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Abstract. The spherical version of the two-dimensional central harmonic oscillator, as well
as the spherical Kepler (Schrödinger) potential, are superintegrable systems with quadratic con-
stants of motion. They belong to two different spherical “Smorodinski-Winternitz” families of
superintegrable potentials. A new superintegrable oscillator have been recently found in S2. It
represents the spherical version of the nonisotropic 2:1 oscillator and it also belongs to a spherical
family of quadratic superintegrable potentials. In the first part of the article, several properties
related to the integrability and superintegrability of these spherical families of potentials are
studied. The second part is devoted to the analysis of the properties of the spherical (isotropic
and nonisotropic) harmonic oscillators.

1. Introduction. A Hamiltonian system that is integrable (in the Liouville-Arnold
sense) and possesses more constants of motion than degrees of freedom is called super-
integrable (see [1], [3], [4], [6–8], [10], [12–14], [19], [21], and references therein). If the
number N of independent constants takes the value N = 2n − 1 (n is the number of
degrees of freedom) then the system is called maximally superintegrable. The two central
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euclidean potentials known as Bertrand systems, isotropic harmonic oscillator and Kepler
problem, are two classical examples of maximal superintegrability.

Fris, Mandrosov et al. [5] studied the euclidean n = 2 systems which admit separa-
bility in two different coordinate systems, and obtained four families Vr, r = a, b, c, d, of
superintegrable potentials with constants of motion linear or quadratic in the momenta.
In fact, if we call a system superseparable whenever it admits Hamilton-Jacobi separa-
tion of variables (Schroedinger in the quantum case) in more than one coordinate system,
then quadratic superintegrability (superintegrability with linear or quadratic constants
of motion) can be considered as a property arising from superseparability. The first two
families, Va and Vb, were directly related to the harmonic oscillator

V a =
1
2
ω2

0(4x2 + y2) +
k2

y2 + k3x,(1)

V b =
1
2
ω2

0(x2 + y2) +
k2

x2 +
k3

y2 .(2)

The other two families, Vc and Vd, were related to the Kepler problem. In fact, V a and
V b can be considered as the more general deformations of the 1:1 and 2:1 oscillators (k2,
k3, representing the intensity of the deformation) preserving quadratic superintegrability
(the three-dimensional generalizations of these potentials have been studied in [4]).

The spherical versions of the Bertrand systems (harmonic oscillator and Kepler prob-
lem) were studied by Schroedinger [18] and Higgs [9] (see also [8], [10], [11], [20]). Recently,
the existence of superintegrable systems, and the properties of the Harmonic oscillators,
have been analyzed on the two-dimensional sphere S2 and on the hyperbolic plane H2

using the curvature κ as a parameter [15–17]. The main objective of this article is to con-
tinue with the study of these systems in the case of the sphere S2. We will focus our study
on some interesting dynamical properties closely related to the geometric properties of
the sphere.

The paper is organized as follows: In Section 2 we introduce the coordinate systems
on the sphere and we analyze the existence of symmetries and first integrals, as well as
the separability on S2. In Section 3 we study the spherical oscillator and the spherical
Kepler problem and in Section 4 we interpret the family U b (spherical version of Vb) as
a superposition of three 1:1 harmonic oscillators whose centers are at the vertices of a
sphere’s octant. In Section 5 we identify the 2:1 spherical oscillator introduced in [17] as a
superposition of two Higgs oscillators whose centers are separated a quadrant π/2 on S2.
In fact we will prove that this property can be extended to the case of the spherical n:1
oscillator. In Section 6 we introduce a new superintegrable potential that is interpreted
as a spherical 1/2:1 oscillator. Finally, in Section 7 we make some final comments.

2. Geometry and dynamics on S2

2.1. Coordinate systems on S2. The unit of length on S2 will be chosen so that the
sphere has curvature 1 (and hence radius R = 1 when seen as a surface imbedded in a
euclidean ambient space E3). Thus any of the coordinates we will use can be equivalently
seen either intrinsically, as lengths along geodesics of S2, or extrinsically as subtended
angles from the sphere center.
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When convenient we will also use a geometric, coordinate free language to facilitate
the description and reference to specific superintegrable potentials on the sphere. With
this aim in view we will denote by {N,S}, {O,A}, and {E,W}, three pairs of mutually
antipodal points on S2. The geographical flavour is obvious: N and S are the North and
South poles, and the four points O,E,A,W , are placed at π/2 distances on the Equator.
O will be here considered as the origin point, A is its antipodal, and points E,N,W, S, are
all at distance π/2 from O in the East, North, West, and South directions respectively.
Some intermediate points will be denoted by using the nautical convention: thus OE is
a point midway between O and E, lying on the geodesic determined by O and E at a
distance π/4 from each of them; strictly speaking OE refers to a pair of antipodal points,
as there are two such midway points along the ‘short’ and ‘long’ geodesic arcs joining O
and E.

As far as coordinates themselves, it is better not to restrict to any single coordinate
system, as superposition properties which are rather obscure in one set of coordinates
may be much clearer in another one. Hence for any point P ∈ S2 we will use:

1) The three (unoriented) distances r, x̃, ỹ, from P to the three points O,E,N .
2) The three (suitably oriented) distances r̃, x, y, from P to the three geodesics de-

termined by the pairs (E,N), (N,O) and (O,E) respectively, which are the polar circles
of the three points O, E, and N . These geodesics are are the two meridians at longitude
0, π; the two meridians at longitude π/2, 3π/2; and the Equator.

3) The three (suitably oriented) distances w, v, u, intercepted on these former geodesics
from the points E, O, and N , to the foot of the orthogonal geodesics from P . That is,
if PEN denotes the orthogonal projection of P on the geodesic (E,N) then w is the
distance from E to PEN that can be identified with the polar angle of P at O. Similarly
v, u represent distances to the points PON , POE . Notice it would be more symmetrical
to use the complement of v instead, which is measured from N , but to match with the
notation used in [15], [17], we will not do this.

The notation with tilde reflects the obvious complementarity relations:

r + r̃ = π/2, y + ỹ = π/2, x+ x̃ = π/2,(3)

and we will also introduce the complements w̃, ṽ, ũ to w, v and u,

w̃ = π/2− w, ṽ = π/2− v, ũ = π/2− u.(4)

The pair (r, w) can be considered as the spherical polar coordinates of P with center
at O and polar axis (O,E). The first coordinate is the distance from O to the point P ,
and the second is the angle made by (O,E) with the geodesic (O,P ). Similarly the pairs
(x̃, ṽ) and (ỹ, u) are also sets of polar coordinates with centers at E and N , and polar
axes (E,N) and (N,O), respectively.

The pair (u, y) represents the (geodesic) parallel coordinates of P relative to the origin
O and base geodesic (O,E). The first coordinate u is the distance measured along the
base geodesic, while the second coordinate y is another distance but now measured along
the geodesic by P orthogonal to (O,E). Similarly the pairs (w, r̃) and (ṽ, x) are also
sets of (geodesic) parallel coordinates, with base point and base geodesic (E, (E,N)) and
(N, (N,O)) respectively.
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As displayed by notation, in the sphere S2 there is no essential difference between
the ‘polar’ and ‘parallel’ coordinate systems, but it is still better to keep them as two
alternative systems. Standard spherical coordinates (θ, φ), as usually defined are related
to ours by θ = r, φ = w, but would be related otherwise if the polar axis were taken
differently. We have preferred not to use this standard notation, as the play with three
systems of coordinates is essential.

2.2. Symmetries, first integrals and separability on S2. We will consider systems on
S2 described by natural Lagrangians L of mechanical type; that is, a kinetic term T

determined by the Riemannian metric minus a potential U depending on coordinates
(if U = 0 we have the geodesic motion on S2). Let us denote by P1, P2, and J the
three momenta associated to the three one-parameter isometries of S2 (corresponding to
rotations around N , E and O). In polar (r, w) coordinates they take the form

P1 = (cosw) vr − (cos r sin r sinw) vw,

P2 = (sinw) vr + (cos r sin r cosw) vw,(5)

J = (sin2 r) vw,

and in parallel coordinates (u, y) are given by

P1 = cos2 y vu,

P2 = (sin u cos y sin y) vu + (cosu) vy,(6)

J = (cosu cos y sin y) vu − (sinu) vy.

If the Lagrangian L is endowed with an exact Noether symmetry then it possesses a
constant of motion linear in these three momenta. As an example, if the potential U is
independent of w (when written in polar (r, w) coordinates) then the momentum J is an
integral of motion.

It is known (see e.g. [1], [2]) that, (i) a necessary condition for Hamilton-Jacobi (HJ)
separability of a natural Hamiltonian H = T + U in a particular coordinate system is
the separabilty of the corresponding geodesic motion, and (ii) the HJ-separability implies
the existence of a fundamental set of first integrals in involution quadratic or linear in
the momenta. As stated above, linear constants only arise in the very particular case of
exact Noether symmetries; quadratic constants are sums of a first term quadratic in the
momenta and a second term W depending only on coordinates.

A potential U that is HJ-separable in one particular coordinate system on S2 will
depend on two arbitrary single-variable functions, F and G. The coordinate systems sep-
arating the Laplace operator on S2 are the elliptical ones and its non-generic degeneracies,
which are the ‘polar’, the ‘parabolic’ and the ‘parallel’ ones when the interfocal distance
is respectively 0, π/2, and π. Next we give the particular expressions for the different
separable cases:

(i) A potential U which is separable in a ‘polar’ coordinate system on S2 (say (r, w))
must have the following expression:

U = F (r) +
G(w)

sin2(r)
, I = J2 +W (r, w),(7)



HARMONIC OSCILLATORS ON THE SPHERE S2 247

where F (r) and G(w) are arbitrary single-variable functions. The quadratic part of the
extra constant of motion is J2 and the actual form of W depends on F and G. The
particular case G = 0 corresponds to a central potential; then the integral I becomes
I = J2. The family of these integrable potentials will be denoted as U [J2].

(ii) A potential which is separable in a ‘parallel’ coordinate system, say (u, y) or (x, v),
on S2 should be of either form:

U = F (y) +
G(u)

cos2(y)
, I = P 2

1 +W (u, y),(8)

U = F (x) +
G(v)

cos2(x)
, I = P 2

2 +W (v, x),(9)

where again W is a function of coordinates whose form depends on F , G. Separable
potentials of this class can be denoted by U [P 2

1 ] and U [P 2
2 ].

(iii) A potential which is separable in ‘parabolic’ coordinates (r+y, r−y) or (r+x, r−x)
on S2 should be of the form:

U =
1

2 sin r cos y
(F (r + y) +G(r − y)) , I = JP1 +W (r + y, r − y),(10)

U =
1

2 sin r cosx
(F (r + x) +G(r − x)) , I = JP2 +W (r + x, r − x).(11)

Separable potentials of this class can be denoted by U [JP1] and U [JP2].
Quadratically superintegrable systems are separable in at least two different coor-

dinate systems, thus having the previous structures in at least two different forms. As
an example, the family of potentials separable in both (r, w) ‘polar’ and (u, y) ‘parallel’
coordinate systems, will consist of all those superintegrable potentials belonging to the
intersection of the sets U [J2] and U [P 2

1 ].

3. The spherical Higgs oscillator, 2:1 oscillator and Kepler potentials. Let
us consider the following spherical Lagrangian

L =
1
2

( v2
r + sin2r v2

w)− 1
2
ω2

0 U11(O), U11(O) = tan2 r.

It represents (in polar coordinates (r, w)) the spherical version of the isotropic oscillator
(Higgs oscillator [9]). It separates the sphere S2 in two halves through an infinite potential
barrier on the great circle r = π/2, which geographically can be described as the two
meridians u = π/2 and u = 3π/2. Classical motion is confined to each half, where the
potential has a basin-like character with a minimum at O and another one at its antipodal
point A; near these points the potential is quadratic in the distance to O or to A, thus
reducing to the euclidean harmonic oscillator r2 in the suitable tangent approximation.
We shall refer to either O or A as the oscillator ‘center’. By use of elementary relations the
potential can be alternatively written in several equivalent ways in the three coordinate
systems (r, w), (u, y), and (x, v):

U11(O) = tan2 r = tan2 y +
tan2 u

cos2 y
= tan2 x+

tan2 v

cos2 x
(12)

displaying the fact that the Higgs oscillator is separable simultaneously in these three
coordinate systems. In fact, it is a quadratic superintegrable potential with three inde-
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pendent constants of motion: two quadratic constants, with quadratic parts given by P 2
1

and P 2
2 , and the angular momentum J itself

I1 = P 2
1 + ω2

0(tan r cosw)2,

I2 = P 2
2 + ω2

0(tan r sinw)2,(13)

I3 = J.

The two quadratic functions, I1 and I2, together with the square of J , add up to the
total energy, that is, I1 + I2 + J2 = H. The Higgs oscillator is a central potential, and
on each geodesic through O it reduces to the one-dimensional harmonic oscillator tan2 r,
thus entitling the denomination 1:1 or isotropic oscillator appearing, together with its
center, in the notation U11(O).

The Higgs potential U11(O) can also be expressed in parallel (u, y) coordinates

U11(O) = tan2 y +
tan2 u

cos2 y
;(14)

then the two quadratic integrals, I1 and I2, become

I1 = P 2
1 + ω2

0 tan2 u, I2 = P 2
2 + ω2

0

(
tan y
cosu

)2

.(15)

In parallel (u, y) coordinates the potential of the spherical 2:1 harmonic oscillator is
given by

U21(O;N) := tan2 y +
tan2(2u)

cos2 y
.(16)

It is a non-central but superintegrable potential with

I1 = P 2
1 + ω2

0 tan2(2u),

I2 = P 2
2 + J2 + ω2

0

(
tan y

cos(2u)

)2

,(17)

I3 = J P2 + ω2
0 (sinu cosu)

(
tan y

cos(2u)

)2

,

as constants of motion. In this case I1 and I2 are directly related to the Hamiltonian by
the equation I1 + I2 = H.

In the euclidean limit around O (small u, y) this potential reduces to 4u2 + y2, and
hence is an anisotropic euclidean 2:1 oscillator. Along the geodesic ON (u = 0) through O,
it reduces to tan2(y), which approximates to y2 nearO. And along the orthogonal geodesic
OE (y = 0), it reduces to tan2(2u), which near O approximates to 4u2. As both u, y are
distances along these geodesics, this potential can be considered as an anisotropic 2:1
oscillator; it is not a central potential, and grows from a 4u2 + y2 approximate behaviour
near O to an infinite value along the boundary of the wedge determined by the two
meridians u = π/4 and u = −π/4. It should be noted that this infinite value is reached at
a distance π/2 from O along the ON direction, but at half this distance (i.e., π/4) along
the OE direction. The two meridians determining the basin of the point O are indeed
parts of two great circles both through N and orthogonal, dividing the sphere into four
‘wedges’. The point O is at the center of one wedge, and of course the points E,A,W ,



HARMONIC OSCILLATORS ON THE SPHERE S2 249

could as well be considered as the potential centers in their corresponding wedge; all
the four wedges are equivalent because of the periodicity of the potential. To describe
unambiguously such a 2:1 potential we should specify one of its centers (in our example
O) and next should distiguish the directions from O corresponding to the ‘2’ and to the
‘1’ growing rate; as these directions are orthogonal, it will be enough to simply specify
one of them, and conventionally we will choose to indicate the 1 direction along which the
infinite value for the potential is reached after a distance π/2 (in our example ON); only
the point N will be appended to the notation, as the origin has been already registered.
This explains the symbol U21(O;N). This potential is separable in both parallel (u, y)
coordinates and in ‘parabolic’ coordinates (r+x, r−x), and can be presented by the two
alternative expressions

U21(O;N) = tan2 y +
tan2(2u)

cos2 y
=

1
2 sin r cosx

(F (r + x) +G(r − x))(18)

with appropriate expressions of F and G.
A potential as U21(O;E) would have the same origin but the ‘1’ and ‘2’ directions

interchanged. It is in the same class as the former one, in the sense that a certain sphere
isometry would map one into another, but as a matter of fact it is actually a different
potential having the euclidean limit x2 + 4v2 around O:

U21(O;E) := tan2 x+
tan2(2v)

cos2 x
.(19)

The spherical Kepler potential [8, 9, 15, 18] is another remarkable central potential
on S2:

UK(O) := − k

tan r
.(20)

Its value at the origin O equals −∞, growing to a zero value on the great circle r = π/2
and then to a positive infinite value at the antipodal point A. This will be referred to as the
Kepler potential with center at O, while again it has clearly two antipodal centers. Unlike
for the oscillator these two centers display here a sign difference, and coincide with the
points where the potential is infinite. The spherical Kepler potential is separable in three
coordinate systems: polar (r, w), and two parabolic systems (r+x, r−x) or (r+y, r−y),
with alternative expressions:

UK(O) =
− k

tan r
=

− k
2 sin r cosx

(cos(r + x) + cos(r − x))(21)

=
− k

2 sin r cos y
(cos(r + y) + cos(r − y)).

It has three constants of motion in addition to the energy: the angular momentum J and
two quadratic integrals with quadratic part of the form JP1 and JP2

I1 = JP1 − k sinw,

I2 = JP2 + k cosw,(22)

I3 = J.
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Likewise the spherical Kepler potentials centered at the points E or N would be:

UK(E) := − k

tan x̃
, UK(N) := − k

tan ỹ
,(23)

whose euclidean limits around O turn out to be the linear euclidean potentials −kx,−ky .

4. The spherical ‘harmonic oscillator’ superintegrable family. Let us consider
the family of superintegrable potentials on S2 associated to the Higgs oscillator. This
family is characterized by the existence of three constants of motion Ir, r = 1, 2, 3, with
J2, P 2

1 and P 2
2 as quadratic parts. These three functions are functionally independent

but their sum is just the Hamiltonian

I1 + I2 + I3 = H(24)

which is always a constant of motion. Thus this family could be denoted as U [J 2, P 2
1 , P

2
2 ]

making reference to this fact; this same family will also be called U b to match the notations
in [15]. The more general potential in U b turns out to be a ‘linear superposition’ k1U

b
1 +

k2U
b
2 + k3U

b
3 of the following three fundamental potentials:

U b1 := tan2 r, U b2 :=
1

sin2 x
, U b3 :=

1
sin2 y

,(25)

with arbitrary real constants k1, k2, k3. The euclidean limit in the neigbourhood of O
corresponds to taking r, x, y << 1, carrying directly to the Euclidean family V b:

Vb ≡ k1r
2 + k2

1
x2 + k3

1
y2 .(26)

The potential U b1 represents a Higgs oscillator centered at the origin O. The other two
potentials, U b2 and U b3 , can be interpreted as two ‘one-dimensional’ spherical centrifugal-
like barriers ‘centered’ at the two orthogonal great circles, x = 0 and y = 0, through O. If
we express these two potentials, U b2 and U b3 , in terms of the complements x̃, ỹ, we obtain

U b2 =
1

sin2 x
=

1
cos2 x̃

= tan2 x̃+ 1(27)

and a similar expression for U b3 . Thus, the generic potential U b in the family Ub can be
rewritten as follows

U b = k1 tan2 r + k2 tan2 x̃+ k3 tan2 ỹ + (k2 + k3)(28)

where the constant term k2 + k3 can be disregarded. As x̃, ỹ are the distances to the two
points E,N , under this form the three terms are immediately identified as three spherical
harmonic oscillators, with centers at the three vertices O, E, and N , of a sphere’s octant.

Hence an alternative way of representing the family U b is

Ub ≡ U [J2, P 2
1 , P

2
2 ] ≡ 〈U11(O), U11(E), U11(N) 〉(29)

where 〈 · · · 〉 denotes the linear span of the functions enclosed. Each oscillator provides
an infinite barrier at the polar circle of its origin. In the generic case where the three
constants k1, k2, k3, are different from zero, this potential divides the sphere into eight
‘octants’ separated by infinite barriers. The configuration of centers has the symmetry
group of a cube and there are transformations (the rotation around the octant center by
an angle of 2π/3) which permutes cyclically the three Higgs oscillators U11(O), U11(E),
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and U11(N); each of these Higgs oscillators has two antipodal centers and the centers of
any two different oscillators are separated by π/2. In the form (28), the euclidean limit
around O requires a suitable approximation to both functions tan2 x̃, tan2 ỹ (near O both
x̃, ỹ must be close to π/2). While the limit is again (26), strictly speaking the possibility
of interpreting the centrifugal barriers as oscillators is lost in the euclidean limit.

5. Superposition of isotropic spherical oscillators and anisotropic n:1 spher-
ical oscillators. Now let us consider the potential U obtained as a superposition of two
1:1 oscillators with centers separated by a distance π/2; to be specific, let us consider
two Higgs oscillators centered at points O and E so that, as was proved in Sec. 4, the
superposition is again a member of the family U b. Making use of the (u, y) system of
coordinates, we have

U11(O) := tan2 y +
tan2 u

cos2 y
, U11(E) := tan2 y +

tan2(u− π/2)
cos2 y

.(30)

The sum of two such potentials is:

U11(O) + U11(E) = 2 tan2 y +
tan2 u+ tan2(u− π/2)

cos2 y
(31)

where

tan2 u+ tan2(u− π/2) = 4 tan2(2(u− π/4)) + 2(32)

and so (31) becomes

U11(O) + U11(E) = 2 tan2 y +
4 tan2(2(u− π/4)) + 2

cos2 y
(33)

= 4
(

tan2 y +
tan2(2(u− π/4))

cos2 y

)
+ 2.

The term inside the large parentheses is immediately recognized as a 2:1 spherical oscilla-
tor centered at (u = π/4, y = 0) corresponding to the point OE placed midway between
the centers O and E of the two original U11 oscillators, and with ‘1’ direction towards
the point N . Thus we have found:

U11(O) + U11(E) = 4U21(OE;N) + 2(34)

reproducing exactly the coefficients in the identity (32) even though this equation refers
to a 2D potential where the terms depending on y arrange automatically due to the
specific ‘separable in (u, y) structure’.

Conversely, the nonisotropic 2:1 harmonic oscillator can be expressed as a linear super-
position of two isotropic oscillators plus constant terms. For the 2:1 oscillator U21(O;N)
centered at O the decomposition is:

U21(O;N) =
1
4

(U11(OE) + U11(OW )− 2) .(35)

The infinite barriers in U21(O;N) are simply the union of the infinite barriers in the two
component 1:1 oscillators, which are two orthogonal great circles, thus separating the
sphere into four identical wedges as is known to be the case for U21(O;N).
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Once this fact has been recognized, the extension of this property to the case of any
number of component oscillators is immediate. Let us consider 3 isotropic U11 harmonic
oscillators with centers on the line y = 0 and spaced π/3 apart. To be specific, let us place
the centers at the points P1 = (−π/3, 0), O = (0, 0), and P3 = (π/3, 0). The identity
analogous to (32) is

tan2(u+ π/3) + tan2(u) + tan2(u− π/3) = 9 tan2(3u) + 6(36)

and hence for the sum of the three 1:1 oscillators centered at these points we get:

U11(P1) + U11(O) + U11(P3) = 3 tan2 y +
9 tan2(3u) + 6

cos2 y
(37)

= 9
(

tan2 y +
tan2(3u)

cos2 y

)
+ 6.

This suggests considering the potential:

U31(O;N) := tan2 y +
tan2(3u)

cos2 y
(38)

reducing in the euclidean limit aroundO to 9u2+y2, as a good candidate for an anisotropic
3:1 spherical oscillator, with center at O and ‘1’ direction towards N . For this potential,
the sphere is divided into 6 identical wedges, on whose boundaries the potential becomes
infinite. The boundary of the wedge centered at O are the two meridians u = −π/6 and
u = π/6, and again the potential grows in the ‘3’ direction faster than in the ‘1’ direction,
reaching an infinite value at a distance π/6 from O, that is, one third of the distance
required to reach infinite value along the ‘1’ direction. The same situation repeats inside
each wedge and this potential has three pairs of antipodal centers; these centers of the
3:1 oscillator coincide with the centers of any of the oscillator components, unlike the
2:1 case, and this difference depends on the different parity of the number of oscillator
components.

The fact is general for any value of n = 2, 3, . . . Consider n pairs of antipodal points
placed on a great circle (say y = 0) so that they are equispaced (hence next neighbours
are spaced π/n apart), and let ui, i = 1, . . . , n, be the u coordinates of one point in each
pair. Let us choose the set of ui given by u = ±(π/(2n) + mπ/n) with m = 1, . . . , n/2,
when n is even, and by u = 0, u = ±mπ/n, with m = 1, . . . , (n− 1)/2, when n is odd. In
either case we have the identity:

n∑

i

tan2(u− ui) = n2 tan2(nu) + n(n− 1).(39)

which for the sum of the corresponding U11 oscillator potentials centered at the points
(u = ui, y = 0) gives

n tan2 y +
n2 tan2(nu) + n(n− 1)

cos2 y
= n2

(
tan2 y +

tan2(nu)
cos2 y

)
+ n(n− 1).(40)

Again the potential

Un1(O;N) := tan2 y +
tan2(nu)

cos2 y
(41)



HARMONIC OSCILLATORS ON THE SPHERE S2 253

might be considered as a spherical n:1 oscillator. The infinite barriers in this potential
separate the sphere into 2n wedges, all crossing at N , and inside each wedge there is a
center, O being always one of them. Around O the potential behaves like n2u2 + y2, but
it grows to infinity at the wedge boundaries.

The structure of the potentials Un1(O;N) displays directly the existence of a con-
stant of motion quadratic in the momenta, beside the energy. It would be interesting to
search further constants for these potentials. It seems that these n : 1 oscillator are not
quadratically superintegrable unless n = 2, but we do not know whether these potentials
have other constants of higher order in the momenta.

6. The 1/2:1 spherical oscillators. By different groupings in the previous sums,
a 4:1 oscillator (potential U41) can be considered in two different ways: as the sum of
four isotropic U11 oscillators and also as a sum of two 2:1 oscillators. This corresponds to
different groupings of the sums, and may allow a wealth of different possibilities for decom-
positions in the general n:1 case. One can thus wonder whether this chain of n:1 spherical
harmonic oscillators starting out of the 1:1 case can be produced backwards, allowing the
1:1 oscillator to be expressed as a superposition of two other relevant potentials.

We now start with the following trigonometric identity:

tan2
(
u− u0

2

)
+ tan2

(
u+ u0

2

)
= 4 tan2 u+ 2, u0 =

π

2
,(42)

so we have

4
[
tan2 y +

tan2 u

cos2 y

]
= 4 tan2 y +

1
cos2 y

[
tan2

(
u− u0

2

)
+ tan2

(
u+ u0

2

)
− 2
]

(43)

= 2 tan2 y +
1

cos2 y

[
tan2

(
u− u0

2

)
+ tan2

(
u+ u0

2

)]
− 2.

Thus, if we denote by U1/2,1(E;N) and U1/2,1(W ;N) the following two potentials:

U1/2,1(E;N) := tan2 y +
tan2((u− u0)/2)

cos2 y
,

U1/2,1(W ;N) := tan2 y +
tan2((u+ u0)/2)

cos2 y
,

(44)

then we obtain

U1/2,1(E;N) + U1/2,1(W ;N) = 4U11(O) + 2.(45)

These two new potentials are worth the name of 1/2:1 spherical oscillators. They are
respectively centered at the two points E (resp. W ), and starting from these points along
the ‘1’ direction towards N they reach an infinite value after a π/2 distance, while along
the ‘1/2’ orthogonal direction pointing to O or to A (resp. to A or to O) they reach
an infinite value only after a π distance, that is, only at the antipodal point W (resp.
E) of the center. The infinite barriers of each of these potentials correspond to a single
meridian, that is, to a half of a complete great circle, (N,W, S) with u = 3π/2 (resp.
(N,E, S) with u = π/2).

The sum of the two 1/2:1 oscillators centered at the points W and E, represented by
the two functions U1/2,1 in (44), is an isotropic 1:1 oscillators centered at the origin O;
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this is again the midpoint between the centers of the two superposed oscillators in their
common ‘1/2’ direction.

The potential of the spherical 1/2:1 oscillator with center at the origin O and ‘1/2’
direction towards N is given by

U1/2,1(O;N) := tan2 y +
tan2(u/2)

cos2 y
.(46)

This potential is clearly separable in the (u, y) (‘parallel’) coordinate system, and so it
belongs to the family U [P 2

1 ]. In fact the Hamiltonian H can be written as H = I1 + I2
with I1, I2 the following two integrals of motion:

I1 = P 2
1 + ω2

0 tan2(u/2), I2 = P 2
2 + J2 + ω2

0

(
tan y

cos(u/2)

)2

.(47)

Moreover, it is superintegrable as well, since it is separable in ‘parabolic’ coordinates and
it also belongs to the family U [JP1]. Thus the 1/2:1 oscillator potentials are interesting
for two reasons: first because they are superintegrable, and second because they may be
considered as a sort of ‘basic’ spherical oscillators, as any other spherical oscillator either
isotropic 1:1 or anisotropic n:1, n = 2, 3, . . . , turns out to be ultimately a suitable linear
superposition of 1/2:1 spherical harmonic oscillators.

7. Final comments and outlook. We have started with a discussion of the curvilin-
ear systems of coordinates on the two-dimensional sphere S2, and then we have studied
the properties of some spherical superintegrable systems. Concerning the case of the
harmonic oscillators on the sphere S2, we have proved that:

(i) The nonisotropic oscillator U21 can be considered as a superposition of two isotropic
Higgs oscillators U11 with centers separated by a distance of π/2 on S2.

(ii) The potential obtained as an appropriate linear superposition of n isotropic Higgs
oscillators can be interpreted as an n:1 nonisotropic Un1 oscillator.

(iii) The Higgs oscillator U11 can be considered itself as a superposition of two 1/2:1
nonisotropic U1/2,1 oscillators with antipodal centers (at a distance of π on S2).

These three properties are very remarkable. First because they are dynamical char-
acteristics that must be considered as arising from the noneuclidean geometry of the
configuration space. Second, because they introduce a relation, just by linear super-
position, between superintegrable potentials belonging to different families of spherical
superintegrable systems. In fact, the central Higgs oscillator U11 belongs to the family
U [J2, P 2

1 , P
2
2 ], and the nonisotropic oscillators U21 and U1/2,1, to the families U [P 2

1 , JP2]
and U [P 2

1 , JP1]. Of course U21 and U1/2,1 represent the same system in the Euclidean
plane, but this is not the case in the sphere.

All these characteristics underline the distinctions between the euclidean and the
spherical dynamics. Because of this, it will be very convenient to study, once again, all
these properties but using the curvature κ as parameter (this formalism has already been
used in [16, 17]). It seems probable that many of the expressions obtained in Secs. 4, 5,
and 6 will be κ-dependent. In any case, the above three points also introduce relations
between the different families that deserve to be studied. Another point is the superinte-
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grability of the potentials Un1 with n > 2. We think that these are open questions that
must be investigated.
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