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Abstract. In this paper we summarize an abstract approach to inertial manifolds for non-
autonomous dynamical systems. Our result on the existence of inertial manifolds requires only
two geometrical assumptions, called cone invariance and squeezing property, and some additional
technical assumptions like boundedness or smoothing properties. We apply this result to pro-
cesses (two-parameter semiflows) generated by nonautonomous semilinear parabolic evolution
equations.

1. Introduction. Let us consider a nonlinear evolution equation of the form

u̇+Au = f(u)

in a Banach space X , where A is a linear sectorial operator with compact resolvent and

f is a nonlinear function. Such an evolution equation may be an ordinary differential

equation (X = Rn) or the abstract formulation of a semilinear parabolic differential

equation with X as a suitable function space over the spatial domain. In the last case,

A corresponds to a linear differential operator and f is a nonlinearity which may involve

derivatives of lower order than A.

Inertial manifolds are positively invariant, exponentially attracting, finite dimensional

Lipschitz manifolds. For an introduction see Sell and You [SY02]. They go back to

R. Mañé, D. Henry, X. Mora, and D. A. Kamaev [Hen81, Mor83, Man77, Kam84] and

were first introduced and studied by P. Constantin, C. Foias, B. Nicolaenko, G. R. Sell
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and R. Temam [FST85, FNST85, CFNT86] for selfadjoint A. For the construction of in-

ertial manifolds with A being non-selfadjoint see for example [SY92] and [Tem97]. Inertial

manifolds are generalizations of center-unstable manifolds and they are more convenient

objects which capture the long-time behavior of dynamical systems. Usually an inertial

manifold M is seeked as the graph of a sufficiently smooth function m on PX , i.e.

M = graph(m) := {x+m(x) : x ∈ PX},
where P is a finite dimensional projector. The finite dimensionality and the exponen-

tial attracting property permit the reduction of the dynamics of the infinite or high

dimensional equation to the dynamics of a finite or low dimensional ordinary differential

equation

ẋ+Ax = Pf(x+m(x)) in PX
called inertial form system. A stronger reduction property is the exponential tracking

property [FST89] or the asymptotical completeness property [CFNT89a, Rob96, Tem97]:

Each trajectory of the evolution equation tends exponentially to a trajectory in the

inertial manifold.

Thus, one can reduce (in some sense) an infinite-dimensional physical system to a

system with a finite number of degrees of freedom and use known properties of ordinary

differential equations in Rn for the qualitative analysis of the behavior of the solutions

of the original equation for large time. Another advantage of studying the inertial form

system is the reduction of the dimension of the original problem which could be important

for the numerical analysis. In concrete applications, the N -dimensional projector P is

the projector onto the eigenspace spanned by the first N Fourier modes of L, i.e. by

eigenvectors of A belonging to the set of the N smallest eigenvalues of A. Hence the

inertial form systems describes the dynamics of the slow modes. For applications of the

concept of inertial manifolds see for example [HR92, RB95, SK95, BH96, MSZ00].

There are a few ways of constructing an inertial manifold. Most of them are gener-

alizations of methods developed for the construction of unstable, stable, center-unstable

or center manifolds for ordinary differential equations:

The Lyapunov-Perron method has been developed by A. M. Lyapunov [Lya47, Lya92]

and O. Perron [Per28, Per29, Per30] for the proof of the existence of stable and un-

stable manifolds of hyperbolic equilibrium points. In the context of ordinary differen-

tial equations, it deals with the integral equation formulation of the differential equa-

tion and constructs the invariant manifold as a fixed point of an operator that is de-

rived from this integral equation. This method has been used in many different sit-

uations. The book of J. K. Hale [Hal80] may serve as a good reference. In the infi-

nite dimensional setting, the method is used by D. Henry [Hen81] to prove the ex-

istence of stable, unstable and center manifolds for semilinear parabolic equations. In

[FST88, Tem88, CFNT89b, FST89, DG91], it has been adapted for the construction of

inertial manifolds. At the moment, the Lyapunov-Perron method is the most common

method for inertial manifolds.

Hadamard’s method [Had01], also called graph transformation method, has been de-

veloped to prove the existence of stable and unstable manifolds of fixed points of dif-

feomorphisms. The graph transformation method is more geometrical in nature than
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the Lyapunov-Perron method. In presence of a hyperbolic fixed point, the stable and

unstable manifolds are constructed as graphs over the linearized stable and unstable sub-

spaces. Mallet-Paret and Sell [MPS88] were the first who used Hadamard’s method for

the construction of inertial manifolds, see also [BJ89, Rob93, Rob01]. A review on differ-

ent construction methods (including Hadamard’s method) for inertial manifolds can be

found in [LS89, Nin93].

It appears that independent of the method used a special condition is utilized pre-

dominantly of the form

Λ2 − Λ1 > CL(Λν1 + Λν2),

usually referred to as a spectral gap condition. This spectral gap condition assumes that

the spectrum σ(A) of the linear part A is split into a finite set of eigenvalues with real

part less or equal to Λ1 and the remaining set of eigenvalues with real part greater

than or equal to Λ2, and that the difference of Λ2 and Λ1 is large enough to majorize

CL(Λν1 + Λν2), where L is a global Lipschitz constant for f , ν ∈ [0, 1[ is an additional

parameter depending on f , and C is a technical constant depending on the particular

proof used. By utilizing indefinite quadratic forms, A. V. Romanov [Rom94] found a

spectral gap condition with C = 1 and he showed that this condition is sharp.

The notion of inertial manifolds mentioned above is translated and extended to more

general classes of differential equations like nonautonomous differential equations [GV97,

WF97, LL99], retarded parabolic differential equations [TY94, BdMCR98], or differential

equations with random or stochastic perturbations [Chu95, BF95, CL99, CS01, DLS01].

Here spectral gap conditions are also utilized, where the special form of this condition

may depend on the assumptions on the nonlinearity and, in particular, on the delay.

Since the spectral gap condition is the most restrictive condition with regard to ap-

plications, it is of interest to weaken this condition or even to find sharp conditions. One

way to weaken the assumptions is to work out the essential properties of the semiflow, the

process (two-parameter semiflow), or the skew product semiflow which are used for the

construction of the inertial manifold. Such geometrical properties are the cone invari-

ance and the squeezing property. The cone invariance property describes the fact that

the difference of two trajectories cannot leave a certain cone. This property is mainly

used to prove the existence of the manifold. Robinson [Rob93] has shown that the cone

invariance property is sufficient to prove the existence of an inertial Lipschitz manifold.

The squeezing property requires that the difference of each pair of solutions decays expo-

nentially as long as the difference is outside of a possibly another cone; it is used to prove

the attraction properties. A combination of cone invariance and squeezing properties for

evolution equations, sometimes called strong squeezing property, was first introduced

for the Kuramoto-Sivashinsky equations in [FNST85, FNST88], an abstract version of

it was developed in [FST89], another formulation of it can be found for example in

[Tem88, FST88, CFNT89a, Rob93, JT96]. Essentially, a strong squeezing property states

that if the difference of two solutions of the evolution equation belongs to a special cone

then it remains in the cone for all further times (that is the cone invariance property);

otherwise the distance between the solutions decays exponentially (that is the squeezing

property).
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In [KS02], the notion of a nonautonomous inertial manifold for nonautonomous dy-

namical systems is introduced. Nonautonomous dynamical systems are generalizations

of semiflows, processes and skew product semiflows. Moreover, in [KS02, KS01], the ex-

istence of pullback attracting inertial manifolds is shown assuming appropriate cone in-

variance and squeezing properties and assuming additional technical assumptions which

guarantee that the function m generating the manifold can be constructed in a space of

bounded Lipschitz functions, see [KS02] assuming a boundedness and coercivity property,

or in a space of linearly bounded Lipschitz functions, see [KS01] assuming a stationarity

and strong coercivity property. Moreover, in [KS02] we use a cone invariance property

which uses cones which may vary with the base variable, and the constants in the squeez-

ing and boundedness properties are required to be uniform only on orbits of the driving

system and not on the whole base space.

In this paper we summarize the main results of [KS02, KS01] for processes generated

by nonautonomous evolution equations.

2. Inertial manifolds for nonautonomous dynamical systems. Let X be a

Banach space.

Definition 2.1. A nonautonomous dynamical system (NDS) on X is a cocycle ϕ

over a driving system θ on a set B, i.e.

(i) θ : R × B → B is a dynamical system, i.e. the family θ(t, ·) = θ(t) : B → B of

self-mappings of B satisfies the group property

θ(0) = idB, θ(t+ s) = θ(t) ◦ θ(s)
for all t, s ∈ R.

(ii) ϕ : R≥0 × B × X → X is a cocycle, i.e. the family ϕ(t, b, ·) = ϕ(t, b) : X → X of

self-mappings of X satisfies the cocycle property

ϕ(0, b) = idX , ϕ(t+ s, b) = ϕ(t, θ(s)b) ◦ ϕ(s, b)

for all t, s ≥ 0 and b ∈ B. Moreover (t, x) 7→ ϕ(t, b, x) is continuous.

Remark 2.2.

(i) The set B is called base and in applications it has additional structure, e.g. it is

a probability space, a topological space or a compact group and the driving system has

additional regularity, e.g. it is ergodic or continuous.

(ii) The pair of mappings

(θ, ϕ) : R≥0 × B × X → B × X , (t, b, x) 7→ (θ(t, b), ϕ(t, b, x))

is a special semi-dynamical system a so-called skew product flow (usually one requires

additionally that (θ, ϕ) is continuous). If B = {b} consists of one point then the cocycle

ϕ is a semi-dynamical system.

(iii) We use the abbreviations

θtb := θ(t)b := θ(t, b), ϕ(t, b)x := ϕ(t, b, x).

We also say that ϕ is an NDS to abbreviate the situation of Definition 2.1.
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The solutions of a nonautonomous evolution equation in X will not generate a semi-

flow but a so-called process (Dafermos [Daf71]) (or two-parameter semi-flow).

Definition 2.3. A process or two-parameter semi-flow µ on X is a continuous map-

ping

{(t, s, x) ∈ R× R×X : t ≥ s} 3 (t, s, x) 7→ µ(t, s, x) ∈ X
which satisfies

(i) µ(s, s, ·) = idX for s ∈ R;

(ii) the two-parameter semi-flow property for t ≥ τ ≥ s, x ∈ X , i.e.

µ(t, τ, µ(τ, s, x)) = µ(t, s, x).

The next lemma explains how a process defines an NDS and how one can translate

properties from the language of nonautonomous dynamical systems to the language of

processes or vice versa.

Lemma 2.4. Suppose that µ is a process. Then ϕ : R≥0 × B × X → X ,

ϕ(t, b)x = µ(t+ b, b, x)

is an NDS with base B = R and driving system θ : R× B → B,

θ(t)b = t+ b.

Moreover, for t ≥ s and x ∈ X the relation µ(t, s, x) = ϕ(t− s, s)x holds.

Definition 2.5. A family M = (M(b))b∈B of non-empty sets M(b) ⊂ X is called

a nonautonomous set and M(b) is called the b-fiber of M or the fiber of M over b. We

say that M is closed, open, bounded, or compact, if every fiber has the corresponding

property. For notational convenience we use the identification M ' {(b, x) : b ∈ B,
x ∈M(b)} ⊂ B × X .

Definition 2.6. A nonautonomous set M is called forward invariant under the

NDS ϕ if ϕ(t, b)M(b) ⊂M(θtb) for t ≥ 0 and b ∈ B. It is called invariant if ϕ(t, b)M(b) =

M(θtb) for t ≥ 0 and b ∈ B.

Definition 2.7. Let ϕ be an NDS. Then a nonautonomous set M is called (non-

autonomous) inertial manifold if

(i) every fiberM(b) is a finite-dimensional Lipschitz manifold in X of dimension N

for an N ∈ N;

(ii) M is invariant ;

(iii) M is exponentially attracting, i.e. there exists a positive constant η such that for

every b ∈ B and x ∈M(b) there exists an x′ ∈M(b) with

‖ϕ(t, b)x− ϕ(t, b)x′‖ ≤ Ke−ηt for t ≥ 0 and b ∈ B
and a constant K = K(b, x, x′) > 0.

The property (iii) is also called exponential tracking property or asymptotic complete-

ness property and x′ or ϕ(·, b)x′ is said to be the asymptotic phase of x or ϕ(·, b)x,

respectively.



32 N. KOKSCH AND S. SIEGMUND

Recall that if D and A are nonempty closed sets in X , the Hausdorff semi-metric

d(D|A) is defined by

d(D|A) := sup
x∈D

d(x,A), d(x,A) := inf
y∈A

d(x, y) = inf
y∈A
‖x− y‖.

Now we want to generalize the attracting notion of dynamical systems to nonautono-

mous dynamical systems. A natural generalization of convergence to a nonautonomous

set A seems to be the forwards running convergence defined by

d
(
ϕ(t, b)x,A(θtb)

)
→ 0 for t→∞.

However, this does not ensure convergence to a specific component set A(b) for a fixed b.

For that one needs to start “progressively earlier” at θ−tb in order to “finish” at b. This

leads to the concept of pullback convergence defined by

d
(
ϕ(t, θ−tb)x,A(b)

)
→ 0 for t→∞.

Definition 2.8. Let ϕ be an NDS and A be a nonautonomous set. A is called (glob-

ally) pullback attracting if for every bounded set D ⊂ X and b ∈ B
lim
t→∞

d
(
ϕ(t, θ−tb)D|A(b)

)
= 0.

The concept of pullback convergence was introduced in the mid 1990s in the context of

random dynamical systems (see Schmalfuss [Sch92], Crauel and Flandoli [CF94], Flandoli

and Schmalfuss [FS96], and Crauel, Debussche and Flandoli [CDF97]) and has been used

e.g. in numerical dynamics, see for example [KS97b, KS97a, KS98]. Note that a similar

idea had already been used in the 1960s by Mark Krasnoselski [Kra68] to establish the

existence of solutions that exist and remain bounded on the entire time set.

Now we define a handy notion (see Ludwig Arnold [Arn98, Definition 4.1.1(ii)]) ex-

cluding exponential growth of a function.

Definition 2.9. A function R : B → ]0,∞[ is called tempered from above if for every

b ∈ B
lim sup
t→±∞

1

|t| logR(θtb) = 0.

Definition 2.10. Let ϕ be an NDS. A family π = (π(b))b∈B of projectors π(b) ∈
L(X ,X ) in X is called nonautonomous projector.

(i) π is called tempered from above if b 7→ ‖π(b)‖ is tempered from above.

(ii) π is called N -dimensional for an N ∈ N if dim imπ(b) = N for every b ∈ B.

Our goal is to construct an inertial manifold in X . For this we will use some assump-

tions with respect to the norm of X . In order to be more general, we will allow that some

assumptions are required only with respect to the weaker norm of the larger space Y , i.e.,

(X ,Y) let be a pair of two Banach spaces such that X is continuously embedded in Y ,

X ↪→ Y .
To compensate the different quality of the norms we need some smoothing action of

the dynamical system. Note that in many cases one can use X = Y , and for a first reading

it is good to assume X = Y .
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Let π1 be an N -dimensional nonautonomous projector in Y . We define the comple-

mentary projector

π2(b) := idY − π1(b) for b ∈ B.
Then

X1(b) := π1(b)X and X2(b) := π2(b)X , b ∈ B,
define nonautonomous sets Xi consisting of complementary linear subspaces Xi(b) of X ,

i.e. X1(b)⊕X2(b) = X . For this fact we also write X1 ⊕X2 = B × X . Further let

Y1(b) := π1(b)Y and Y2(b) := π2(b)Y , b ∈ B.
We assume that

X1(b) = Y1(b), b ∈ B.
We say that π1 is tempered from above in X if the restriction

(
π1(b)

∣∣
X
)
b∈B of π1

onto X is tempered from above.

We want to construct a nonautonomous inertial manifold

M = (M(b))b∈B

consisting of manifolds M(b) ⊂ X which are trivial in the sense that each of them can

be described by a single chart, i.e.

M(b) = graph(m(b, ·)) := {x1 +m(b, x1) : x1 ∈ X1(b)}
with m(b, ·) = m(b) : X1(b)→ X2(b).

For a positive constant L we introduce the nonautonomous set

CL := {(b, x) ∈ B × X : ‖π2(b)x‖Y ≤ L‖π1(b)x‖Y} .
Since the fibers CL(b) are cones in X it is called (nonautonomous) cone. The following

definition can be found in [KS01], and it is similar to that one in [KS02] where L may

depend on b. In addition to the definition in [KS02], we use here the auxiliary function

L̃ in order to get an estimate in [0, T0], too.

Definition 2.11. The NDS ϕ satisfies the (nonautonomous) cone invariance prop-

erty for a cone CL if there are a function L̃ : ]0,∞[ → ]0,∞[ and a number T0 ≥ 0 such

that

L̃(t) ≤ L for t ≥ T0

and such that for b ∈ B and x, y ∈ X ,

x− y ∈ CL(b)

implies

ϕ(t, b)x− ϕ(t, b)y ∈ CL̃(t)(θtb) for t > 0.

Now we define a property of a cocycle ϕ which describes a kind of squeezing outside

a given cone.

Definition 2.12. The NDS ϕ satisfies the (nonautonomous) squeezing property for a

cone CL if there exist positive constants K1, K2 and η such that for every b ∈ B, x, y ∈ X
and T > 0 the identity

π1(θT b)ϕ(T, b)x = π1(θT b)ϕ(T, b)y
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implies for all x′ ∈ X with π1(b)x′ = π1(b)x and x′ − y ∈ CL(b) the estimates
∥∥πi(θtb)[ϕ(t, b)x− ϕ(t, b)y]

∥∥
Y ≤ Kie

−ηt∥∥π2(b)[x− x′]
∥∥
Y , i = 1, 2,

for t ∈ [0, T ].

Remark 2.13. We consider the special case that B = {b} is a singleton. Then the

NDS ϕ defines a semiflow S on X by Stx = ϕ(t, b)x for (t, x) ∈ R≥0 × X and we may

replace πi(b) by πi. As a special case of the cone invariance property we obtain the

Autonomous cone invariance property : There exists T0 ≥ 0 such that x, y ∈ X with
∥∥π2[x− y]

∥∥ ≤ L
∥∥π1[x− y]

∥∥

implies ∥∥π2[Stx− Sty]
∥∥ ≤ L

∥∥π1[Stx− Sty]
∥∥ for t ≥ T0.

The squeezing property in the autonomous case becomes the following

Autonomous squeezing property : There exist positive constants K1, K2, η such that

for every x, y ∈ X and T > 0 the identity

π1S
Tx = π1S

T y

implies for all x′ ∈ X with π1x
′ = π1x and

∥∥π2[x′ − y]
∥∥ ≤ L

∥∥π1[x′ − y]
∥∥ the estimates

∥∥πi[Stx− Sty]
∥∥ ≤ Kie

−ηt∥∥π2[x− x′]
∥∥, i = 1, 2,

for t ∈ [0, T ].

Note that our autonomous cone invariance property with T0 = 0 corresponds to the

classical cone invariance properties. Our autonomous squeezing property is a modification

of the usual squeezing properties, however, at least for semilinear parabolic evolution

equations, a strong squeezing property and an additional cone invariance property imply

our autonomous squeezing property.

Definition 2.14. The NDS ϕ satisfies the (nonautonomous) boundedness property

if for all t ≥ 0 and all M1 ≥ 0 there exists an M2 ≥ 0 such that for b ∈ B, x ∈ X with

‖π2(b)x‖X ≤M1 the estimate

‖π2(θtb)ϕ(t, b)x‖X ≤M2

holds.

Definition 2.15. The NDS ϕ satisfies the (nonautonomous) coercivity property if

for all t ≥ 0 and all M3 ≥ 0 there exists an M4 ≥ 0 such that for b ∈ B, x ∈ X with

‖π1(b)x‖X ≥M4 the estimate

‖π1(θtb)ϕ(t, b)x‖X ≥M3

holds.

The boundedness property ensures that the graph transformation mapping can be

defined on a complete metric space of bounded functions. The coercivity property will

ensure the existence of global homeomorphisms used for the definition of the graph trans-

formation mapping.
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Remark 2.16. As we will show later in Section 3.2, for evolution equations the co-

ercivity and boundedness property of ϕ follows from the boundedness of the nonlinearity

and exponential dichotomy properties of the linear part. While a global Lipschitz prop-

erty of the nonlinearity is used for the cone invariance and squeezing property, too, the

boundedness of the nonlinearity is an additional restriction.

Therefore, we introduce now another group of technical assumptions which for evolu-

tion equations can be verified without boundedness assumption on the nonlinear part.

Definition 2.17. The NDS ϕ satisfies the (nonautonomous) stationarity property if

there is a uniformly bounded invariant set I.

The stationarity property together with the cone invariance property allow to define

the graph transformation mapping in a space of linearly bounded functions. Obviously it

is satisfied, if there is a stationary point.

Definition 2.18. The NDS ϕ satisfies the (nonautonomous) strong coercivity prop-

erty with respect to invariant set I and the cone CL if for all b ∈ B there exist positive

numbers M5, M6, M7 such that for x ∈ I(b) + CL(b) and all t ≥ 0 the estimate

‖π1(b)x‖X ≤M5eM6t
(
M7 + ‖π1(θtb)ϕ(t, b)x‖X

)

holds.

The strong coercivity property ensures the existence of global homeomorphisms used

for the definition of the graph transformation mapping and it will be used to show the

contractivity of the graph transformation mapping.

Remark 2.19. As we will show later in Section 3.2, for evolution equations the strong

coercivity property of ϕ follows from the uniform boundedness of an invariant set I and

exponential dichotomy properties of the linear part.

If X 6= Y we need some properties to compensate the weaker norm.

Definition 2.20. The NDS ϕ satisfies the smoothing property if there are function

M8,M9 : ]0,∞[→ ]0,∞[ such that for x, y ∈ X , b ∈ B, and t > 0 the Lipschitz estimates

‖ϕ(t, b)x− ϕ(t, b)y‖X ≤M8(t)‖x− y‖Y
and

∥∥π1(b)[x− y]
∥∥
Y ≤M9(t)

∥∥π1(θtb)[ϕ(t, b)x− ϕ(t, b)y]
∥∥
Y if x− y ∈ CL

hold.

Remark 2.21. For parabolic evolution equations this smoothing property is a con-

sequence of global Lipschitz property of the nonlinearity and the smoothing property of

parabolic equations.

The following theorem is shown in [KS01], where the boundedness property as required

in [KS01] is to weak for the proof in [KS01], and it has to be replaced by the boundedness

property as given above. In [KS02] one can find the proof of the following theorem for the

special case X = Y under the assumption of coercivity and a weaker boundedness prop-

erty but also with more general cone invariance and squeezing properties (the constant

L in the cone invariance property may depend on b).
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Theorem 2.22. Let ϕ be an NDS on a Banach space X ↪→ Y over a driving system

θ : R× B → B on a set B and assume that ϕ satisfies the cone invariance and squeezing

property.

Moreover, let ϕ satisfy the following technical assumptions :

• ϕ possesses the coercivity and boundedness property or

• ϕ possesses the strong coercivity and stationarity property with respect to the in-

variant set I and the cone CL with a constant M6 < η.

If X 6= Y, we further assume that

• ϕ possesses the smoothing property, and that π1 is tempered from above in X , and

that there are constants M10 and M11 with

‖π2(b)‖L(X ,X ) ≤M10, ‖π1(b)x‖Y ≤M11‖π1(b)x‖X for x ∈ X , b ∈ B.
Then there exists an inertial manifold M = (M(b))b∈B of ϕ with the following prop-

erties :

1. M(b) is a graph in X1(b)⊕X2(b),

M(b) = {x1 +m(b, x1) : x1 ∈ X1(b)}
with a mapping m(b, ·) = m(b) : X1(b)→ X2(b) which is globally Lipschitz continuous

‖m(b, x1)−m(b, y1)‖X ≤ L̂‖x1 − y1‖X
with some L̂ ≥ 0, and it satisfies

‖m(b, x1)−m(b, y1)‖Y ≤ L‖x1 − y1‖Y
with L from the cone invariance property.

2. M is exponentially attracting in X
‖ϕ(t, b)x− ϕ(t, b)x′‖X ≤ K̂e−ηt‖π2(b)x−m(b, π1(b)x)‖X

for t ≥ 1, i = 1, 2 with an asymptotic phase x′ = x′(b, x) ∈ M(b) of x and some K̂

independent of x, x′, b, t, and we have
∥∥πi(θtb)[ϕ(t, b)x− ϕ(t, b)x′]

∥∥
Y ≤ Kie

−ηt∥∥π2(b)x−m(b, π1(b)x)
∥∥
Y

for t ≥ 0, i = 1, 2 with K1,K2 > 0 from the squeezing property.

3. If in addition π1 is tempered from above in X , then M is pullback attracting in X ,

more precisely, for each b ∈ B there is a T ≥ 0 such that for each bounded set D ⊂ X
d
(
ϕ(t, θ−tb)D|M(b)

)
≤ e−ηt/2d

(
D|M(θ−tb)

)
for t ≥ T.

The constant T can be uniformly chosen for all b belonging to the same θ-orbit. If

supb∈B ‖π1(b)‖ <∞ then T can be chosen independently of b ∈ B.

3. Inertial manifolds for nonautonomous evolution equations. In the follow-

ing, we verify the assumptions of Theorem 2.22 for evolution equations under the assump-

tions of exponential dichotomy conditions on the linear part or under the requirement

that the linear part A is constant and selfadjoint such that we may use the eigenvalues

of A.

Let (X , ‖ · ‖X ) be a Banach space.



INERTIAL MANIFOLDS 37

3.1. Indefinite quadratic forms. Here, letH = Z be a Hilbert space equipped with the

norm | · |, and let A be a (time-independent) densely defined linear operator on H which

is selfadjoint, positive and which has compact resolvent. We consider a nonautonomous

parabolic evolution equation

ẋ+Ax = f(t, x)(1)

where the nonlinear part f : R×X → H satisfies the following assumptions:

• The Hilbert space X = D(Aα) with norm ‖u‖X := |u|α := |Aαu| is the domain of

a power Aα of A with some α ∈ [0, 1[.

• f(t, x) is locally Hölder continuous in t and global Lipschitz continuous in x.

Then there are maximally defined (classical) solutions

µ(·, τ, ξ) ∈ C([τ,∞[ ,X ) ∩ C1(]τ,∞[ ,H)

of (1) with initial condition x(τ) = ξ, see [Hen81, Mik98], and (1) generates a process µ

on X .

Let λ1 ≤ λ2 ≤ . . . denote the eigenvalues of A counted with their multiplicity and let

e1, e2, . . . denote the corresponding eigenvectors of A.

We fix N ∈ N. Let π1 be the orthogonal projector from H onto span{e1, . . . , eN} and

let π2 := idH − π1.

The following lemma is proved in [KS01].

Lemma 3.1. Under the general assumption given above, let there exist ρ1 < ρ2, a

function Λ : [ρ1, ρ2]→ R and a number L0 ∈ ]ρ1, ρ2] with

Λ(L0) > 0

and

Qρ
(
µ(t, τ, x)− µ(t, τ, y)

)
≤ e−2Λ(ρ)(t−τ)Qρ(x− y)(2)

for ρ ∈ [ρ1, ρ2], t ≥ τ , x, y ∈ X where the quadratic forms Qρ : X → R are defined by

Qρ(x) = ‖π2x‖2Y − ρ2‖π1x‖2Y for x ∈ X , ρ > 0.

Then the process µ possesses the cone invariance property for all L ∈ [ρ1, ρ2] and the

squeezing property with the parameters

L = ρ1, η = Λ(L0), K1 =
ρ2L0√

ρ2
2 − L2

0

√
L2

0 − ρ2
1

, K2 = ρ1K1.

Remark 3.2.

1. The proof of this lemma bases on the derivation of a differential inequality

d

dt
Qρ
(
µ(t, τ, x)− µ(t, τ, y)

)
≤ −2Λ(ρ)Qρ

(
µ(t, τ, x)− µ(t, τ, y)

)

for t ≥ τ , x, y ∈ X and ρ ∈ [ρ1, ρ2].

2. Obviously, (2) implies the cone invariance property with L = ρ for all ρ ∈ [ρ1, ρ2].

The squeezing property follows from (2) by combination of inequalities (2) for ρ = ρ1

and ρ = L0.
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3. In [MPS88], a so-called cone property is used which only requires that

d

dt
Q1

(
µ(t, τ, x)− µ(t, τ, y)

)
≤ 0

for t ≥ τ , x, y ∈ X with Q1(µ(t, τ, x) − µ(t, τ, y)) = 0. Obviously this condition im-

plies the cone invariance property with L = 1. Assuming the cone invariance property,

the squeezing property can be shown using Gronwall inequalities for the estimation of∥∥π2[µ(t, τ, x) − µ(t, τ, y)]
∥∥
Y . However, our approach seems to be more general for an

extension to time-depending quadratic forms.

Since the exponential dichotomy conditions (8) and additional exponential dichotomy

conditions and smoothing properties can be satisfied for Φ(t, τ) = e−A(t−τ), Theorem 2.22

and Lemmata 2.4, 3.1 imply

Theorem 3.3. Let the assumptions of Lemma 3.1 be satisfied. Moreover, we assume

that

• f is globally bounded or

• there is a bounded invariant set I.

Then the claim of Theorem 2.22 holds for the NDS ϕ generated by (7) with η, L, K1

and K2 as given in Lemma 3.1, i.e., there is an inertial manifold.

Remark 3.4.

1. An inequality of the form (2) is used in [Rom94] for the special case Y = D(Aα/2).

Assuming the Lipschitz inequality

|f(x)− f(y)| ≤ `|x− y|α, x, y ∈ X = D(Aα)(3)

and the spectral gap condition

λN+1 − λN > `(λαN + λαN+1),(4)

A. V. Romanov [Rom94] shows that (2) holds for ρ ∈ [h, h−1], Λ(ρ) = λN+1− `λαN+1 and

with h < 1 satisfying

λN+1 − λN > `
(
λαN +

1

2
(h2 + h−2)λαN+1

)
.

Thus our Theorem 3.3 allows to ensure the existence of inertial manifolds under the sharp

spectral gap condition (4) for the Lipschitz inequality (3).

2. Let Y = H and let f satisfy a Lipschitz inequality of the type

|f(t, x)− f(t, y)| ≤ ν(x− y) for all x, y ∈ D(A), t ∈ R,(5)

where di, i = 1, . . . ,M , are positive numbers, γ = δ1 ∈ [0,min{α, 1
2}], 0 ≤ δi+1 < δi for

i = 1, . . . ,M − 1 and

ν(x) =

( M∑

i=1

di|x|2δi
)1/2

.

Let

g1 :=

( M∑

i=1

diλ
2δi
N

)1/2

, g2 :=

( M∑

i=1

diλ
2δi
N+1

)1/2

.
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In [KS01] it is shown that the assumptions of Lemma 3.1 and hence of Theorem 3.3

can be satisfied if the spectral gap condition

λN+1 − λN > g1 + g2(6)

holds, i.e.

λN+1 − λN > `(λγN+1 + λγN )

if ν(x) = |x|γ .

As a concrete application we consider a reaction-diffusion equation

ut = uξξ + F (ξ, u,∇u), u(t, 0) = u(t, 1) = 0

with

|F (ξ, u, v)− F (ξ, u′, v′)| ≤ `0|u− u′|+ `1|v − v′|
in Z = Y = L2([0, 1]) as studied by P. Brunovský and I. Tereščák [BT91]. Here −A is the

Laplacian with Dirichlet boundary condition on [0, 1], f(t, x)(ξ) = F (t, ξ, x(ξ),∇x(ξ)).

For the existence theory we need α > 3
4 , but it is possible to choose ν(x) =

√
2`0|x| +√

2`1|x|1/2 in order to cover the gradient in the nonlinearity. Then (6) takes the form

λN+1 − λN >
√

2
(
2`0 + `1(λ

1/2
N + λ

1/2
N+1)

)
,

i.e.

(2N + 1)π2 > 2
√

2`0 +
√

2(2N + 1)π`1

and is weaker than the spectral gap condition found in [BT91] for the autonomous prob-

lem.

3. For some evolution equations it is useful to distinguish the space X = D(Aα), in

which the semiflow acts, from the space D(Aγ) used in the Lipschitz inequality: One has

to choose α ∈ [0, 1[ in such a way that f is a sufficiently smooth mapping from R × X
as required for the existence theory. However it is possible to satisfy and to require a

Lipschitz inequality ‖f(x) − f(y)‖Z ≤ ν(x − y) for x, y ∈ D(A) with γ ∈ [0,min{α, 1
2}[

and some norm ν on D(Aγ). Especially, for ν(x) = `|x|D(Aγ), we find the spectral gap

condition

λN+1 − λN > (λγN+1 + λγN )`,

which is weaker than (4) if γ < α.

3.2. Exponential dichotomy conditions. Let X ↪→ Z be Banach spaces equipped with

norms ‖ · ‖X , ‖ · ‖Z , and let (A(t))t∈R be a family of densely defined linear operators A(t)

on Z with domain D(A(t)) in Z. We consider a nonautonomous evolution equation

ẋ+A(t)x = f(t, x)(7)

which satisfies the following assumptions:

(A1) Linearity A(t):

• Existence of evolution operator of the linear system: Under suitable additional

assumptions on X , Z, A and f (see for example [Hen81, DKM92, Lun95]), we may define

the evolution operator Φ : {(t, s) ∈ R2 : t ≥ s} → L(Z,Z) of the linear equation

ẋ+A(t)x = 0
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in Z as the solution of

d

dt
Φ(t, s) +A(t)Φ(t, s) = 0 for t > s, s ∈ R

and

Φ(τ, τ) = idZ for τ ∈ R.
• There are constants k0, . . . , k4 ≥ 1, β2 > β1, γ ∈ [0, 1[, a monotonously

decreasing function ψ ∈ C(R>0,R>0) with ψ(t) ≤ k0t
−γ , and a family π1 = (π1(t))t∈R of

linear, invariant projectors π1(t) : Z → Z, i.e.

π1(t)Φ(t, s) = Φ(t, s)π1(s) for t ≥ s,
such that Φ(t, s)π1(s) can be extended to a linear, bounded operator for t ∈ R with

d

dt
Φ(t, s)π1(s) +A(t)Φ(t, s)π1(s) = 0 for t, s ∈ R

and

‖Φ(t, s)π1(s)‖L(X ,X ) ≤ k1e−β1(t−s) for t ≤ s,
‖Φ(t, s)π2(s)‖L(X ,X ) ≤ k2e−β2(t−s) for t ≥ s,
‖Φ(t, s)π1(s)‖L(Z,X ) ≤ k3e−β1(t−s) for t ≤ s,
‖Φ(t, s)π2(s)‖L(Z,X ) ≤ k4ψ(t− s)e−β2(t−s) for t > s

(8)

with π2, π2(t) = idZ − π1(t), as the complementary projector to π1 in Z.

(A2) Nonlinearity f(t, x): The nonlinear function f ∈ C(R × X ,Z) is assumed to

satisfy the Lipschitz inequality
∥∥πi(t)[f(t, x)− f(t, y)]

∥∥
Z ≤ γi

(∥∥π1(t)[x− y]
∥∥
X ,
∥∥π2(t)[x− y]

∥∥
X
)

(9)

for all t ∈ R, x, y ∈ X , where γi are suitable norms on R2.

(A3) Existence of mild solutions : We have the existence and uniqueness of the mild

solutions

µ(·, τ, ξ) ∈ C([τ,∞[,X )

of (7) with initial condition x(τ) = ξ ∈ X , i.e. let µ be the continuous solution of the

integral equation

x(t) = Φ(t, τ)ξ +

∫ t

τ

Φ(t, r)f(τ, x(r)) dr for t ≥ τ.

These were the assumptions.

To include this set-up in the general approach we set Y := X .

Remark 3.5.

1. Exponential dichotomy conditions of the form (8) are used, for example, in [Hen81],

[Tem97], [BdMCR98], [LL99], [CS01]. There k3 = βα1 k1, k4 = βα2 with some α ∈ [0, 1[

depending on the spaces X and Z, and ψ(t) = β−α2 max{t−α, 1}, ψ(t) = β−α2 t−α + 1, or

ψ(t) = max{ααβ−α2 t−α, 1} where 00 := 1. If A is a time-independent sectorial operator,

then usually X is the domain D((A + a)α) of the power (A + a)α of A + a with some

α ∈ [0, 1[ and some a ∈ R. If X = Z then we may choose α = 0 and ψ = 1.
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2. In the special case that A is a time-independent, selfadjoint positive linear operator

with compact resolvent and dense domain D(A) on the Hilbert space Z, usually one

uses X = D(Aα) with some α ∈ [0, 1[. Let π1 be the orthogonal projector from Z
onto the linear subspace spanned by the N eigenvectors of A corresponding to the first

N eigenvalues λ1 ≤ . . . ≤ λN (counted with their multiplicity). Then we may choose

β1 = λN , β2 = λN+1, k1 = k2 = 1, k3 = βα1 , k4 = βα2 , ψ(t) := max{ααβ−α2 t−α, 1}, see for

example [FST88, Lemma 3.1]. Note that in this case, the approach given in Section 3.1

yields weaker assumption.

3. In [LL99] (and with X = Z), a Lipschitz inequality of the form
∥∥πi(t)[f(t, x)− f(t, y)]

∥∥
X ≤ `i max

{∥∥π1(t)[x− y]
∥∥
X ,
∥∥π2(t)[x− y]

∥∥
X
}

is utilized. This special form of a Lipschitz inequality is contained in our Lipschitz as-

sumption with γi(w) = `i|w|∞ and | · |∞ as the maximum norm in R2. The standard

Lipschitz inequality

‖f(t, x)− f(t, y)‖Z ≤ `‖x− y‖X
in a Hilbert space Z and with orthogonal projectors π1(t) leads to (9) with γi(w) = `|w|2
or γi(w) = `|w|1, where | · |1 denotes the sum norm and | · |2 denotes the euclidean norm

in R2.

4. In [KS01] and under additional exponential dichotomy estimates, the more general

situation X ↪→ Y ↪→ Z with

‖πi(t)[f(t, x)− f(t, y)]‖Z ≤ γi(‖π1(t)[x− y]‖Y , ‖π2(t)[x− y]‖Y)

is considered.

5. If f is globally bounded, then a straight-forward estimation shows that the NDS

ϕ generated by (7) possesses the boundedness and coercivity property, see Steps 3 and 4

in the proof of [KS02, Lemma 3.10], and Lemma 3.9 and in [KS01].

6. If the cone invariance property holds with a globally bounded function L̃ and if

(I(τ))τ∈R is an invariant set which is uniformly bounded in τ , then the NDS ϕ generated

by (7) possesses the strong coercivity property, see [KS01, Lemma 3.10].

7. Because of X = Y , the smoothing property is trivially satisfied.

So the crucial point is to show the cone invariance property and the squeezing property

with respect to the projector π1 for the NDS generated (7).

The main idea used in [KS02, KS01] is to apply comparison theorems in order to

estimate the difference of special solutions of (7).

For fixed r1, r2 ≥ 0 and T ≥ 0, we define

(Λ1w)(t) := k3

∫ T

t

e−β1(t−r)γ1(w(r)) dr,

(Λ2w)(t) := k4

∫ t

0

ψ(t− r)e−β2(t−r)γ2(w(r)) dr + k2e−β2tLw1(0)

and

q(t) :=
(
k1e−β1(t−T )r1, k2e−β2tr2

)
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for t ∈ [0, T ] and w ∈ C([0, T ],R2). Then q ∈ C([0, T ],R2
≥0). Because of ψ(t) ≤ k0t

−γ

with γ ∈ [0, 1[, Λ is an at most weakly singular integral operator from C([0, T ],R2) into

C([0, T ],R2). Moreover, Λ is completely continuous.

The next two lemmata are shown in [KS02].

Lemma 3.6. Assume there are L̃ : ]0,∞[→ ]0,∞[, L > 0 and T0 ≥ 0 such that

L̃(T ) ≤ L for T ≥ T0

and such that

v2(T ) ≤ L̃(T )r1

for each solution v ∈ C([0, T ],R2
≥0) of

vi(t) ≤ (Λv)
i
(t) + qi(t) for i = 1, 2, t ∈ [0, T ](10)

with r1 ≥ 0, r2 = 0. Then the NDS ϕ generated by (7) possesses the cone invariance

property with respect to π with the parameters L̃, L and T0.

Lemma 3.7. Assume there are positive numbers L, η, K1, K2 such that

vi(t) ≤ Kie
−ηtr2 for t ∈ [0, T ]

holds for each T > 0 and each solution v ∈ C([0, T ],R2
≥0) of (10) with r1 = 0, r2 ≥ 0.

Then µ possesses the squeezing property with respect to π with the parameters L, η,

K1, K2.

So it remains to estimate the solutions v of (10).

Let B := C([0, T ],RN ) and let C := C([0, T ],RN≥0). Then C is an order cone in B.

The order cone C induces a semi-order ≤C in B by

u ≤C w :⇐⇒ w − u ∈ C.

The inequality (10) reads now

v ≤C Lv + q(11)

and the idea is to estimate v by an upper solution w of the fixed-point problem u = Lu+q,

i.e., by a solution w ∈ C of

Lw + q ≤C w.(12)

In [KS02, Lemma 3.9] it is shown that the existence of w∗ ∈ int C and ε ∈ [0, 1[ with

Lw∗ ≤C εw
∗(13)

imply

v ≤ w
for any pair (v, w) ∈ C × C of solutions of (11) and (12). So we only have to find a

function w∗ in the interior of C with (13) for some ε ∈ [0, 1[ and we have to find solutions

w of (12).

For this, one may try to find w∗ = w2 and w as a linear combination of w1 and w2

where wi(t) := e−ηit(1, ρi) with suitable numbers ηi and ρi. As proved in [KS02], one

finds
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Lemma 3.8. Let t∗ ≥ 0 be fixed with

ψ∗ := lim
t→t∗

ψ(t) <∞, ψ(t) > ψ∗ for t < t∗.(14)

Further let

k9 ≥ δ
∫ t∗

0

ψ(r)e−δr dr + ψ∗ lim
t→t∗

e−δt for all δ ∈]0, β2 − β1[.(15)

Assume that there are positive numbers ρ1 < ρ2 with

G(ρ1) = G(ρ2) = 0, G(ρ)
∣∣
[ρ1,ρ2]

6= 0(16)

and

k1k2ρ1 < k−1
9 ψ∗ρ2(17)

where G : R>0 → R is defined by

G(ρ) := β2 − β1 − k3γ1(1, ρ)− k4k9ρ
−1γ2(1, ρ).

Then there are positive numbers η1 < η2 with

ηi = β1 + k3γ1(1, ρi) = β2 − k4k9ρ
−1
i γ2(1, ρi),

and the cone invariance and squeezing property hold with

η := η2, L ∈
]
k1ρ1, k

−1
2 k−1

9 ψ∗ρ2

[
,

K1 :=
k2k9

ρ2ψ∗ − k2k9L
, K2 := ρ2K1

and

L̃(t) = k1
(ρ2 − ρ̃)ρ1e−η1t + (ρ̃− ρ1)ρ2e−η2t

(ρ2 − ρ̃)e−η1t + (ρ̃− ρ1)e−η2t

with some ρ̃ ∈
]
max{ρ1, k2k9ψ

−1
∗ L}, ρ2

[
.

Summarizing, we obtain the following theorem as a direct consequence of Theo-

rem 2.22, Lemma 2.4 and Lemma 3.8.

Theorem 3.9. Let the assumptions of Lemma 3.8 be satisfied. In addition, let f be

globally bounded or let there exist an invariant set (I(τ))τ∈R on which f is uniformly

bounded in τ . Then the claim of Theorem 2.22 holds for the NDS ϕ generated by (7) with

η, L, K1 and K2 as given in Lemma 3.8, i.e., there is an inertial manifold.

Remark 3.10. The crucial point is to verify the assumptions of Lemma 3.8, i.e.,

to ensure that positive solutions ρ1 < ρ2 of (16) exist and that they satisfy (17). This

condition is a generalization of the well-known spectral gap condition.

1. If

γi(w) = `i max{|w1|, |w2|}, `i > 0 for i = 1, 2, w ∈ R2

then (17) holds if and only if

β2 − β1 >
k3`1 + k4k9`2

2
+

√
(k3`1 − k4k9`2)2

4
+
k1k2k3k4k2

9`1`2
ψ∗

,
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see [KS02, KS01]. If in particular, k1 = k2 = k3 = k4 = 1, α = 0, ψ = 1, then k9 = ψ∗ = 1,

and we obtain

β2 − β1 > `1 + `2,

i.e., we obtain the optimal spectral gap condition as found by Y. Latushkin and B. Layton

[LL99] for this special form of a Lipschitz condition. A more general situation is considered

in [KS02, KS01].

2. If

γi(w) = `i1|w1|+ `i2|w2|, `i1, `i2 > 0 for i = 1, 2, w ∈ R2

then (17) holds if and only if

β2 − β1 > k3`11 + k4k9`22 +
k1k2k9 + ψ∗√

k1k2ψ∗

√
`12`21k3k4 .

If, in particular, k3 = k1β
α
1 , k4 = k2β

α
2 , k1 = k2 = 1, and `11 = `12 = `21 = `22 = `, then

we obtain the condition

β2 − β1 >
(
βα1 + k9β

α
2 + (1 + k9)

√
βα1 β

α
2

)
`.

For

ψ(t) := max{ααβ−α2 t−α, 1}
we may choose t∗ := αβ−1

2 and hence we have ψ∗ = 1. Further

k10 := αα
∫ α

0

r−αe−r dr + e−α − 1 ≥ 0, k9 := 1 +
(β2 − β1)α

βα2
k10 ,

and we obtain the condition

β2 − β1 >
(
βα1 + βα2 + (β2 − β1)αk10 +

(
2 +

(β2 − β1)α

βα2
k10

)√
βα1 β

α
2

)
`.

Now let

ψ(t) := β−α2 t−α + 1

as in [Tem97]. Then t∗ =∞, ψ∗ = 1, we may choose

k10 := Γ(1− α), k9 := 1 + k10 ,

and we obtain

β2 − β1 >
(
βα1 + (2 + k10)

√
βα1 β

α
2 + (1 + k10)βα2

)
`.(18)

This improves the result of [Tem97, Theorem IX.2.1], because our condition is weaker, it

does not contain unknown constants and it holds for the nonautonomous case, too.

Finally, let

ψ(t) = ααβ−α2 t−α + 1.

Then we choose t∗ :=∞ and have ψ∗ = 1. We may choose

k10 := ααΓ(1− α), k9 := 1 +
(β2 − β1)α

βα2
k10(19)

and we obtain condition (18) but with a little smaller constant k10. In particular, we

improved the spectral gap conditions found in [BdMCR98] and [CS01], however, here

without perturbation and without retardation.



INERTIAL MANIFOLDS 45

Summarizing, we believe that our spectral gap conditions are the weakest known

spectral gap conditions for (nonautonomous) evolution equations.
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tielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 139–141.

[FST88] C. Foias, G. R. Sell, and R. Temam, Inertial manifolds for nonlinear evolution-
ary equations, J. Differential Equations 73 (1988), 309–353.

[FST89] C. Foias, G. R. Sell, and E. S. Titi, Exponential tracking and approximation
of inertial manifolds for dissipative nonlinear equations, J. Dynam. Differential
Equations 1 (1989), 199–244.
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