformly definable.
(Any such subgroup is the image of a homomorphism Ga → GL(V ) of the form t 7→
exp(tM) = 1 + tM + . . . + 1

(n−1)! t
n−1Mn−1: for t ∈ Ga, with M ∈ End(V ) nilpotent,

Mn = 0 where n = dim(V ).)

Remark. By 3.1(b) and (d), the family Fup of all subgroups generated by unipotents
is uniformly definable. This family is large in the sense that for any connected definable
subgroup H of GL(V ), there exists H ′ in the family with H ′ ⊂ H and H/H ′ a torus.
A toric “error” is unavoidable in view of the negative part of (b). We would like to
approximate H from above in this sense, too. Here is proof valid in any connected group
G of finite Morley rank (and perhaps also giving a better algorithm). In the application,
take Fad as given by 3.2(b), so that H can be any connected subgroup.

Lemma 3.5. Let F2 be a uniformly definable family of subgroups of G. There exists
a uniformly definable family F of subgroups of G, such that for any definable H ≤ G, if
H /K for some connected K ∈ F2, then there exist F, F ′ ∈ F , F, F ′ /K, with F ≤ H ≤
F ′, and F ′/F Abelian.

Proof. Let H /K, K ∈ F2 connected. Let F be a subgroup of H of maximal Morley
rank, generated by classes of the form [a,K], a ∈ H. By Zilber’s indecomposability
theorem (or the indecomposability theorem for algebraic groups), F is generated in ≤
2 dim(G) steps by the elements of ≤ dim(G) such classes. So it is a member of a uniformly
definable family F1 (independent of H).

Clearly F /K. Moreover, H/F is commutative (for any a ∈ H, [a,H] ⊂ F , so the
conjugacy class aH has a single element modulo F ). Within K/F , let F ′/F be the double
centralizer of H/F . Then F ′/F is commutative, and uniformly definable by 3.2(a).

Lemma 3.5b. Let F be a uniformly definable family of subgroups of GLn, and let

I0(n,F) = max{[M : M0] : M = T ∩G,G ∈ F , T ∈ Fimt(GLn)}.
Then I0(n,F) is finite, and can be bounded effectively given a definition of F . In partic-
ular, one can explicitly bound

I0(n) = max{[M : M0] : M ∈ Fimt(GLn)}.
Proof. The family of intersections of G with maximal tori is uniformly definable; by

3.1(b) the family of pairs (M,M 0) is uniformly definable; hence the family of numbers
[M : M0] is uniformly definable, so it must be bounded, with a computable bound.

Lemma 3.5c. Actually I0(n) = 1.

Proof. View G = GLn as a Zariski open subset of Mn, the linear space of n × n

matrices. The standard maximal torus D is the group of diagonal matrices; it has the
form G ∩ H for a certain linear subspace H of Mn. Hence any conjugate of D has the
same description. As the intersection of linear subspaces is a linear space, any intersection
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of maximal tori is a linear space intersected with GLn. Being a Zariski open subset of a
linear space, it is irreducible.

Let J(n) be a Jordan bound (cf. [21]), so that every finite subgroup of GLn contains
a normal Abelian group of index at most J(n).

Lemma 3.6a. There exists a computable integer I1(n) with the following property. Let
H be a finite subgroup of GLn. Then there exists M ∈ Fimt(GLn) normalized by H, and
with

[H : H ∩M0] ≤ I1(n,F).

(Actually I1(n) = J(n).)

Proof. Let H be a finite subgroup of GLn. By definition of J(n), there exists A/H,
A Abelian, [H : A] ≤ J(n).

A finite Abelian subgroup of GLn is diagonalizable; so there exists a maximal torus
T of GLn containing A. Let M be the intersection of all such maximal tori of GLn.
Note that H normalizes M , hence also M 0. Also A ≤ M . Now [M : M0] ≤ I0(n). So
[A : A ∩M0] ≤ I0(n), and thus [H : H ∩M0] ≤ J(n)I0(n).

Lemma 3.6d. There exists a computable integer I2(n), and a computable, uniformly
definable family F of subgroups of GLn, with the following property.

Let H be any Zariski closed subgroup of GLn. Then there exists F ∈ F such that

(i) H0 ≤ F .
(ii) H normalizes F ; so F /HF ≤ GLn.
(iii) [H : H ∩ F ] = [HF : F ] ≤ I2(n).
(iv) Every unipotent element of F lies in H0.

Remark 3.6e. We may insist in 3.6d that the groups in F be connected; this may be
achieved by replacing F by F0, and I2 by I2 ·max{[F : F 0] : F ∈ F} (3.1(b)).

Proof of 3.6d. Lemma 3.6a proves this for finite groups H (with F = (Fimt)0, I2 = I1).
Consider next the case of subgroups H ≤ GLn such that H0 is a torus. Let M =

(H0)Fimt , the intersection of all maximal tori of GLn containing H0. M is clearly nor-
malized by H.

Let G = GM0 = NGLn(M0), and let

τ = τM0 : G→ GLn∗

be a homomorphism of algebraic groups with kernel M 0 (cf. 3.9). As H0 ≤ M0, τ(H)
is a finite subgroup of GLn∗ . By the finite case just considered, we have τ(H) ≤ F ∗

for some F ∗ ∈ F0
imt(GLn∗), and (i)-(iii) hold for τ(H), F ∗ (with I2(n) = I1(n∗)). Let

F = τ−1(F ∗). Then (i)-(iii) follow by the homomorphism theorems for groups. Moreover,
if c ∈ F is unipotent, then so is τ(c) ∈ F ∗; but F ∗ is contained in a torus, so τ(c) = 1;
thus c ∈ ker(τ) = M0 ⊂M . Now M too is contained in a torus, so c = 1.

Thus the lemma holds in case H0 is toric, with I2 = I1(n∗) and

F = {τM0
−1(F ∗) : M ∈ Fimt(GLn), F ∗ ∈ (Fimt)0(GLn∗)}.
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For the general case, let U = H t be the subgroup of H0 generated by the unipotent
elements of H0. Let G = NGLn(U). Clearly H ≤ G. U,G are restricted to move in the
uniformly definable families, Fup, Fad. So G/U moves in a uniformly definable family
F ′ of subgroups of GLn′ for some fixed, computable n′ (cf. 3.9); n′ and F ′ are defined
independently of H. Let

µ = µU : G→ GLn′

be a homomorphism of algebraic groups with kernel U . Then µ(H)0 is a torus. Proceed
as above to pull back a solution for µ(H) to a solution for H.

Corollary 3.7. There exists a computable, uniformly definable family F of subgroups
of GLn, with the following property. Let H be any Zariski closed subgroup of GLn. Then
there exists M ∈ F such that H ≤M , and every unipotent element of M lies in H0.

Proof. Let F0 be the family of 3.6d, and

F = {M : (∃F ∈ F0)F /M, [M : F ] ≤ I2(n)}.
Any element of F is the union of at most I2(n) cosets of an element of F0; so F is

uniformly definable by the obvious explicit formula. If H is a Zariski closed subgroup of
GLn, let F ∈ F0 be as in 3.6(d); let M = FH; then H ≤M . Every unipotent element of
M lies in M0 = F 0, hence in H0.

Invariants of uniformly definable groups

Notation. Given n = dim(V ), k, d, let FV,k,d be the family of subgroups H ≤ GL(V )
of the form

H(u) = {g ∈ GL(V ) : gu = u}
with u ∈ Nd(V k) (and GL(V ) acting naturally on this space).

Lemma 3.8. (i) FV,k,d is a uniformly definable family of subgroups of GL(V ).
(ii) If F is any uniformly definable family of subgroups of GL(V ), then F ⊂ FV,n,d

for some d.
(iii) Given a formula φ defining F , the integer d in (ii) can be computed effectively

(and an explicit ending time can be given for the algorithm).

Proof. (i) is clear as FV,k,d is by definition given by a single formula, with parameter
varying in Nd(V k).

ii,iii) Let V bases ⊂ V n be the set of bases of V . Let Hv be a typical element of F , and
let Hvz be a typical orbit of an element of V bases. Find d such that (for any such Hv) the
Zariski closure Hvz of Hvz is cut out by polynomials of degree ≤ d. If g ∈ GL(V ) fixes
Hvz, then gHvz ∩Hvz 6= ∅; say ghz = h′z = h′h−1(hz), h, h′ ∈ Hv. As hz is a basis for
V , g = h′h−1, so g ∈ Hv. Thus Hv is the subgroup fixing Hvz, an element of NdV n.

Lemma 3.9. Let F , F ′ be uniformly definable families of subgroups of GLn. One
can compute n∗ such that if G ∈ F , N ∈ F ′, and N /G, then there exists an (equally
uniform, and computable) embedding of G/N in GLN .

Proof. By compactness and Chevalley’s theorem. Theoretical computability is auto-
matic from the existence of n∗ and the embedding (search for them). An explicit algorithm
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is provided by the standard proof of Chevalley’s theorem. (As in 3.8, find d such that
N ∈ FV,n,d (where GLn = GL(V )). G acts on a Grassmannian P , in such a way that N
is the stabilizer of a point p. Thus G/N acts on TpP and more generally on the higher jet
spaces Jmp . Take m larger than the maximal order of tangency between the graph of the
action of two elements of G/N on P 2 at p; then the action of G/N on Jmp is a faithful
linear action.)

IV. Computing Galois groups. First, a lemma to show the equivalence of two
formulations of the problem. Actually we will directly solve the harder of the two, so the
lemma will not be used, but it seems good to know that the equivalence is true on “soft”
grounds.

Lemma 4.0. Assume we are given an algorithm (A) that given a linear differential
equation E over L, and given a group G, decides whether or not G is the Galois group
of E. Then one can find an algorithm (A’) that inputs E and outputs the equations for
the correct Galois group of E.

Proof. The algorithm (A’) proceeds as follows: Assume E defines X, a k-space of
dimension n.

(1) Let l = 1; let G1 = GL(V ).
(2) Ask (A): is Gl the Galois group? If the answer is YES, output G.
(3) Otherwise, search for a Q(t)-definable subset S of En, that is not G-invariant.

As G inductively contains the Galois group, but is not the Galois group, there must be
such an invariant; eventually it will be found. Let Gl+1 be the subgroup of Gl leaving S
invariant; return to (2) with l 7→ l + 1.

(4) Steps (2-3) cannot repeat forever, since otherwise the Gl would contradict the
Noetherianity of the algebraic variety GL(n).

Algorithm B. Given a linear Kolchin closed V defined over Q(t), n = dim(V ):

(a) Using 3.8, determine d = d(n) such that F = FV,n,d enjoys the property of
Corollary 3.7.

(b) Find the subgroup H of GL(V ) fixing all k(t)-definable elements of Nd(V n). (By
corollary 1.5, these elements come in finitely many uniformly definable families, with
constant parameters; given these definable families, we immediately obtain a first-order
definition of H, as the group fixing all elements of these families.)

(c) Using Lemma 2F.3, compute a finite extension L of Q(t), and finitely many rela-
tions Sj on V defined over L, such that the subgroup of GL(V ) fixing the Sj is H0.

(d) Applying Proposition 2 to H0, compute the image Ā of Aut(V/Q(t)a, C) in
H0/Ht.

(e) Declare that Aut(V/Q(t)a, C) is the pullback A′ of Ā to H0 (i.e. the group A′

with Ht ≤ A′ and A′/Ht = Ā).

Proposition 4.1. Algorithm B works correctly.
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Proof. Let A = Aut(V/C,Q(t)). By 2F.3(a), A0 = Aut(V/C,Q(t)a). By (a),(b) we
have H = AF ; by 3.7, every unipotent element of H lies in A0. Thus Ht ≤ A0. By
Proposition 2, A0/Ht = Ā. Thus A0 = A′.

Remark 4.2. The algorithm provides invariants for Aut(V/C,Q(t)a), i.e. a finite
extension L of Q(t); some elements of HV,n,d(V ); and in addition finitely many rational
functions of the form

∏l
i=1 gi

di ; such that Aut(V/C,Q(t)a) is precisely the group fixing
all these.

Algorithm C. To determine Aut(V/k(t)).
Find a Galois extension L of k(t) as in Algorithm B, and n-ary relations R1, . . . , Rν on

V defined over L, such that Aut(V/k(t)a) = Fix(R1, . . . , Rν). Take the set {Ri : i ≤ ν}
to be Aut(L/k(t))-invariant; for σ ∈ Aut(L/k(t)), let Ri

σ denote the σ-conjugate of Ri.
This finite group action is computable.

Let

G = {g ∈ GL(V ) : (∃σ ∈ Aut(L/k(t)))
∧

i

(Ri
σ(gv1, . . . , gvν)) ≡ Ri(v1, . . . , vν)}.

Then G = Aut(V/k(t).

Proof. Clearly Aut(V/k(t)) ≤ G, and Fix(R1, . . . , Rν) = Aut(V/k(t)a) /G. If g ∈ G,
then for some σ ∈ Aut(L/k(t)), Ri(v) ≡ Riσ(gv). As σ fixes ka = k = C(k(t)), it extends
to an automorphism over C, in particular it is compatible with some s ∈ Aut(V/C, k(t)).
Now for each i, Ri

σ(sv) ≡ Ri(v) ≡ Riσ(gv) so Rj(g−1su) ≡ Rj(u). Thus g−1s ∈ Fix(Rν),
so g−1s ∈ Aut(V/k(t)a). Thus g ∈ Aut(V/C, k(t)).

Remark 4.3. In the notation of Theorem B.1 (appendix B), Algorithm C identifies
the differential Galois group G. There is no difficulty then to effectively find P and hence
the opposite group H. It is H that is usually referred to as the Picard-Vessiot group.

Remark 4.4. Our presentation focused on obtaining a general recursive algorithm.
But at each step, the existence of a primitive recursive algorithm was also pointed out (or
in the toric case, referred to). We made no attempt to compute the implied time bounds,
but would guess that none require more than doubly exponential time.

Remark 4.5. For simplicity of notation, we assumed the equation defined over Q(t).
The same proofs would work for k0(t), k0 any effectively presented field of constants.

V. A function field analog of Grothendieck’s conjecture. Grothendieck’s con-
jecture concerns the reduction to Fp of certain foliations over Q (corresponding to linear
differential equations over Q(t)). We prove here the natural analog in equal characteristic
0. We do not know whether it has been considered before.

We show that if V is a linear differential equation over (Qa(s, t), d/dt), and for almost
places p of Qa(s), the reduced equation Vp has a basis of algebraic solutions, then so does
V . Moreover, the Galois group of V specializes precisely to the Galois group of Vp, for
many p. The proof follows closely that of Lemma 4.1. In effect, we use the algorithm of
Lemma 4.1 for both V and Vp. Most of the calculations involved are first-order in the
theory of algebraically closed fields; these go the same way for almost all p. Only two
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procedures involve rationality questions on the coefficients: the toric case, and the case
of polynomial solutions. We show that these too go the same way for many (though not
almost all) p.

V-A. Preliminaries. For the moment, no derivations intervene.

Notions of largeness. Let F be a field of characteristic 0, F ⊂ D ⊂ L. Assume D
is a finitely generated F -algebra. For any F -algebra L′, let HomF (D,L′) be the set of
L′-valued points of SpecD, i.e. of F -algebra homomorphisms D → L′.

We consider four notions of basic open subsets of SpecD. The first is Zariski: a basic
Zariski open has the form {p : a /∈ p}, where a ∈ D, a 6= 0. Next, A basic ad-open subset
of SpecD has the form {p : p ∩ H = (0)}, where H is a finitely generated subgroup
of (D,+). More generally, let G be a commutative algebraic group scheme over D[a−1]
(some a ∈ D, a 6= 0). Let Γ be a finitely generated subgroup of G(D). Let W (G,Γ) be
the set of primes p of D such that the induced map G(D)→ Gp(Dp) is injective on Γ. A
set of the form W (G,Γ) will be called a basic gr-open subset of SpecD. If G is restricted
to be semi-Abelian, W (G,Γ) will be called a basic sa-open subset of SpecD.

The intersection of two basic open sets of the same type clearly contains another basic
open set. We will see below (5A.10) that no basic open set of any type is empty. A set
containing a basic open set of one of the types above will be called (Zar,ad,sa,gr)-large.
The complement of a large set will be called small.

A set Y of F -algebra homomorphisms on D will be called (Zar,ad,sa,gr)-large if
{Ker(h) : h ∈ Y } is large in the same sense. If tr.degF (L′) = 1, a set Y of places of
L over F will be called large if for some finitely generated F -algebra D and large subset
Y ′ of homomorphisms on D, Y contains every place whose restriction to D is in Y ′.

We will say that a property holds “for (Zar,ad,sa,gr)-almost every ...” if it holds for
a large set in the corresponding sense. Without qualification, the phrase “almost every”
will refer to Zar.

When the fraction field of D has transcendence degree 1 over F , one sees immediately
that any set of primes of D whose residue fields have bounded degree over F must be
ad-small. Conversely, 5A.3 will show that (in transcendence degree 1) these are precisely
the ad-small sets.

The notions of largeness ad, sa are incomparable; the inclusions among the notions
(Zar,ad,sa,gr) look like a diamond.

This appearance of “ad-almost” may seem discouraging in connection with the mixed-
characteristic case. For many purposes however 5A.2 will suffice.

If X is an algebraic geometry object defined over the field of fractions of D, (for
instance a curve C or a pair consisting of a curve C together with a 1-form ω on C), then
for almost all primes p of D one can define the reduced object X over D/p, denoted Xp.
More generally, if h : D → L′ is a homomorphism, Xh denotes the corresponding object
over L′, obtained by applying h to the coefficients of the defining equations of X.

Lemma 5A.1. Let D ⊂ D′ ⊂ L, with D′ finitely generated over D. Let Y ⊂ SpecD′,
Z ⊂ SpecD.
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(a) Assume ad-almost all p ∈ SpecD are in Z. Then for ad-almost all p′ ∈ SpecD′,
p ∩D ∈ Z.

(b) Assume ad-almost all p ∈ SpecD′ are in Y . Then ad-almost all p ∈ SpecD extend
to an element of Y .

Proof. (a) is immediate from the definition. For (b), let H ′ ⊂ D′ be a finitely generated
subgroup. We are to find a finitely generated H ⊂ D such that any prime p of D with
p ∩H = (0) extends to a prime p′ of D′ with p′ ∩H = (0).

If D′ ⊂ D[c1−1, . . . , cl
−1] then one can take H to be generated by H ′ ∩ D together

with c1, . . . , cl.
If D′ = D[t] is a polynomial ring over D we can take H to be generated by the

coefficients of the elements of H ′ (they have bounded degree). (And extend p to pD[t].)
If D′ is integral algebraic over D, let W = {w1, . . . , wm} be a finite generating set for

H ′. Let G be the Galois group of a finite Galois extension of the field of fractions of D,
containing W . Let g1, . . . , ge be the distinct elements of G. Let H be generated by all
products

∑

ν∈Sym(e)

e∏

i=1

gi(aν(i))

where a1, . . . , ae are elements of W . If w =
∑
niwi ∈ H ′, the NK′/K(w) =

∏
g∈G g(w) is

easily seen to be in the Q-span of H. Now if p = p′ ∩D, p′ ∈ Spec(D′) and w ∈ p′, then
N(w) ∈ (p′ ∩D) = p; so if (p ∩H) = 0 then p′ ∩H ′ = 0.

Composing these three cases (polynomial ring, localization, integral algebraic), we
can arrive at some D′′ with D′ ⊂ D′′; then go back to D′ using (a).

Lemma 5A.2. Let K0 ≤ K ≤ L be fields, with K,L algebraically closed, K0 6= K, and
α1, . . . , αn ∈ L \ K0. There exists a K-algebra homomorphism h : K[α1, . . . , αn] → K

with h(αi) /∈ K0.

Proof. We use induction on tr.deg.K(L) (it may clearly be supposed finite). If K ⊂
K ′ ⊂ L, we have by induction

h′ : K ′[α1, . . . , αn]→ K ′

with h′(αi) /∈ K0, and then

h′′ : K[h(α1), . . . , h(αn)]→ K

with h′′(h(αi)) /∈ K0. Let h = h′′ ◦ (h′|K[α1, . . . , αn]). This reduces the problem to the
case L = K(t)a. If some αi ∈ K, then h(αi) = αi /∈ K0 for any K-algebra homomorphism
h; so this αi can be ignored, and we may suppose each αi /∈ K.

Note that we may increase K0 as long as it stays a proper subfield of K. In particular
we may if necessary add to K0 a transcendence basis for K/K0; so we may assume
K0

a = K. If −1 is not a sum of squares in K0, we may assume it is real closed. In this
case let C be the locus of (α1, . . . , αn), and let fi be the ith projection, restricted to C.
Then fi is finite-to-one, so fi

−1(K0) is one-dimensional in the sense of real closed fields
(or o-minimal structures), yet the curve C(K) is two-dimensional (in the same sense), so
it has a point a with fi(a) /∈ K0.
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Suppose now that K0 is not a real field. Then by Artin-Schreier, K = K0
a is not

finitely generated over K0. Now K(t, αi) is a finite extension of K(αi); say [K(t, αi) :
K(αi)] = mi. So

∑
j≤mi fij(αi)t

j = 0, with fij ∈ K[X]. Increasing K0 within K, we may
assume fij ∈ K0[X].

Pick 0 6= d(t) ∈ K0[T ] such that each αi and each f−1
i,mo

(αi) are integral over
K0[T, d(t)−1]. Pick b∈K0

a with [K0(b) : K0]>max{m1, . . . ,mn, deg(d)}. Then d(b) 6=0.
Let h : K[t, d(t)−1]→ K be the homomorphism of K-algebras with h0(t) = b. Extend h

to the integral extension

K[t, α1, . . . , αn, f
−1
1,m1

(α1), . . . , f−1
n,mn(αn)]

of K[t, d(t)−1]. Let βi = h(αi). Then
∑

j≤mi
fij(βi)bj = 0

while fi,m0(βi) 6= 0; so
[K0[b, βi] : K0[βi]] ≤ mi.

As [K0[b] : K0] > mi, it follows that βi /∈ K0.

Lemma 5A.3. Let K ⊂ L be fields, tr.deg.K(L) = 1; let D ⊂ L be a finitely generated
K-algebra, and let V ⊂ D be a finite-dimensional K-space. Then there exists an (effective)
integer M such that for any K-algebra homomorphism h : D → Ka, either h(D) ⊆ K ′

for some finite extension K ′ of K with [K ′ : K] ≤M , or else h|V is injective.

Proof. Let t be a tuple of generators of D as a K-algebra, I the ideal of polynomials
over Ka vanishing on t, I0 a finite set of generators for I. Then I0 ⊂ K0[T ] for some finite
extension K0 of K. Let C be the variety corresponding to I; it is irreducible and defined
over K0, and is either a curve or a point, as tr.deg.K(L) = 1. Let d1, . . . , dm ∈ D form
a K-basis for V . Given any s1, . . . , sm ∈ Kalg (or in any algebraically closed extension
field L), the equations ∑

sidi = 0

viewed as polynomials in T , cut out a proper algebraic subset of C (over L). They
therefore have only finitely many solutions. By quantifier-elimination, or by a direct
devissage procedure, one finds M0 such that for any s = (s1, . . . , sm), all these solutions
are roots of a common polynomial over K0(s) of degree ≤ M0. In particular this holds
for s from K. Now for any h : D → Ka, if the h(di) are linearly dependent over K, then∑
sih(di) = 0 for some s1, . . . , sm ∈ K, and thus the h(di) are all roots of one polynomial

over K0 of degree ≤M0. It follows that [K(h(D)) : K] ≤M0[K0 : K] =def M .

Remark 5A.3R. There are variants of 5A.3 for higher transcendence degrees. For
instance if t1, t2 form a transcendence basis for L/K, and K[t1, t2] ⊂ D ⊂ L, let V ⊂ D

be a finite-dimensional K-space. Then there exists M1 and an effectively computable
function M2 : N → N such that for any K-algebra homomorphism h : D → Ka, if
[K(h(t1)) : K] = d1 > M1, and [K(h(t2)) : K(h(t1))] > M2(d1), then h is injective on V .

Lemma 5A.4. Let K0 ≤ K ≤ L be fields, with K algebraically closed, but K0 neither
real closed nor algebraically closed. Let D ⊂ L be a finitely generated K0-algebra, and
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V ⊂ Dm be a finite-dimensional K0-space. There exists a K0-algebra homomorphism
h : D → K such that h is injective on V . (If Q = K0, ad-almost all h have this property.)

Proof. The case m = 1 follows from 5A.3 and Artin-Schreier. To treat the general
case, embed V → D by a D-linear map Dm → D, as in Lemma 1.0. Alternatively, one
can proceed as in 5.8A(5).

Remark 5A.5. Let D be a finitely generated sub-domain of L = La, K = Ka,
let φ(u1, . . . , un) be a formula in the language of fields, αi ∈ D, and assume L |=
φ(α1, . . . , αn). Then for almost all h ∈ HomF (D,K), K |= φ(h(α1), . . . , h(αn)).

Proof. By Tarski’s theorem, we can take φ to be a conjunction of polynomials equalities
and inequalities. The equalities are automatically preserved by homomorphisms, so the
additional condition reduces to: h(e) 6= 0 for a certain nonzero e ∈ K[α1, . . . , αn].

Example 5A.6. Let A be an Abelian variety (resp. commutative unipotent group)
defined over K(α1, . . . , αn). Then for almost all h, Ah is also an Abelian variety (unipo-
tent).

Proof. A admits a projective embedding, and an algebraic group structure; these
two things can be witnessed by a first-order formula in the parameters; so 5.A5 applies.
Similarly for the unipotent case, there exists an L-definable isomorphism A → Gal for
some l.

Remark 5A.7. Let D be a finitely generated sub-domain of L = La, K = Ka. Let
Q(u) ∈ D[u]. Then for ad-almost all h ∈ HomF (D,K), Qh has no rational solutions
except for the rational solutions of Q.

Proof. Localizing D, we may assume Q is monic. Let α1, . . . , αm be the irrational solu-
tions of Q in L, and β1, . . . , βl the rational ones. For ad-almost all h ∈ D[α1, . . . , αm](K),
each h(αi) is irrational, so Qh has no rational solutions other than the βi. By 5A.1,
ad-almost all h ∈ HomF (D,K) have the same property.

Discussion 5A.8. Let F be a number field.

(1) If fi(X,T ) are polynomials with no roots in F (T ), then

H = {a ∈ F : ∧mi=1¬∃x ∈ F. fi(X, a) = 0}
is a typical Hilbert set. This is one of the central subjects of [8]; see the proofs there that
Hilbert sets are non-empty. In particular, by Theorem 12.7 of that book, H contains a
translate of a nonzero ideal I of the ring of integers OF of F . As no coset of I can be
contained in a proper subfield F ′ of F , or a finite union of such subfields, this gives one
way of seeing that the Hilbert set has infinitely many elements that are not in any proper
subfield of F .

(2) Let L = F (t) be a finite extension of F (t). Consider places p : L → F a over F ;
i.e. we have a valuation ring F ⊂ Op ⊂ L, and a surjective F -algebra homomorphism
resp : Op → kp, the residue field kp being a finite extension of F . There exists a Hilbert
set H ⊂ F such that if (t ∈ Op and) resp(t) ∈ H, then [kp : F ] = [L : F (t)]. (The
standard (Robinson?) nonstandard proof of this standard (Hilbert?) fact: if U is any
ultrafilter containing the Hilbert sets, and pa is a place with respa(t) = a, then one
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obtains an embedding of F (t) into F ∗ = UltUF (t 7→ (respa(t))U ) such that F (t) is
relatively algebraically closed in F ∗. Then F (t)a is linearly disjoint over F (t) from F ∗.
So [L : F (t)] = [LF ∗ : F ∗] = [kp : F ] (the last equality holding for almost all p).)

(2a) Let L be a finitely generated field over F , of transcendence degree 1. Given a
finite extension L′ of L, let H(L,L′) be the set of valuations p of L sdover F extending
to a valuation p′ of L′ with [kp′ : kp] = [L′ : L]. A set of the form H(L,L′) (or cofinite in
such a set) will be called a Hilbert set of valuations. It follows from (2) that Hilbert sets
are nonempty. (Let t ∈ L \ F a. If p|F (t) ∈ H(F (t), L′) then p ∈ H(L,L′).)

(2b) If X is a finite subset of L′ \ L, then a cofinite subset of p ∈ H(L,L′) extend
to p′ such that satisfy [kp′ : kp] = [L′ : L], X ⊂ Op′ , and p′(X) ∩ kp = ∅. (Write
L′ = L[c]. Let d ∈ L′ \ L. For almost all p, c, d are integral over Op. Moreover for p as
in (2a), if m = [L′ : L], p′(1), p′(c), . . . , p′(cm−1) are linearly independent over kp. Write
d =

∑
0≤i<m aic

i. Then ai 6= 0 for some 1 ≤ i < m; for almost all p, p(ai) 6= 0; so
p′(d) /∈ kp.)

(3) Let L be a function field over F , and let A be an Abelian variety over L. Then for
almost all places p of L, the reduction of A at p is an Abelian variety over the residue field
kp (a finite extension of F ), and one has a reduction homomorphism rp : A(L)→ A(kp).
Neron showed the existence of a Hilbert set H such that for p ∈ H, rp is injective.
(Pick a rational prime l such that A = A(L) has no l-torsion, and let b1, ..., bm represent
the classes of A/lA; then find H such that for p ∈ H, Sp has no kp-rational l-torsion
points, and rp(bi) has no F -rational lth roots; thus rp induces an injection on A/lA into
A(kp)/lA(kp); one concludes algebraically that fa is injective. See [14].)

(4) An entirely similar argument works for finitely generated subgroups Γ of the
multiplicative group Gm.

(5) Let A
j→ B

f→ C be an exact sequence of Abelian groups. Let

A′
j′→ B′

f ′→ C ′

be another sequence, with f ′j′ = 0, and j′ injective. Let hA : A → A′, hB : B → B′,
hC : C → C ′ be homomorphisms with hBj = j′hA, f ′hB = hCf . Finally let Γ be a
finitely generated subgroup of B. Assume hA is injective on j−1(Γ) and hC is injective
on f(Γ). Then hB is injective on Γ.

Lemma 5A.9. Let F be a number field, L a finitely generated extension field of
transcendence degree 1. If H is a Hilbert set of places of L over F , and Y is an ad-large
set of places of L, then H ∩ Y is infinite.

Proof. By Lemma 5A.3, there exists a finitely generated F -subalgebra D of L, and an
integer M such that p ∈ Y whenever p(D) is finite and is not contained in an extension
of F of degree ≤M . Say H is cofinite in H(L,L′). Let F ′ be an extension of F of degree
> M . Let t ∈ D \ F a.

For some 0 6= c ∈ F [t], D[c−1] is integral over F [t, c−1]. Let Z be the zero set of the
polynomial c. If a ∈ F a \ Z, then the homomorphism ha : F [t] → F a, t 7→ a, extends to
a homomorphism h : D → F a.

By 5A.8 (1,2a), there exists a Hilbert set H ′ ⊂ F ′ such that if t ∈ Op and resp(t) ∈ H ′
then p ∈ H. By 5A.8 (1), there exists a ∈ H, with a not in any proper subfield of F ′,
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and also a /∈ Z. For any such a, any place p with resp(t) = a satisfies both conditions,
and so lies in H ∩ Y .

Lemma 5A.10. Let F be a number field, L a finitely generated extension field of
transcendence degree 1. Then every gr-large set of places of L contains the intersection of
a Hilbert set with an ad-large set (and hence is infinite.) Explicitly, let G be a commutative
algebraic group over L, and let Γ be a finitely generated subgroup of G(L). For almost
all places p of L over F , p induces a well-defined homomorphism rp : Γ→ G(kp). There
exists a Hilbert set H and an ad-large set Y such that for all p ∈ H ∩ Y , rp is injective
on Γ.

Proof. Enlarging L if necessary, we can find an exact sequence 0→ V → G→ S → 0
of algebraic groups over L, with V ' GaL

l and S semi-abelian. By 5.8(5), and because
the target sets (Hilbert meet ad-large) are closed under finite intersections, it suffices to
prove the lemma separately for V and for S. Similarly, splittting S and then the vector
and toric parts, we may assume G is an Abelian variety, or Gm or Ga. In the former two
cases, 5A.8 (3,4) give the appropriate set (a Hilbert set). The case of Ga follows from the
definition of an ad-large set.

Lemma 5.11. Let F be a number field, L a finitely generated extension field of transcen-
dence degree 1, H a commutative group scheme over D. Let χ1, . . . , χr be homomorphisms
H → Gm of algebraic groups, defined over L, and forming a Q-basis for Hom(H,Gm);
i.e. for every (La-definable) algebraic group homomorphism χ : H → Gm, for some
m > 0, there exist unique m1, . . . ,mr ∈ Z with χm =

∏
χi
mi . Then for sa-almost all

places p of L, χ1, . . . , χr form a Q-basis for Hom(Hp, Gm).

Proof. First one needs to show that reduction mod p leaves the χi Q-linearly inde-
pendent (for almost all p.) Note that h = (χ1, . . . , χr) : H → Gm

r induces a bijection
H̄ → Gm

r; so it is also a bijection on L-rational points of these groups. Find a ∈ Gmr(Q)
that is not in any proper algebraic subgroup ofGm

r(L) (e.g. a = (l1, . . . , lr) with the li dis-
tinct rational primes.) Let h(b) = a, b ∈ H̄ . Then for almost all places p, h(redp(b)) = a,
and it follows that the χi remain Q-linearly independent.

The main point however is that (on a large set) no new characters show up after reduc-
tion. For simplicity, take r = 0 (one can reduce to that case, by going to ∩ri=1Ker(χi)).
One can factor out the maximal vector subgroup of H without changing the terms of the
lemma. So:

(A) H is a semi-Abelian variety, with no multiplicative characters.

We have however (after taking a finite extension of L, as the conditions and conclusions
of the lemma permit) an exact sequence 0 → T → H → A, with A an Abelian variety,
and T ' Gml. For almost all p, Ap remains an Abelian variety, and the sequence remains
exact. For each character ρ : T → Gm, factoring out by ker(ρ) we obtain an exact
sequence 0→ Gm → H → A, i.e an extension of A by Gm, corresponding to an element
of the dual Abelian variety A∗ = Pic0(A) (cf. [19]). Let ρ1, . . . , ρl generate the characters
of T , and let b1, . . . , bl be their images ∈ A∗. Then

(B) b1, . . . , bl ∈ A∗ are Q-linearly independent in Q⊗ZA∗.
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Indeed (B) is precisely equivalent to (A); and the equivalence is preserved for almost
all specializations.

Now (B) is preserved under an sa-large set of specializations, by definition of sa-
largeness.

Notation. We will say that a 1-form on a curve C is rationally logarithmic if it has
the form df/f for some rational function on C, or is a rational multiple of such a form.
We will say that forms ω1, . . . , ωn are rationally logarithmically independent if whenever
γ1, . . . , γn ∈ Q and

∑
γiωi is logarithmic, we have γi = 0 for each i.

Lemma 5A.12. Let K be a number field, L a finitely generated extension of tran-
scendence degree 1. Let C be a curve defined over L, and let ω1, . . . , ωl be l rationally
logarithmically independent 1-forms on C. Then for gr-almost all places p of L over K,
the forms (ωi)p are rationally logarithmically independent 1-forms on Cp.

Proof. Let j : C → J be a generalized Jacobian of C, such that ωi = j∗ψi for some
invariant 1-form ψi on J ([19], V.10, Prop.5). If

∑
γiωi = df/f , let B be the multiplicative

group written additively, and define

h : C → (J ×B) , h(c) = (j(c), f(c)).

Let πJ , πB be the projections on J ×B, and let θ =
∑
γi(πJ)∗ψi−π∗B(dt/t). This 1-form

on J × B is nonzero (even on (0) × B) but vanishes on the image h(C) of C. We may
assume that 0 ∈ h(C); so h(C) generates an algebraic group A ≤ J × B, and θ vanishes
on A. As θ 6= 0, A 6= J×B. Now A maps surjectively to J , with finite kernel ((1)×B)∩A;
for some m, m(((1)× B) ∩A) = 0; so

{(a,mb) : (a, b) ∈ A}
is the graph of a homomorphism χ : J → B. We have moreover

∑
γiψi = mχ∗(dt/t), or∑

(1/m)γiψi = χ∗(dt/t).
Thus the rational logarithmic independence condition on the forms ωi follows from a

condition on the ψi:

(*) there should be no nonzero rational γi and homomorphism χ : J → B with

χ∗(dt/t) =
∑

γiψi.

Conversely, if j : C → J ′ is any map of C into a commutative algebraic group, and
ωi = j∗ψi for an invariant 1-form ψi on J ′, and j(C) generates J ′, and (*) fails, then it
is clear that the ωi are rationally linearly dependent over forms df/f .

Thus we can forget about C, and just consider J and the forms ψi. Let χ1, . . . , χr
be a Q-basis for the multiplicative characters of J , and θi = χi

∗(dt/t). By 5A.11, the
reductions of the χi form a Q-basis for the reduction of J , on an sa-large set of valuations.
Once the χi are known to be a Q-basis, (*) becomes

(**) θ1, . . . , θr, ψ1, . . . , ψm are Q-linearly independent.

This condition (**) is preserved by reduction on an ad-large set of places (5A.4).
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Remark 5A.12R. An alternative treatment analogous to 2.4 is also possible, avoiding
the generalized Jacobian. There one uses residues, and ends up requiring injectivity on a
finitely generated subgroup of the Jacobian rather than the dual.

V.1. Specializations of Kolchin closed sets. We now take a derivation into con-
sideration. Let k be the constant field of the derivation. Let F be a field of characteristic
0, F ⊂ D ⊂ L ⊂ k. Assume D is a finitely generated F -algebra. Let V be a linear Kolchin
closed set defined over (D(t), d/dt).

Let V be a linear Kolchin closed set defined over L. Then V is defined over a finitely
generated F -algebra D. Given p ∈ HomF (D,L′), we can define a Kolchin closed set Vp
by applying p to the coefficients of the defining equations of V . This makes sense also for
G = Aut(V/L(t), C) (since G ≤ GL(V ) is also a Kolchin closed set).

Proposition 5.1. Let G = Aut(V/L(t), C). Then for gr-almost all p ∈ SpecD, Gp =
Aut(Vp/k(t), C).

Corollary. If for almost all p ∈ HomF (D, k), Vp has a basis of solutions in k(t)a,
then V has a basis of solutions in L(t)a. (Analog of Grothendieck’s conjecture.)

Proof. V has a basis of solutions in L(t)a iff G is finite.

Remark 5.2. The hypothesis of 5.1 can be weakened to “for g-almost all p”, but not
to: “for infinitely many p”, for the same reason as in Example 1.2. Moreover the set of
exceptional p may contain any given sa-small or ad-small set.

Corollary 5.3. The Proposition implies that Aut(V/k(t)a)p = Aut(Vp/k(t)a) for
gr-almost all p.

An interesting case occurs when for infinitely many p, Gp is finite, but of unbounded
size. In this case a limit group limpG is in effect considered, and shown to be a finite
extension of a torus. The proof thus essentially works with Gp and not with Gp

0.

Lemma 5.4. Let the linear Kolchin closed set V be defined by

Pnx
(n) + . . .+ P1x

′ + P0x = 0

with Pi ∈ D[t]. There exists a bound N (valid for almost all h ∈ HomF (D, k)) on
the order of vanishing of a nonzero power series solution of Dh at 0. In other words if∑∞
i=N+1 γit

i ∈ V (k[[t]]) then each γi = 0.

Proof. The equation for V can be written
∑

i,j

cijt
iDjx = 0

(where cij ∈ D for i, j ∈ N, and only finitely many cij are nonzero). Let

k = min{i− j : cij 6= 0}
if
∑∞

i=m γit
i ∈ V (k[[t]]) with γm 6= 0, looking at the coefficient of tm+k we obtain:

∑

j

ck+j,j
m!

j!(m− j)! = 0.
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Let Q(u) =
∑
j ck+j,j

u!
j!(u−j)! ∈ D[u]. By 5A.7, for ad-almost all h, Qh has no rational

solutions other than those of Q, and in particular no integral solutions larger than the
maximal integer solution of Q.

Lemma 5.5. Let V be as in 5.4. If, for ad-almost all p ∈ HomF (D, k), Vp has a
solution in k[t], then V has a solution in k[t]. In fact if V (k[t]) denotes the space of
k[t]-valued elements of V , and d = dimV (k[t]), then dim(Vp(k[t])) = d for almost all
p ∈ HomF (D, k).

Proof. First let HN (k) be the space of polynomials of degree ≤ N (over the constant
field k). This is a finite-dimensional vector space with a distinguished basis 1, t, . . . , tN .
The operator d/dt acts on it via a known (diagonal) matrix, and hence any linear dif-
ferential operator

∑
PiD

i acts on HN in a definable way, uniformly in the coefficients
Pi. The kernel of the operator is therefore uniformly definable in field theory. Thus if dN
is the dimension of the subspace of HN consisting of solutions to V , then for almost all
p ∈ HomF (D, k), the dimension of the solution space to Vp also equals dN .

Thus it suffices to find N such that for ad-almost all p, any polynomial solution of
any Vp must have degree ≤ N . But such an N is given by a bound for the pole at ∞ of
the possible polynomial solutions; i.e. by a bound for the pole at 0 of a solution given as
a power series in t−1 (Lemma 5.4).

Lemma 5.6. There exists a Kolchin closed linear subspace V ′ of V , defined over D[t],
such that for ad-almost all p ∈ HomF (D, k), (V ′)p = Vp(k[t]).

Proof. Let V ′ be the k-span of V (k[t]). The lemma follows from 5.5.

Notation. Let W be a Kolchin closed or a Kolchin constructible set defined over k(t).
Denote by IW the set of elements of W defined over k(t). IW is a (finite or) countable
union of Kolchin constructible sets; if k0 is an algebraically closed subset of k and W is
defined over k0(t), these Kolchin closed sets can also be taken to be so definable.

Recall that Nd(V ) is the set of Zariski closed subsets of V defined by polynomials
of degree ≤ d; and that by Corollary 1.5, INd(V ) is Kolchin constructible. In particular
N1(V ) is the set of affine subspaces of V of various dimensions; let Lk(V ) be the set
of k-dimensional linear subspaces of V , L(V ) = ∪k≤dim(V )Lk(V ). L1(V ) is in definable
bijection with {v′/v : v ∈ V }.

Lemma 5.7. Assumptions as in 5.4. For ad-almost all h ∈ HomF (D, k), IL1(Vh) =
(IL1(V ))h.

Proof. We repeat the proof of P1.1, noting that it is uniform as V varies in a uniformly
definable family of Kolchin closed sets. Let W = {v′/v : v ∈ V }. It suffices to show that
I(Wh) = I(W )h. This follows Picard. A rational solution to W can have poles at the
zeroes of Pn, and other poles; but the other poles have order at most 1, and positive
integral residue (bounded by the order of V ). The poles at the zeros of Pn have bounded
order (≤ n), and finitely many possible polar parts. We split W according to these
possible polar parts, at each zero of Pn. We find a (not necessarily rational, nor in V , but
with a′/a rational) having the same polar information. Replacing V by aV (hence W by
a′/a + W ), we reach a similar situation but where we can restrict attention to rational
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w ∈W with finite poles of order at most 1, and integral residues. Pulling back to V , the
solutions of interest are polynomial, and 5.6 applies.

Lemma 5.8. For ad-almost all h ∈ HomF (D, k), INd(Vh) = (INd(V ))h.

Proof. The proof of Proposition 1 gives constructible bijections, compatible with the
functor I: from Nd(V ) to a finite union of subsets of some Lk(V ′); from there to some
L1(V ′′). These bijections are all constructible, and commute with almost every h. This
reduces the problem to 5.7.

We need to consider finite extensions of k(t). These have the forms k(C), C a curve
defined over k. The embedding k(t) ⊂ k(C) corresponds to a rational map t on C, that
we fix.

Lemma 5.9 (finite case). Assume k(C) is a finite Galois extension of k(t), with Galois
group G. Then the same is true of k(Cp) for almost all p.

Proof. Gop acts on C over t : C → P1; regularly on almost all fibers; being an
elementary statement, this remains true for Cp, for almost all p. Moreover, Cp irreducible
for almost all p (cf. e.g. [7], [8], [10]). This suffices for Aut(Cp/P1) to be transitive on
almost all fibers. It follows that Aut(Cp/P1) = (Gop)op ' G.

Lemma 5.10 (toric case). Let V have the equation: x′i = eixi, ei ∈ L(C), C a
curve defined over D. Let G = Aut(V/k(t)a) ≤ Gmn. Then for ad-almost all p, G =
Aut(Vp/k(t)a).

Proof. Let ∆,∆(p) be defined as in Lemma 2.3 for V, Vp respectively. By 2.30, it
suffices to show that Q⊗∆ = Q⊗∆(p) for ad-almost all p. This is just Lemma 5A.12.

Proof of Proposition 5.1. The proof is now identical to that of Proposition 4.1 (any
troublesome ingredients having been dealt with). One first considers the uniform cover
H(V ) = Aut(V/k(t))F of the Galois group of V , and shows that H(V )p = H(Vp) for
ad-almost all p. This is in fact immediate from 5.8. Thus also (H(V )t)p = H(Vp)t for
ad-almost all p. Next, aiming first to prove Corollary 5.3, let Gt(V ) be the image of
Aut(V/k(t))0 in H(V )/H(V )t. It will suffice to show that Gt(V )p = Gt(Vp) for gr-almost
all p. But Gt(V ) is the Galois group over Q(t)a of an auxiliary equation of toric type,
and Lemma 5.10 does the job. The deduction of Proposition 5.1 from Corollary 5.3, as
in that of Algorithm C from Algorithm B, uses Lemma 5.9.

Appendix A: Did schemes supplant the universal domain? We are interested
in an algebraic theory T0, given as a set of universal sentences (such as

(∀x)(∀y)((xy)′ = x′y + y′x), or (∀x)(∀y)(xy = 0⇒ (x = 0 ∨ y = 0))).

For simplicity assume the language has a finite or countable number of relation and
function symbols.

Let C0 be the class of “all” models of T0; well, say all countable ones.
Examples: integral domains; differential integral domains. (Can we always take some

kind of rings? No, not even for geometric purposes. For instance in the fundamental
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theorem of projective geometry, we start with a point-line incidence system, and end
with a ring. If we had to start with a ringed object, we would lose the theorem. There are
other such situations, some arising within differential equations. Even when we do start
with a ring, elimination of imaginaries can take us elsewhere.)

Let us distinguish four approaches to the algebra in question.

(1) Proof theoretic: the objects are formulas: e.g. in algebra or differential algebra,
systems of polynomial equations, or differential polynomial equations (or coordinate-
free versions of the above). One has a more or less strong idea that the formulas have
some meaning; leading in particular to identifying formulas differing only by certain
transformations. But one does not explicitly work with solutions, and does not need to
specify where they live.

(2) At the opposite extreme, one takes seriously abstract algebraic structures (fields,
differential fields, models), almost to the point of ignoring formulas.

(3) “Representable functors”: the emphasis is again on formulas; but a formula φ is
viewed not syntactically, but as a functor that takes a structure A ∈ C0 to the set of
solutions of φ in A.

(4) Universal domains: the functor in (3) is replaced by its value at a single struc-
ture; this can work only when a single structure can be viewed as the amalgam of “all
structures”.

Approach (4) is possible only when the class of structures in question admits amalga-
mation. When it does, (4) is entirely equivalent to (3); any structure admits an embedding
in the universal domain, unique up to an automorphism of the universal domain; permit-
ting recovery of the value of the functor there.

The history of algebra passed through (1) (complex numbers in the 16th century), (4)
(complex numbers in the 19th), (2) (“modern algebra”), (4) (Weil’s universal domains,
in any characteristic), (1) + (3) (Grothendieck).

In model theory, (1) was followed by (2) and (3); Shelah introduced (4) as a convention
in his book on classification theory, and this became generally accepted in the 80’s, more
so within stability theory than in other parts of model theory.

With sufficient hindsight in a particular context, (1) can be also treated so as to
become equivalent to (3). This is done in some presentations of schemes (but usually the
functors come in straightaway after).

Thus a “Kolchin closed set” corresponding to some differential equations can be inter-
preted as (3) a functor mapping a differential field to the solution set of these equations,
(1) the radical ideal generated by the equations, (4) the set of all solutions of the equations
(in a universal domain).

It should be clear that these are surface transformations; they do not effect the deep
grammar. It is useful to be aware of all three; there is as little reason to commit to one
interpretation as to deciding whether real numbers are Dedekind cuts, or equivalence
classes of Cauchy sequences.

(2) on the other hand really treats more algebraic and less geometric material. The
isomorphism types of particular models becomes involved.
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Connection to schemes. These distinctions relate to the revolution of schemes only
at its surface. Grothendieck’s real contribution, in this respect, was not the change of
language, but the incorporation of infinitesimals, and of homological algebra, as intrinsic
parts of the geometry. These go beyond Weil’s original universal domain, not because
it is a universal domain, but because it is a universal domain for the wrong class of
structures (rings, and without nilpotents). When one speaks about nontrivial groups
without nonzero points, etc., it is Weil’s universal domain that lacks the points, but are
there others?

The most serious objection to universal domains is that they apply only when the
structures in question admit amalgamation; and preferably a certain finiteness property
allowing a model companion. Do these properties hold for an appropriate presentation
of schemes with infinitesimals, or for varieties with coherent sheaves over them? There
has been little work on these questions; perhaps because of the view, widely held and
published by model-theorists, that ACF remains the first-order theory underlying alge-
braic geometry; that Grothendieck somehow changed the logical way of looking at it,
rather than the theory itself. The answer to the second question appears to be positive.
For the first, Cherlin showed that commutative rings with infinitesimals do not have a
model companion in the language of rings; essentially because the order of infinitesimals
must be taken seriously. But once this is done, a positive answer may exist. (Truncated
valuation rings have a good model theory, and give a partial response.)

The above speculation is quite irrelevant to differential algebra at the level of the
present paper, neither infinitesimals nor sheaves or cohomology occur; both fields and
differential fields of characteristic 0 admit universal domains, and model completions.

The approach (4) often brings out the geometry, with minimal intervention of par-
ticular algebras. Thus for instance, Picard’s original treatment (using (4)) assigned a
group to an equation. In the modern-algebra treatment (2) of differential Galois theory,
one takes two algebras A,B and obtains an abstract group Aut(A/B). The fact that
the group really belongs to a geometric object must be seen later and separately, via
base change properties for B/A; similarly the fact that the abstract group is related to
an algebraic group. By contrast using (4), one takes as input two definable sets (say, a
Kolchin closed linear space V and the equation C of constants) and yields a definable
group (Aut(V/C)); all three are directly geometric. This is explained in Appendix (B).

The construction of (4) uses some quite harmless set-theory to explain the meaning
of ”all” structures. This can be done via cardinality differences, or recursiveness consid-
erations, or taking a proper class universal domain; in other words the set theory is not
really relevant. To avoid it completely, take κ = ℵ0 below, so that we obtain a countable
universal domain for finitely generated structures. The assumption α below is met when
T0 is the theory of differential integral domains of characteristic 0, and the universal
domain thus obtained is adequate for our purposes. It is more convenient, and more gen-
eral, to permit other choices of regular cardinals κ; using some easy set theory, one can
always arrange that assumption α holds; so the amalgamation requirement β is the only
serious assumption. (To shorten the discussion, we included a joint embedding property
in β.)
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Theorem A1. Let

C0 = {M |= T0 : M is generated by < κ elements}.
Assume (α) that for M ∈ C0, there are ≤ κ isomorphism types over M of finitely
generated extensions of M in C0. Assume ( β) that any two structures in C0 embed into a
common one; and moreover that if fi : A→ Bi are embeddings, A,B1, B2 ∈ C0, then there
exists B ∈ C0 and embeddings gi : Bi → B with g1 ◦ f1 = g2 ◦ f2. (Amalgamation.) Then
there exists a U |= T0, generated by κ elements, such that any A ∈ C0 embeds uniquely
into U; uniqueness means that Aut(U) acts transitively on the set of embeddings. This U
is unique up to isomorphism. It is called the universal domain for C0.

Call a subset of Un constructible over A if it is the solution set to a basic formula
in the language, possibly using parameters from A, or a finite Boolean combination of
such. A countable intersection (union) of constructible sets will be called ω-constructible
over A (Σ-constructible). If A is not mentioned, it is taken to be U (i.e. unrestricted
parameters); if A = ∅, we say: “0-constructible”, etc.

(A1) already shows that Aut(U) is large, and forms the beginning of a Galois theory;
the construction of U once and for all allows later to avoid many base changes, while
Aut(U) still permits to keep track of the base when one wishes, via a kind of Galois
descent:

Let A0 ⊂ U, |A0| countable or finite. Then a constructible set D is constructible over
A0 iff Aut(U/A0) leaves D invariant. A similar statement hold for ω- or Σ-constructible
sets.

In particular, the union of all one-element A0-constructible sets coincides with
Fix(Aut(U/A0)); it is called the definable closure of A0, or dcl(A0).
U also has a countable compactness property; any countable collection of constructible

sets with the finite intersection property, has nonempty intersection. It follows for example
that a set that is both ω-constructible and Σ-constructible is constructible. (If P = ∩nPn
while ¬P = ∩nQn, then ∩n(Pn ∩ Qn) = ∅, so for some N , ∩n≤N (Pn ∩ Qn) = ∅, and it
follows that P = ∩n≤NPn.)

Appendix B: Definable automorphism groups. We present the main definabil-
ity results on relative automorphism groups ([9], Theorem 3), and show that they can be
obtained without stability assumptions. This carries no logical advantage in the present
context—all applications envisaged here are stable—but it does greatly free the exposi-
tion.

In the case of∞-definable sets, stability assumptions are lightened but not eliminated
(B.5).

We also discuss the connection to Picard-Vessiot and related theories, including Mat-
zat’s characteristic p theory.

The reader interested only in the applications of this paper, or wishing to read with
an example in mind, can set parameters as follows. T0 is the theory of differential fields
of characteristic 0. T is the model completion, theory of differential closed fields. It is
ω-stable; this will be used only incidentally, via B.1.4. It has elimination of imaginaries. It
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is stable so that every definable set (indeed every set) is stably embedded. C = C̃ is the
equation Dx = 0. Q is the solution set to a linear differential equation. The torsor P in
that case can be taken to be orbit of Aut(U/F,C) on the set of bases, an open subset of
Qn; the opposite group is the subgroup of elements Mn(C) preserving P and the action
of Aut(U/F,C) on P , where Mn(C) is the group of n×n matrices with coefficients from
C, acting on V n by matrix-vector multiplication.

For Matzat’s theory, T0 is the theory of differential fields of characteristic p > 0,
endowed with a stack of Hasse derivations Dn. C is the ω-constructible sets D1x =
0, D2x = 0, · · ·. Q is the solution set to a system of linear differential equations. T0 has
again a model completion; over Fp(t) it is equivalent to the theory of separably closed
fields. It is stable, with EI; cf. [6].

B.1. Background. Let T be a complete first-order theory. We make two assumptions
on T of a notational rather than substantial nature; they can be achieved in general by
a canonical redefinition of the language, without changing the category of models or the
automorphism group. Quantifier elimination is achieved by viewing every definable set
as constructible; elimination of imaginaries, by viewing every equivalence class as a kind
of point. Both assumptions are true at the outset for differentially closed fields (in char.
0, or using Hasse derivations in positive characteristic).

Elimination of quantifiers (QE): Every formula is equivalent, in a model of T , to a
quantifier-free one. If T0 is the set of universal sentences of T , then T0 automatically has
a universal domain U; it is a model of T . T is then called the model completion of T0. In
this context, the words “constructible” and “definable” mean the same thing.

Elimination of imaginaries (EI): Every definable set can be defined using a canonical
parameter. This means that the definable set has the form Dc = {x : (x, c) ∈ D}, with
c ∈ P , D,P 0-definable, and such that if c1 6= c2 ∈ P then Dc1 6= Dc2 .

A third notion will need to be considered, though not assumed:

Stable embeddedness
(SE1) A constructible set X ⊂ U is called stably embedded if any constructible subset

Y ⊂ X is constructible over some X0 ⊂ X.
In the presence of (QE) and (EI), (SE1) is equivalent to:
(SE2) for any tuples a, b from U, if dcl(a) ∩ dcl(X) = dcl(b) ∩ dcl(X) =def e and a, b

are Aut(U/e)-conjugate, then a, b are Aut(U/X)-conjugate.
(The proof is a straightforward modification of A1; cf. appendix to [3].)
Grace to the following lemma, we will avoid any assumption of stable embeddedness

in the general first-order framework.

Lemma B.1.1. Let U be a saturated model of a first-order theory. Let D be a Σ-
definable set over F . Then there exists a stably embedded Σ-definable set D̃ over F (the
stably embedded hull of D) with Aut(U/D) = Aut(U/D̃).

Proof. For simplicity (and without loss of generality, as one may add constants for
F to the language) we assume F = ∅. Let D̃ be the union of all 0-definable sets D0

such that Aut(U/D) fixes D0. By definition Aut(U/D) ≤ Aut(U/D̃), but D ⊂ D̃ so
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Aut(U/D) ≤ Aut(U/D) , i.e. they are equal. If S ⊂ (D̃)l is definable, then S = Ra is
definable with a canonical parameter a. There exists a 0-definable D0 with a ∈ D0 and
such that if b 6= c ∈ D0 then Rb 6= Rc, and Rb ⊂ (D̃)l. If σ ∈ Aut(U/D) and σ(b) = c,
then (as σ fixes D̃) , Rc = σ(Rb) = Rb; so c = b. Thus Aut(U/D) fixes D0, so a ∈ D0 ⊂ D̃.
This shows that any definable relation on (D̃)l is definable with parameters from D̃, i.e.
D̃ is stably embedded.

Corollary B.1.2. Let D ⊂ U be Σ-constructible. Then Aut(U/D)-conjugacy is an
ω-constructible equivalence relation.

Proof. By Lemma B.1.1, we may assume D is stably embedded. In this case, two
elements a, b are Aut(U/D)-conjugate iff for any constructible R and any tuple c of ele-
ments of D, one has R(a, c) ≡ R(b, c). This shows immediately that Aut(U/D)-conjugacy
is ω-constructible.

ω-constructible groups. Finally, we will mention without proof some background facts
regarding definability of groups. By an ω-constructible group we mean a group whose
universe is an ω-constructible set, and whose operations are constructible maps (maps
whose graphs are constructible). A special case, call it a ∩-constructible group, is ob-
tained as follows: G1 is a constructible group, . . . Gn ≤ . . . ≤ G2 ≤ G1 is a sequence of
constructible subgroups, and G = ∩∞n=1Gn.

B.1.3. If T is stable, every ω-constructible group is ∩-constructible. (There is a similar
statement for homogeneous spaces.)

B.1.4. If T is ω-stable, every ω-constructible group is constructible.
B.1.5. If T is the theory of algebraically closed fields, every ω-constructible group is

an algebraic group.
See Poizat’s book [18] for these. B.1.3 is proved in [9], Theorem 2, and the Remark

following it; B.1.4 is an immediate corollary. By an insight of van den Dries, B.1.5 is
a corollary of Weil’s group chunk theorem (and an auxiliary result of Serre in positive
characteristic). See also [9], §4.

The applications to Picard-Vessiot theory require an easier special case, where the
ω-constructible group is known in advance to be a subgroup of a certain algebraic group.
In this case B.1.4 is due to Poizat (cf. [18]), while B.1.5 is immediate from Tarski’s
quantifier-elimination and the fact that constructible subgroups are closed.

B.2. Definition of internality

Definition. D is C-internal if there exists a definable V ⊂ Ck and a definable
surjective map V → D. The surjective map in question may require parameters. To
emphasize this, let us say that D is C-interpreted over F if C,D are F -definable, and
there exist F -definable V, f with V ⊂ Ck and f : V → D surjective.

The reason for the terminology is that f allows to interpret D inside the induced
structure on C, with universe V/Ker(f).

The relation between a C-internal set and a C-interpreted set is like the relation
between an abstract algebraic variety and an embedded affine or projective variety.
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Example. The affine line over an algebraically closed field. As an abstract algebraic
variety, it has automorphisms over k. The appropriate model-theoretic presentation (with
the same automorphism group) is a two-sorted one (k, V ), where V has the structure of
a (one-dimensional) k-affine space, but no distinguished basis. In this structure, V is
k-internal, but not k-interpreted.

Example. In a universal domain for differential fields, Robinson’s quantifier elimina-
tion shows that the constants C have the structure of an algebraically closed field, and
no additional structure (the derivation is of no use on C). Any linear Kolchin closed set
V , being a finite-dimensional vector space over C, is C-internal; it suffices to fix a basis
to obtain a surjective definable map Cn → V . V is C-interpreted over F iff V has a basis
of F -rational points.

Lemma B.2.1. Let C be an ω-constructible set in U. Assume C has the structure of
an algebraically closed field, and no additional structure: every constructible relation is
constructible in the Zariski sense. Let G be a C-internal ω-constructible group. Then G

can be given the structure of an algebraic group G over k. Moreover every constructible
subset of Gn is constructible in the sense of G.

Proof. When G is C-interpreted, this is B.1.5. When it is only C-internal, there exist
a family of constructible group isomorphisms fa : G → H, where H is C-interpreted.
By the above, H has the structure of an algebraic group over C. The maps faf−1

b are
isomorphisms of this algebraic group over C. Thus the algebraic groups structure G(a)
on G obtained by pulling back that of H, via fa , does not actually depend on a. Let G be
their common value. Any constructible relation on G is mapped via fa to a constructible
relation on H, hence is Zariski constructible in G.

B.3. Internality and Galois groups of constructible sets

Theorem B.1. Let U be a universal domain for a theory T with elimination of quan-
tifiers and elimination of imaginaries.

Let Q be a definable set, internal to the Σ-definable set C. (Assume both are defined
over a substructure F of U.)

(1) There exists an ω-constructible group G, and a constructible action of G on Q

(both defined over F ), such that G is isomorphic to Aut(Q/C, F ) as a permutation group
on Q.

(2) G is C-internal.
(3) There exists an ω-constructible G-torsor P , an ω-constructible group H (defined

over F ∪ C), such that Aut(U/P,C, F ) = Aut(U/Q,C, F ), and H = AutG(P ).
(4) Aut(U/F,C) ⊂ Aut(U/F,H). (So that H is interpreted over F in the stably

embedded hull C̃ of C.)
(5) G is F -constructible; it is unique up to a unique F -constructible isomorphism. P

is F, C̃-constructible, and is unique up to an F, C̃-constructible isomorphism of G-torsors.

Explanations.
(1) Aut(U/A) = {σ ∈ Aut(U) : (∀a ∈ A)σ(a) = a}.
Aut(Q/C) = Aut(U/F,C)/Aut(U/Q,C); it acts faithfully on Q.
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(2) A G-torsor is a set P together with a regular action of G on P (a faithful transitive
action without fixed points of nonidentity elements).

(3) H = AutG(P ) is the group of isomorphisms of P as a G-torsor; i.e. the permu-
tations of P commuting with the elements of G. It is called the opposite group (relative
to P ). Any element p ∈ P gives an isomorphism G → H, mapping g → h−1 when
g(p) = h(p).

Proof of Theorem B.1. By definition of internality, there exists a definable V ⊂ Ck

and a definable surjective map ge : V → Q. We may take e to be a canonical parameter
for (V and for) ge. Let P = Aut(U/F,C) e be the orbit of e under Aut(U/F,C). Denote
by ≡C the relation of Aut(U/F,C)-conjugacy. By B.1.2, ≡C is ω-constructible. P is a
class of ≡C , hence is also ω-constructible.

If σ ∈ Aut(U/F,C) fixes e, then (as ge is surjective) it must fix Q pointwise. But then
for any e′ ∈ P , the graph of ge′ , a subset of Q× Ck, is also fixed by σ (pointwise, hence
as a relation). Since e′ is a canonical parameter, σ(e′) = e′. Thus the stabilizer of e in
Aut(U/F,C) fixes all of P . By definition of P , Aut(U/F,C) is transitive on P . Thus:

(1) Aut(U/F,C) acts transitively on P ; and if σ ∈ Aut(U/F,C) fixes one point of P ,
it fixes them all.

Consider the quaternary relation R on P :

R(x, y, u, w) iff (x, u) ≡C (y, w).

R is ω-constructible by B.1.2; but I claim it is actually constructible (relative to P ), i.e.
it coincides on P 4 with a constructible relation. Indeed for any x, y ∈ P , there exists
(according to (1)) a unique σ with σ(x) = y. Thus (x, u) ≡C (y, w) iff one has, for this
σ, σ(u) = w. So

(x, y, u, w) /∈ R iff (∃w′ ∈ P )R(x, y, u, w′) &w′ 6= w).

The projection of an ω-constructible relation in a universal domain is ω-constructible
(appendix A); so ¬R is ω-constructible, as well as R; thus they are both relatively con-
structible.

Let H = AutAut(U/F,C)(P ) = {h ∈ Sym(P ) : (∀σ ∈ Aut(U/F,C))σh = hσ}. By (i),
the action of Aut(P/C) = Aut(U/F,C)/Aut(U/F, P, C) on P is isomorphic to the action
of Aut(P/C) on itself by left-translation; so H is isomorphic to Aut(P/C) acting on itself
by right translation. Thus

(2) H acts transitively on P , without fixed points of nontrivial elements.

Thus (x, h(x)) 7→ h gives a well-defined, surjective map P 2 → H; the kernel of this
map is the equivalence relation ≡C on P 2. Since we have shown that this relation is
constructible, by elimination of imaginaries EI, P 2/≡C is constructibly isomorphic to an
ω-constructible set; and we may identify it with H.

Similarly, let G = AutH(P ). Using (2) in place of (1), (x, gx) 7→ g is well-defined
and surjective; and G coincides with the image of Aut(U/F,C) in Sym(P ). (x, y),(u,w)
have the same image in G iff for some g ∈ G, y = gx, w = gu, iff (x, u) ≡C (y, w) iff
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R(x, y, u, w). So G can be identified with the ω-constructible set (P 2)/R. The actions of
G,H on P are also seen to be ω-constructible (their graph is R, read in different ways).

As for the action of G on Q, for g ∈ G, c, d ∈ Q,

g(c) = d iff (∃a, b ∈ P )(g(a) = b, (a, c) ≡C (b, d))

and also

g(c) 6= d iff (∃a, b ∈ P, d′ ∈ Q)(g(a) = b, (a, c) ≡C (b, d′) d 6= d′)

so the action is constructible.
We have shown (1-3); (4) follows from the fact that H,Aut(U/F,C) commute.
G was defined using P ; P is c-constructible, where c is not necessarily in F . To clarify

this write G = Gc. We also found an isomorphism ic : Gc → Aut(Q/C). Now if the
choice of c is changed to c′, we have ic′ : Gc′ → Aut(Q/C), and composing, we get
ic,c′ = i−1

c′ ◦ ic : Gc → Gc′ . This isomorphism Gc → Gc′ is constructible: ic,c′(g) =
g′ iff (∀y ∈ Q)(g(y) = g′(y)). On ∪c{c}×Gc we have an equivalence relation, identifying
(c, g) with (c′, ic,c′(g)); the quotient is an F -definable group, isomorphic to any of the
Gc. Thus G could be taken F -definable. The uniqueness is clear, using again the action
on Q.

P was the orbit of e under Aut(U/F,C) = Aut(U/F, C̃). Let P0 be the orbit of e
under Aut(U/F ). As C̃ is stably embedded, for e, e′ ∈ P0 we have e ≡C e′ iff dcl(Fe) ∩
dcl(F, C̃) = dcl(Fe′) ∩ dcl(F, C̃). Thus P is the orbit of e under Aut(U/C0) with C0 =
dcl(Fe) ∩ dcl(F, C̃), so it is F, C̃-definable. If P, P ′ are two torsors with the same prop-
erties, we have (3) Aut(U/P,C, F ) = Aut(U/Q,C, F ) = Aut(U/P ′, C, F ). If e ∈ P , then
Aut(U/C, F, e) fixes P and hence P ′; so an element e′ of P ′ can be written e′ = h(e, c̃) with
h an F -definable function and c̃ ∈ C̃. Applying Aut(P ∪ P ′/C), we see that x 7→ h(x, c̃)
carries P bijectively to P ′, commuting with G.

B.3.1. A supplementary lemma. The geometric theory above translates to results
about automorphism groups of particular structures only after one knows that the torsors
P of Theorem B.1 are defined over the base structure. The need for this additional point,
and its model theoretic proof, were first seen by Poizat in the original Picard-Vessiot
context, and extended by Pillay to a more general context of definable automorphism
groups in differentially closed fields.

Here we will assume the conclusion of B.1.4 (at least for G itself).

Lemma B.3.1. In Theorem B.1, assume in addition that every ω-constructible group
is constructible. Also assume C̃(F ) is existentially closed in C̃(U). Then the torsor P can
be taken to be (ω-) constructible over F . If so chosen, it is unique up to a F -definable
isomorphism.

Proof. We may assume C = C̃. Say P = Pc of Theorem B.1 is defined over F (c),
c ∈ C̃. The fact that Pc is a G-torsor and Pc ⊂ dcl(F,C) can be stated by a first-order
formula φ(c); as C(F ) is existentially closed, one can find a witness in F . Similarly if
P, P ′ are two such torsors over F , we know by B.3.1 that they are isomorphic over F ∪C,
hence again the parameter can be taken in F ∪ C(F ).
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This lemma permits one, given F,Q,C, to define an associated extension E of F ,
the Picard-Vessiot extension; it is the extension F (e) for e ∈ P . The uniqueness and
homogeneity of P show that the extension does not depend on the choice of P or of
e ∈ P .

While in the model theoretic presentation these last lines appear as an afterthought,
in the Kolchin-style approach to Picard-Vessiot they are essential to the very definition
of the Galois group. For difference fields, the existential closure hypothesis of B.3.1 can
fail even when C(F ) is an algebraically closed field; but it holds asymptotically when σ

is replaced by σn!, n→∞. This is related to the appearance, in the theory of Singer and
Van der Put, of a product of n domains permuted cyclically by σ as the “Picard-Vessiot
ring”.

B.4. Connection to Picard-Vessiot. The group G defined above is a definable
object, i.e. a geometric object. How does it relate to the automorphism group of particular
structures? (A substructure is a subset E of U closed under constructible functions.)

Proposition B.4.1. Assume C,P,Q of Theorem B.1 are defined over F , and E =
F (e) for some e ∈ P . Then C̃(E) = C̃(F ), and Aut(E/F ) = G(E), the set of E-rational
points of G. Aut(E/F ) is also isomorphic to H(F )op. (There is no difference between
H(F ) and H(F )op as abstract groups; we use the notation to emphasize that H(F ),
G(E) can give different subgroups of Sym(E).)

Proof. If a ∈ C̃(E), then by definition of E, a = f(e) for some constructible function
f , defined over F . Applying Aut(U/F,C) we see that a = f(e′) for any e′ ∈ P , so a is
F -definable, hence a ∈ F .

Let θ ∈ Aut(E/F ); say θ(e) = e′. Then e, e′ ∈ P so e ≡F,C e′; so there exists
σ ∈ Aut(U/F,C), σ(e) = e′. As E = F (e), θ = σ|E. If σ ∈ Aut(U/F,C, P ) then
σ(e) = e and hence σ|E = IdE ; so we may view σ as an element of the quotient group
Aut(P/F,C). Conversely, if σ|E = IdE , then σ fixes a point of P and hence fixes P (by (1)
of Theorem B.1). This identifies Aut(E/F ) with a subgroup of Aut(P/F,C), equivalently
of G, consisting of elements carrying e to an element of Q(E). If g(e) = e′ ∈ E, then
g is the unique element of G solving this equation, so g ∈ F (e, e′) = E. Conversely if
g ∈ G(E), then g(e) ∈ F (e, g) = E.

Similarly, the action of H on P induces a regular action of H(E) on P (E). Thus
G(E) = H(E)op. However, H ⊂ dcl(C̃, F ); so H(E) = H(F ).

Remark B.4.2. ω-constructible subgroups of H, defined over F , correspond naturally
to F -definable equivalence relations on P , or equivalently to isomorphism classes of F -
definable surjective maps f : P → P ′. Given H1 ≤ H, the equivalence relation is H1-
conjugacy. Conversely given E, as G acts transitively on P and leaves invariant E and
the action of H, H1 = {h ∈ H : h(e)Ee} does not depend on the choice of e ∈ P ; and
clearly E coincides with H1-conjugacy.

Remark B.4.3. Fix e ∈ E. Then the standard algebra-geometry duality maps subex-
tensions E1 of E with F ≤ E1 ≤ E bijectively to isomorphism classes of F -definable
quotients of P . (f : P → P ′ corresponds to the intermediate extension F (f(e)).)
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Composing the correspondences of B.4.2 and B.4.3, we obtain a a 1-1 correspondence
between F -Zariski closed subgroups of H(F ), and subextensions of E/F . But this cor-
respondence is not canonical. Vessiot, p. 157: “Ce groupe (our H) s’appelle le groupe de
transformations ou groupe de rationalité de l’équation ... comme, du reste, rien ne précise
à priori le système fondamental (our e) ... (H) n’est défini qu’à une transformation linéaire
homogène près (...) .”

On the other hand if one is willing to use the isomorphic group G(E) in place of H(F ),
the correspondence between subextensions and a certain class of constructible subgroups
becomes canonical:

Remark B.4.4. G,H are E-isomorphic, so G(E) is isomorphic to H(E) = H(F ) (cf.
Explanation 3 of B.1). Two E-definable isomorphisms ψ : G → H differ by conjugation
by an element of H(E) = H(F ). Moreover, any such ψ takes the family of E-definable
subgroups of G to the family of F -definable subgroups of H. Indeed if K is an E-definable
subgroup of G, then ψ(E) is an E-definable subgroup of H; but then if d is a canonical
parameter for ψ(E) (cf. EI), then d ∈ H̃ ⊂ C̃ by Theorem B.1(4) (suppressing F from
notation). By B.4.1, C̃(E) = C̃(F ) so d ∈ F . Thus ψ(E) is F -definable.

Thus if SbF (H) (resp. SbE(G)) denote the families of ω-constructible subgroups of
H (resp. G) defined over F (resp. E), any of these isomorphisms ψ carries SbF (H) to
SbE(G).

Proposition B.4.5. There is a canonical 1-1 correspondence between elements of
SbE(G) and substructures E1 of E containing F :

E1 7→ Aut(P/C,E1),

G1 7→ {e1 ∈ E : (∀g ∈ G1)g(e1) = e1}.
Proof. The canonicity of the correspondence is evident. To prove that it is 1-1 one is

allowed to fix e ∈ E; then use B.4.2, B.4.3 and verify the match.

B.5. Complement: Galois theory of ω-constructible sets. The definability the-
orem B1 presented above is somewhat weaker than the original presentation, as only
constructible sets are allowed. We present here another version that permits also ω-
constructible sets. We require stable embeddedness, but still very far from a global stabil-
ity assumption. The construction includes Matzat’s positive characteristic Galois group;
but not his analog of B.3.1!

Moreover, it is natural to work in an arbitrary universal domain for a universal theory
T0, not necessarily having a comprehensible completion. So we no longer assume QE (cf.
[11]).

If D is an ω-constructible set, D is C-internal if there exists an ω-constructible V ⊂ Ck
and a constructible surjective map V → D.

A weak form of elimination of imaginaries can be achieved here: (EI0) the quotient of
a constructible set by a constructible equivalence relation is constructibly isomorphic to
a constructible set. (Adding such a quotient as a new sort preserves the properties of a
universal domain. We could even, but will not, do this for an ω-constructible equivalence
relation E; in this case equality on S/E may not be a constructible relation.)
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Remark B.5.1. Lemma B1.1 holds in the general context too, if sufficiently strong
assumptions of elimination of imaginaries are made. The strong version needed is this:
Let S, T be ω-constructible subsets of Uk,Ul, and let R ⊂ S × T be constructible. For
a ∈ S, let

Ra = {y ∈ T : (a, y) ∈ R}.
Then there exist S′ and a constructible R′ ⊂ S′ × T , such that for each a ∈ S, there
exists a unique a′ ∈ S′ with R′a′ = Ra.

(This is valid in stable theories with EI.)

Theorem B.1’. Let U be a universal domain for T0. Assume U has (EI0). Let Q be
an ω-constructible set, internal to the Aut(U)-invariant set C. Assume C and Q∪C are
stably embedded in the sense (SE2). Say all are defined over F , and write dcl for dclF
etc.

(1) There exists an ω-constructible group G, and a constructible action of G on Q

(both defined over F ), such that G is isomorphic to Aut(Q/C) as a permutation group
on Q.

(2) G is C-internal.
(3) There exists an ω-constructible G-torsor P , an ω-constructible group H (defined

over F ∪ C), such that dcl(P,C) = dcl(Q,C), and H = AutG(P ).
(4) H ⊂ dcl(C).
(5) G is F -constructible; it is unique up to a unique F -constructible isomorphism. P

is F,C-constructible, and is unique up to an F,C-constructible isomorphism of G-torsors.

Note. In stable theories, SE2 is valid for any ω-constructible set (using canonical
bases; cf. proof of this theorem in [9]).

Proof. Let g be a definable map, such that Q ⊂ g(Ck). We may find an ∞-definable
C ′ ⊂ Ck such that g(C ′) = Q. If e0 is a parameter for g, let E = dcl(e0) ∩ dcl(Q ∪ C).
Then by (SE2) for C ∪Q, r = tp(e0/E) implies tp(e0/Q ∪ C ′); so for a ∈ C ′,

g(a) = b iff b ∈ Q& (∃w)(r(w) & gw(a) = b).

Thus g (or rather some function agreeing with g on C ′) can be defined over E; write from
now g = ge, e ∈ E ⊂ dcl(C ∪Q). Let C0 = dcl(e) ∩ dcl(C), and

P = {e′ : tp(e′/C0) = tp(e/C0)}.
Using (SE2) for C, Aut(U/C) is transitive on P . On the other hand if σ ∈ Aut(U/C)
fixes e ∈ P , then σ fixes Q, and hence P . We thus obtain (1) of B.1.

If e, e′ ∈ P and b, b′ ∈ Q, let σ ∈ Aut(U/C), σ(e) = e′. Then

σ(b) = b′ iff (∃y ∈ C ′)(b = ge(y) & b′ = ge′(y)).

Thus Aut(U/C)-conjugacy is an ω-constructible equivalence relation on P × Q (and as
P ⊂ dcl(C ∪Q), also on P 2). The rest of the proof is identical to that of B.1.

Remark B.5.2. In Theorem B.1, the hypothesis of internality may obviously be
weakened to: Q is C̃-internal. In this form it is optimal; if Q is not C̃-internal, then there
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exist models U such that Aut(Q/C) has larger cardinality than U, so that it cannot be
interpretable.
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[18] B. Poizat, Groupes Stables, Nur Al-Mantiq Wal-Ma’rifah, Lyon, 1987.
[19] J.-P. Serre, Algebraic Groups and Class Fields, Springer-Verlag, New York, 1975.
[20] J.-P. Serre, Local Fields, Springer-Verlag, New York, 1979.
[21] M. F. Singer, Liouvillian solutions of nth order homogeneous linear differential equations,

Amer. J. Math. 103 (1981), 661–682.
[22] M. F. Singer, Moduli of linear differential equations on the Riemann sphere with fixed

Galois groups, Pacific J. Math. 106 (1993), 343–395.
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