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Abstract. In the paper the motion of a fixed mass of a viscous compressible heat conducting
fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state
and the external force, the heat sources and the heat flow through the boundary vanish, we
prove the existence of a global in time solution which is close to the equilibrium state for any
moment of time.

1. Introduction. In this paper we examine the global motion of a drop of a viscous
compressible heat conducting fluid in the general case, i.e. without assuming any condi-
tions on the form of the internal energy per unit mass e = e(ρ, θ). Here ρ = ρ(x, t) and
θ = θ(x, t) (where x ∈ Ωt, t ∈ (0, T ), Ωt ⊂ R3 is a bounded domain of a drop at time t)
are the density and the temperature of the drop, respectively.

Next, let v = v(x, t) denote the velocity of the fluid, p = p(ρ, θ) the pressure, cv =
cv(ρ, θ) the specific heat at constant volume, µ and ν the constant viscosity coefficients,
κ the constant coefficient of the heat conductivity, p0 the external (constant) pressure.
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Then the motion of the drop is described by the following system of equations (see [1], [2]):

(1.1)

ρ[vt + (v · ∇)v]− divT(v, p) = 0 in Ω̃T ,

ρt + div(ρv) = 0 in Ω̃T ,

ρcv(θt + v · ∇θ)− κ∆θ + θpθ div v

− µ

2

3∑

i,j=1

(vixj + vjxi)
2 − (ν − µ)(div v)2 = 0 in Ω̃T ,

Tn̄ = −p0n̄ on S̃T ,

v · n̄ = − ϕt
|∇ϕ| on S̃T ,

∂θ

∂n
= 0 on S̃T ,

ρ
∣∣
t=0 = ρ0, v

∣∣
t=0 = v0, θ

∣∣
t=0 = θ0 in Ω,

where Ω̃T =
⋃
t∈(0,T ) Ωt × {t}, S̃T =

⋃
t∈(0,T ) St × {t}, St = ∂Ωt; ϕ(x, t) = 0 describes

St (at least locally), n̄ is the unit outward vector normal to the boundary, i.e. n̄ = ∇ϕ
|∇ϕ| ,

Ω = Ωt
∣∣
t=0 = Ω0. In (1.1) T = T(v, p) = {Tij}i,j=1,2,3 = {2µSij(v) + (ν − µ)δij div v −

pδij}i,j=1,2,3, where S(v) = {Sij(v)}i,j=1,2,3 =
{

1
2 (vixj + vjxi)

}
i,j=1,2,3.

Finally, we assume that pρ > 0, pθ > 0 for ρ > 0, θ > 0.
Let us introduce the Lagrangian coordinates as the initial data to the Cauchy problem

dx

dt
= v(x, t), x

∣∣
t=0 = ξ ∈ Ω.

Then, we obtain the following relation between the Eulerian x and the Lagrangian ξ

coordinates of the same fluid particle:

(1.2) x = ξ +
∫ t

0
u(ξ, t′) dt′ ≡ Xu(ξ, t),

where u(ξ, t) = v(Xu(ξ, t), t).
Let Ω be given. Then by (1.1)5, Ωt = {x ∈ R3 : x = Xu(ξ, t), ξ ∈ Ω} and St =

{x ∈ R3 : x = Xu(ξ, t), ξ ∈ S = ∂Ω}. By the continuity equation (1.1)2 and the kinematic
condition (1.1)5 the total mass in conserved, i.e.

∫

Ωt
ρ(x, t) dx =

∫

Ω
ρ0(ξ) dξ ≡M,

where M is a given constant.
The aim of this paper is to prove the existence of a global-in-time solution to prob-

lem (1.1). For this purpose we have to introduce an equilibrium state.

Definition 1.1. By an equilibrium state we mean a solution (v, ρ, θ,Ωt) of (1.1) such
that v = 0, θ = θe, ρ = ρe, Ωt = Ωe for t ≥ 0, where ρe, θe are positive constants
satisfying the state equation

(1.3) p(ρe, θe) = p0,

and Ωe is a domain of volume |Ωe| = M
ρe

.
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To prove the global-in-time existence of solutions to problem (1.1) we have to restrict
to looking for a solution which is close to the equilibrium state. Therefore we introduce

pσ = p− p0, θσ = θ − θe, ρσ = ρ− ρe.
The paper consists of three sections. In Section 2 we present notation and auxiliary

results, i.e. the local existence theorem for problem (1.1) proved in [11] and a differential
inequality for the local solution proved in [13].

Section 3 contains a few auxiliary lemmas and the main result of the paper — The-
orem 3.7 which yields the global existence of solutions of problem (1.1), close to the
equilibrium state.

The global motion of a viscous compressible heat-conducting fluid bounded by a free
surface in R3 has been also considered in papers [7]–[10].

In [10] we proved the existence of a global solution (v, θ, ρ) to problem (1.1) such
that φ(t) +

∫ t
0 Φ(t′) dt′ < ∞, where t ∈ R1

+, φ(t) = |v|23,0,Ωt + |θσ|23,0,Ωt + |ρσ|23,0,Ωt ,
Φ(t) = |v|24,1,Ωt + |θσ|24,1,Ωt + |ρσ|23,0,Ωt , the norms |u|l,k,Ωt for u ∈ {v, θσ, ρσ} are defined
in Section 2. The global existence in [10] was proved under the assumption of a special
form of internal energy e(ρ, θ) per unit mass.

Analogous result for equations describing the motion of a viscous compressible heat-
conducting capillary fluid but without assuming any conditions on the form of the internal
energy e has been proved in [7].

Paper [8] is also concerned with the free boundary problem (1.1) in the case when
the shape of a free boundary is governed by a surface tension. It contains a proof of
the global existence of solutions such that (u, ϑσ, ησ) ∈ W

2+α,1+α/2
2 (ΩkT × (kT, t)) ×

W
2+α,1+α/2
2 (ΩkT×(kT, t))×C([kT, t];W 1+α

2 (ΩkT ))∩W 1+α,1/2+α/2
2 (ΩkT×(kT, t)), where

u, ϑσ, ησ denote v, θσ, ρσ written in the Lagrangian coordinates ξ ∈ ΩkT ; α ∈
(

3
4 , 1
)
, kT ≤

t ≤ (k + 1)T , k ∈ N ∪ {0}; W 2+α,1+α/2
2 (ΩkT × (kT, t)) and W

1+α,1/2+α/2
2 (ΩkT × (kT, t))

denote the anisotropic Sobolev-Slobodetskii spaces.
Papers [6], [12], [14], [15] are concerned with the global existence theorems for free

boundary problems for equations of the motion of viscous compressible barotropic fluids.
Papers [3]–[5] are devoted to the global motion of a viscous incompressible fluids

bounded by a free surface, both with the surface tension ([3], [4]) and without it ([5]).

2. Notation and auxiliary results. First, we introduce some notation. Let

‖u‖k,Ω = ‖u‖Hk(Ω), k ∈ N;

|u|p,Ω = ‖u‖Lp(Ω), p ∈ [0,∞];

|u(t)|k,l,Ω =
k−l∑

i=0

‖∂itu(t)‖k−i,Ω, k, l ∈ N.

Let us introduce the spaces

AT,ΩiT = L2
(
iT, (i+ 1)T ;H3(ΩiT )

)
∩ BT,ΩiT ,

BT,ΩiT =
2⋂

j=0

Cj
(
[iT, (i+ 1)T ];H2−j(ΩiT )

)
∩

2⋂

j=1

Lj2
(
iT, (i+ 1)T ;H3−j(ΩiT )

)
,
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where ΩiT is the considered domain at time t = iT , i ∈ N ∪ {0} and

Cj([T1, T2];X) = {u : ∂jt u ∈ C([T1, T2];X)},
Lj2(T1, T2;X) = {u : ∂jt u ∈ L2(T1, T2;X)}.

We define
AT,Ω0T ≡ AT,Ω and BT,Ω0T ≡ BT,Ω.

In order to formulate the local existence theorem rewrite problem (1.1) in the La-
grangian coordinates as follows:

(2.1)

ηut − divu Tu(u, p) = 0 in ΩT ,

ηt + η divu u = 0 in ΩT ,

ηcvϑt + ϑpϑ divu u− κ∇2
uϑ

− µ

2

3∑

i,j=1

(ξxi · ∇ξuj + ξxj · ∇ξui)2 − (ν − µ)(divu u)2 = 0 in ΩT ,

Tu(u, p)n̄u = −p0n̄u on ST ,

n̄u · ∇uϑ = 0 on ST ,

u
∣∣
t=0 = v0, ϑ

∣∣
t=0 = θ0, η

∣∣
t=0 = ρ0 in Ω,

where ΩT ≡ Ω × (0, T ), ST ≡ S × (0, T ), u(ξ, t) = v(Xu(ξ, t), t); ϑ(ξ, t) = θ(Xu(ξ, t), t);
η(ξ, t) = ρ(Xu(ξ, t), t); n̄u(ξ, t) = n̄(Xu(ξ, t), t); Xu is given by (1.2); ∇u = ξix∂ξi =
{ξixj∂ξi}j=1,2,3, Tu(u, p) = {µ(∂xiξk∂ξkuj+∂xj ξk∂ξkui)+(ν−µ)δij divu u−pδij}i,j=1,2,3,
divu u = ∇u · u = ∂xiξk∂ξkui, divu Tu(u, p) = {∂xj ξk∂ξkTuij(u, p)}i,j=1,2,3 and ∂xiξk are
elements of matrix ξx which is inverse to the matrix xξ = I +

∫ t
0 uξ(ξ, t

′) dt′.
To prove the local existence of solutions we apply the method of successive approxi-

mations taking as zero step functions u0 ∈ W 2+α,1+α/2
2 (ΩT ) and ϑ0 ∈ W 2+α,1+α/2

2 (ΩT )
which are solutions of the following parabolic problems:

(2.2)

u0t − divD(u0) = 0 in ΩT ,

D(u0)n̄0 = (p(ρ0, θ0)− p0)n̄0 on ST ,

u0
∣∣
t=0 = v0 in Ω,

(where D(u0) = {2µSij(u0) + (ν − µ)δij div u0}i,j=1,2,3) and

(2.3)

ϑ0t − κ∆ϑ0 = 0 in ΩT ,

n̄0 · ∇ξϑ0 = 0 on ST ,

ϑ0
∣∣
t=0 = θ0 in Ω,

where n̄0 is the unit outward vector normal to S.
Functions u0 and ϑ0 satisfy the estimates (see [11], estimates (4.3) and (4.5)):

(2.4)
‖u0‖2AT,Ω ≤ C1(T )[‖p(ρ0, θ0)− p0)n̄0‖23/2,S + ‖v0‖22,Ω

+ ‖u0t(0)‖21,Ω + ‖u0tt(0)‖20,Ω] ≡ F1(t)

and

(2.5) ‖ϑ0‖2AT,Ω ≤ c2(T )
(
‖θ0‖22,Ω + ‖ϑ0t(0)‖21,Ω + ‖ϑ0tt(0)‖20,Ω

)
≡ F2(T ),
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where C1 and C2 are positive continuous increasing functions of T ; u0t(0), u0tt(0), θ0t(0),
ϑ0tt(0) are calculated from (2.2) and (2.3).

Finally, η0 is a solution of the problem

η0t + η0∇u0 · u0 = 0 in ΩT ,

η0
∣∣
t=0 = ρ0 in Ω.

Next, assume that

(2.6) ρ1 < ρ0 < ρ2, θ1 < θ0 < θ2 for all ξ ∈ Ω;

(2.7) σ1 <
1

cv(ρ, θ)
< σ2 for ρ ∈ (ρ1, ρ2), θ ∈ (θ1, θ2)

and define

(2.8)
H0 = σ2 +

1
ρ1

+ ‖ρ0‖22,Ω + ‖v0‖22,Ω + ‖θ0‖22,Ω

+ ‖ut(0)‖21,Ω + ‖ϑt(0)‖21,Ω + ‖utt(0)‖20,Ω + ‖ϑtt(0)‖20,Ω < H̃0,

where ut(0), utt(0), ϑt(0), ϑtt(0) are calculated from (1.1)1 and (1.1)2, respectively;
H̃0 > 0 is a constant. Then the following theorem holds.

Theorem 2.1 (see [11], Theorem 4.2). Assume that v0, ρ0, θ0 ∈ H2(Ω); ρ0, θ0 > 0;
ut(0), ϑt(0), u0t(0), ϑ0t(0) ∈ H1(Ω); utt(0), ϑtt(0), u0tt(0), ϑ0tt(0) ∈ L2(Ω); S ∈ H5/2,
p ∈ C3(R2), cv ∈ C2(R2), cv > 0. Let assumptions (2.6), (2.7) and the following compat-
ibility conditions be satisfied :

(2.9) D(v0)n̄0 = (p(ρ0, θ0)− p0)n̄0 on S,

(2.10) n̄0 · ∇ξθ0 = 0 on S.

Assume that F1(t) + F2(t) < A for t ≤ T , where A > 0 is a constant depending also
on H̃0 (i.e. there exists a positive continuous increasing function F = F (H̃0) satisfying
F (H̃0) < A). Then there exists T > 0 (depending on A) such that there exists a unique
solution u, ϑ ∈ AT,Ω, η ∈ BT,Ω of (2.1) and

‖u‖2AT,Ω + ‖ϑ‖2AT,Ω ≤ A,
‖η‖2BT,Ω ≤ ψ1(A),

where ψ1 is a positive continuous increasing function of A.

Now, in view of Lemmas 3.5, 3.6, 2.3 of [11] and Theorem 2.1 we obtain

Lemma 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then for a sufficiently
small time T of the local existence, the local solution of problem (2.1) satisfies the estimate

(2.11)
‖u‖2AT,Ω + ‖ϑσ‖2AT,Ω + ‖ησ‖2BT,Ω

≤ ψ2(A, T )
(
‖v0‖22,Ω + ‖θσ0‖22,Ω + ‖ρσ0‖22,Ω + ‖ut(0)‖21,Ω

+ ‖utt(0)‖20,Ω + ‖ϑt(0)‖21,Ω + ‖ϑtt(0)‖20,Ω
)
,

where ϑσ = ϑ − θe, ησ = η − ρe, θσ0 = θ0 − θe, ρσ0 = ρ0 − ρe; θe and ρe are given by
Definition 1.1.
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Now, we recall the differential inequality proved in [13]. To derive this inequality we
use a partition of unity ({Ω̃i}, {ζi}), Ω ⊂ ⋃i∈M∪N Ω̃i,

∑
i∈M∪N ζi(x) = 1 for x ∈ Ω,

where Ω̃i, i ∈M, are interior subdomains and Ω̃i, i ∈ N , are boundary subdomains, i.e.
¯̃Ωi ⊂ Ω for i ∈ M and Ω̃i ∩ S 6= ∅ for i ∈ N . We can assume that ζi(ξ) = 1 for ξ ∈ ω̃i,
where ω̃i is such that ¯̃ωi ⊂ Ω̃i.

Consider now a boundary subdomain Ω̃i (which we denote for simplicity by Ω̃) and
let β ∈ ¯̃ωi ∩ S ⊂ Ω̃ ∩ S, S̃ = S ∩ Ω̃. Introduce local coordinates connected with {ξ} by

(2.12) yk = αkl(ξl − βl), α3k = nk(β), k = 1, 2, 3,

where {αkl} is a constant orthogonal matrix such that S̃ is determined by

y3 = F (y1, y2), F ∈ H5/2

and

Ω̃ ∩ Ω = {y : |yi| < d, i = 1, 2, F (y′) < y3 < F (y′) + d, y′ = (y1, y2)}.

Next, we introduce functions u′, ϑ′ and η′ by

u′i(y) = αijuj(ξ)
∣∣
ξ=ξ(y), ϑ′(y) = ϑ(ξ)

∣∣
ξ=ξ(y), η′(y) = η(ξ)

∣∣
ξ=ξ(y),

where ξ = ξ(y) is the inverse transformation to (2.12).
Further we introduce the transformation of variables, z = Ψ(y), by

zi = yi, i = 1, 2, z3 = y3 − F̃ (y), y ∈ Ω̃,

where F̃ is an extension of F to Ω̃.
Let

Ω̂ = Ψ(Ω̃ ∩ Ω) = {z : |zi| < d, i = 1, 2, 0 < z3 < d}
and Ŝ = Ψ(S̃).

Define

û(z) = u′(y)
∣∣
y=Ψ−1(z), ϑ̂(z) = ϑ′(y)

∣∣
y=Ψ−1(z), η̂(z) = η′(y)

∣∣
y=Ψ−1(z).

Let ∇̂k = ξlxkziξl∇zi
∣∣
ξ=χ−1(z), where χ(ξ) = Ψ(ψ(ξ)) and y = ψ(ξ) is defined by (2.12).

Introduce also the notation

ũ(ξ) = u(ξ)ζ(ξ), ϑ̃σ(ξ) = ϑσ(ξ)ζ(ξ), η̃σ(ξ) = ησ(ξ)ζ(ξ), ξ ∈ Ω̃, Ω̃ ∩ S = ∅,

ũ(z) = û(z)ζ̂(z), ϑ̃σ(z) = ϑ̂σ(z)ζ̂(z), η̃σ(z) = η̂σ(z)ζ̂(z), z ∈ Ω̂, ¯̃Ω ∩ S 6= ∅,

where ζ̂(z) = ζ(ξ)
∣∣
ξ=χ−1(z).

Next, assume that

(2.13) ρ1 < ρ(x, t) < ρ2, θ1 < θ(x, t) < θ2

for x ∈ Ω̄t, t ∈ [0, T ] (where T is the time of the local existence) and introduce the
functions:

(2.14) φ(t) = |v|22,0,Ωt + |θσ|22,0,Ωt + |ρσ|22,0,Ωt ,
(2.15) Φ(t) = |v|23,1,Ωt + |θσ|23,1,Ωt + ‖ρσ‖22,Ωt + ‖ρσt‖22,Ωt + ‖ρσtt‖21,Ωt ,
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(2.16)

φ̄(t) =
1∑

j=0

∫

Ωt
ρ
[
āj(∂

j
t v)2 + b̄j(∂

j
t ρσ)2 + c̄j(∂

j
t θσ)2] dx

+
∫

Ωt
d̄
(
ρv2
tt +

pσρ
ρ
ρ2
σtt +

ρcv
θ
θ2
σtt

)
dx

+
∑

i∈M

{∫

Ω̃i

∑

1≤|α|≤2

[
η(Dα

ξ ũ)2 +
pση
η

(Dα
ξ η̃σ)2 +

ηcv
ϑ

(Dα
ξ ϑ̃σ)2

]
Adξ

+
∫

Ω̃i

(
ηũ2

tξ +
pση
η
η̃2
σtξ +

ηcv
ϑ
ϑ̃2
σtξ

)
Adξ

}

+
∑

i∈N

{∫

Ω̂i

∑

1≤|α|≤2

ēα

[
η̂(Dα

τ ũ)2 +
pση̂
η̂

(Dα
τ η̃σ)2 +

η̂cv

ϑ̂
(Dα

τ ϑ̃σ)2
]
J dz

+
∫

Ω̂i
ē
(
η̂ũ2

tτ +
pση̂
η̂
η̃2
σtτ +

η̂cv

ϑ̂
ϑ̃2
σtτ

)
J dz

+
∫

Ω̂i

∑

0≤|α|≤1

[
f̄α
pση̂
η̂

(Dα
τ,tη̃σn)2 + ḡαη̂(Dα

τ,tũ3n)2

+ h̄α
η̂cv

ϑ̂
(Dα

τ,tϑ̃σn)2
]
J dz +

∫

Ω̂i

(pση̂
η̂
η̃2
σnn +

η̂cv

ϑ̂
ϑ̃2
σnn

)
J dz

}

+
∫

Ω
η(u2

ξ + u2
tξ + u2

ξξ)Adξ,

where āj , b̄j , c̄j (j = 0, 1), d̄, ēα (α : 1 ≤ |α| ≤ 2), ē, f̄α, ḡα, h̄α (α : 0 ≤ |α| ≤ 1) are
positive constants depending on ρ1, ρ2, θ1, θ2, µ, ν, κ, cv, p, ‖S‖5/2, T ,

∫ T
0 ‖v‖23,Ωt dt and

the constants from the imbedding theorems and the Korn inequalities (which depend
on Ωt, t ≤ T ); A and J are the Jacobians of transformations x = x(ξ) and x = x(z),
respectively.

By τ we denoted in (2.16) z1, z2, i.e. τ = (z1, z2) and by n we denoted z3. Moreover,
α is a multiindex and

Dα
ξ f =

∂|α|f
∂ξα1

1 ∂ξα2
2 ∂ξα3

3
, Dα

τ f =
∂|α|f

∂zα1
1 ∂zα2

2
,

Dα
t,τf =

∂|α|f
∂zα1

1 ∂zα2
2 ∂tα3

, |α| =
∑

i

αi, f ∈ {ũ, η̃σ, ϑ̃σ}.

The following lemma holds.

Lemma 2.3 (see [13], Theorem 2). Let ν > 1
3µ > 0, cv > 0, κ > 0, cv ∈ C2(R2),

p ∈ C2(R2), pρ > 0, pθ > 0 for ρ, θ > 0 and let assumption (2.13) be satisfied. Moreover,
assume that ∫

Ω
ρ0v0 · (a+ b× ξ) dξ = 0,

where a and b are arbitrary constant vectors.

Then for the local solution (v, θ, ρ) of problem (1.1) such that u, ϑσ ∈ AT,Ω and
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ησ ∈ BT,Ω, the following differential inequality is satisfied

(2.17)
dφ̄

dt
+ c0Φ ≤ c1

[
φ(1 + φ2) +

∫ t

0
‖v‖23,Ωt′ dt

′
]
Φ for t ≤ T,

where T is the time of the local existence, c0 and c1 are positive constants depending on
the same quantities as constants āj, b̄j , c̄j (j = 0, 1), d̄, ēα (1 ≤ |α| ≤ 2), ē, f̄α, ḡα, h̄α
(0 ≤ |α| ≤ 1) from formula (2.16).

3. Global existence. Let us introduce the spaces

N (t) = {(v, θσ, ρσ) : φ(t) <∞},

M(t) =
{

(v, θσ, ρσ) : φ(t) +
∫ t

0
Φ(t′) dt′ <∞

}
,

where φ and Φ are given by (2.14) and (2.15), respectively.
From the definition of φ̄ (see (2.16)) it follows that

(3.1) c2φ(t) ≤ φ̄(t) ≤ c3φ(t) for t ≤ T,
where c2, c3 > 0 are constants depending on the same quantities as constants c0 and c1
from inequality (2.17).

In view of (3.1), estimate (2.11) from Lemma 2.2 yields

φ(t) +
∫ t

0
Φ(t′) dt′ ≤ c4φ̄(0),

where c4 > 0 is a constant depending on the same quantities as c2 and c3 and on A.
Hence we obtain the lemma.

Lemma 3.1. Let (v, θσ, ρσ) ∈ N (0), S ∈ H5/2, u0t, ϑ0t ∈ H1(Ω), u0tt, ϑ0tt ∈ L2(Ω)
(u0, ϑ0 are solutions of problems (2.2) and (2.3), respectively), cv ∈ C2(R2), cv > 0,
p ∈ C3(R2). Let assumptions (2.13), (2.7) and compatibility conditions (2.9), (2.10) be
satisfied. Moreover, assume

(3.2) φ(0) ≤ ε.
Then the local solution (v, θ, ρ) of problem (1.1) is such that (v, θσ, ρσ) ∈M(t) for t ≤ T
(where T > 0 is the time of the local existence) and the following estimate holds

(3.3) φ(t) +
∫ t

0
Φ(t′) dt′ ≤ c4c3

c2
ε for t ≤ T.

Another consequence of Lemma 2.2 is the remark.

Remark 3.2. Estimate (2.11) and assumption (3.2) yield
∣∣∣∣
∫ t

0
u(ξ, t′) dt′

∣∣∣∣ ≤ c5T 1/2
(∫ T

0
‖u‖22,Ω dt′

)1/2

≤ c5T 1/2[ψ2(A, T )φ(0)
]1/2 ≤ c5c3

c2
T 1/2ψ

1/2
2 (A, T )ε1/2 ≡ c6T 1/2ε1/2,

where ψ3 is a positive continuous function, c5 > 0 is a constant from the imbedding
theorem depending on Ω.
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Hence, relation (1.2) implies that both the shape and the volume of Ωt do not change
much for t ≤ T and the constants ci (i = 0, . . . , 6) can be chosen independently of time
for t ≤ T .

Now, we prove

Lemma 3.3. Let the assumptions of Lemmas 2.3 and 3.1 be satisfied. Then there exists
a constant µ0 > 0 (depending on the same quantities as c0, . . . , c6) such that

(3.4) φ̄(t) ≤ φ̄(0)e−µ0t for t ≤ T
where T > 0 is the time of the local existence.

Proof. For ε sufficiently small inequalities (2.17) and (3.3) yield

dφ̄

dt
+ c7Φ ≤ 0.

Since φ̄ ≤ c3Φ (where c3 > 0 is the constant from (3.1)), we get (3.4) with µ0 = c7/c3.
This concludes the proof.

Corollary 3.4. By estimate (3.1) inequality (3.4) yields

φ(t) ≤ c3
c2
φ(0)e−µ0t for t ≤ T.

Lemma 3.3 suggests that the solution can be continued to the interval [T, 2T ]. How-
ever, to do this we must have the sum of the right-hand sides of (2.4) and (2.5) with
initial conditions at T estimated by A.

Let

g1(t) = |u0(t)|22,0,Ω, G1(t) = |u0(t)|23,1,Ω − ‖u0(t)‖23,Ω,
g2(t) = |ϑ0(t)|22,0,Ω − |ϑ0(t)|20,Ω, G2(t) = |ϑ0(t)|23,1,Ω,

where u0 and ϑ0 are solutions of (2.2) and (2.3), respectively.

Lemma 3.5. Let assumption (3.2) be satisfied. Moreover, let

g1(0) ≤ α1,

where α1 > 0 is a constant (not necessarily small). Then for ε sufficiently small we have

g1(t) ≤ α1 for t ≤ T.
Proof. Repeating the argument from [12] (see Lemma 3.8) we obtain the inequality

(3.5)
1
2
d

dt
g1(t) + c8G1(t) ≤ c9‖ρσ0‖20,ΩG1(t) + c10

(
‖ρσ0‖21,Ω + ‖θσ0‖21,Ω

)
.

By assumption (3.2), estimate (3.5) yields

(3.6)
1
2
d

dt
g1(t) +

c8
2
G1(t) ≤ c10ε

for ε so small that c9ε ≤ c8/2.
Let t∗ = inf{t ∈ [0, T ] : g1(t) > α1}. Then g1(t) > α1 in an interval (t∗, t), where

t ≤ T . Integrating (3.6) over (t∗, τ) (τ ≤ t) and using the estimate G1 ≥ g1 we get

g1(t) + c8

∫ τ

t∗

g1(t′) dt′ ≤ g1(t∗) + 2c10ε(τ − t∗).
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Hence
g1(t) + c8α1(τ − t∗) ≤ α1 + 2c10ε(τ − t∗).

Assuming that ε is so small that 2c10ε ≤ c8α1 we obtain

g1(τ) ≤ α1 for t∗ < τ ≤ t,
a contradiction.

This completes the proof.

Lemma 3.6. Let
g2(0) ≤ α2,

where α2 > 0 is a constant. Then

g2(t) ≤ α2 for t ≤ T.
The proof of Lemma 3.6 is analogous to that of Lemma 3.5.

Now, we prove the main result of the paper.

Theorem 3.7. Let ν > 1
3µ > 0, κ > 0, cv > 0, cv ∈ C2(R2), p ∈ C3(R2); pρ > 0,

pθ > 0 for ρ, θ > 0 and assume that there exist ρe > 0 and θe > 0 satisfying equation (1.3).
Let (v, θσρσ) ∈ N (0), S ∈ H5/2; u0t(0), ϑ0t(0) ∈ H1(Ω); u0tt(0)ϑ0tt(0) ∈ L2(Ω) (u0, ϑ0

are solutions of (2.2) and (2.3), respectively) and let the following compatibility conditions
be satisfied:

[
D(v0)− (p(ρ0, θ0)− p0)

]
n̄0 = 0 on S,

n̄0 · ∇ξθ0 = 0 on S,

where n̄0 is the unit outward vector normal to S.
Moreover, assume that

(3.7) φ(0) ≤ ε;
l > 0 is a constant such that

(3.8) ρe − l > 0, θe − l > 0 and ρ1 < ρ0 < ρ2, θ1 < θ0 < θ2,

where ρ1 = ρe − l, ρ2 = ρe + l, θ1 = θe − l, θ2 = θe − l (ρe, θe are introduced by
Definition 1.1); ∫

Ω
ρ0v0 · (a+ b× ξ) dξ = 0,

where a and b are arbitrary constant vectors;
∫

Ω
ρ0 dξ = M.

Then for sufficiently small ε there exists a global solution of (1.1) such that (v, θσ, ρσ) ∈
M(t) for t ∈ R+, St ∈ H5/2 for t ∈ R+ and

(3.9) φ(t) ≤ c3
c2
ε for t ∈ R+,

where c2 and c3 are constants from (3.10).



NONSTATIONARY MOTION OF A GENERAL FLUID 263

Proof. We prove the theorem as in the barotropic case (see [12], Theorem 3.9), step
by step using the local existence in a fixed interval. First, notice that by (2.14) and (2.16),

(3.10) c2φ(0) ≤ φ̄(0) ≤ c3φ(0),

where c2, c3 > 0 are constants depending on Ω, ρ1, ρ2, θ1, θ2, p, cv, µ, ν, κ.
To extend the solution to the interval [T, 2T ] we prove that

(3.11) ∀x ∈ Ω̄t, t ∈ [0, T ], ρ1 < ρ(x, t) < ρ2,

(3.12) ∀x ∈ Ω̄t, t ∈ [0, T ], θ1 < θ(x, t) < θ2.

By (2.11) and (3.7) we have

‖u(t)‖22,Ω + ‖ησ(t)‖22,Ω + ‖ϑσ(t)‖22,Ω ≤ ψ2(A, T )ε for t ≤ T.
Hence

(3.13) sup
ΩT
|u|2 + sup

ΩT
|ησ|2 + sup

ΩT
|ϑσ|2 ≤ c(Ω)ψ2(A, T )ε,

where c(Ω) > 0 is a constant from the imbedding theorem.
Assuming now that ε is so small that

(3.14)
[c3
c2
c(Ω)ψ2(A, T )ε

]1/2
< l,

(where l is the constant from assumption (3.8)), from estimate (3.13) we get (3.11)–(3.12).
Inequalities (3.11)–(3.12) and Remark 3.2 imply estimate (3.1) with the same constants
c2 and c3 as in (3.10). Thus the assumptions of the theorem, relations (3.11)–(3.12),
Remark 3.2 and Lemmas 2.3, 3.1, 3.3 yield

(3.15) φ̄(t) ≤ c3ε for t ≤ T.
Hence

φ(t) ≤ c3
c2
ε for t ≤ T.

Therefore, in view of Theorem 2.1, Lemmas 3.5, 3.6 and estimates (2.4), (2.5), (2.8) (with
the initial conditions at T ), for A so large that

C1(T )
(c11c3

c2
+ α1

)
+ C2(T )α2 < A

(where c11 > 0 is a constant such that ‖
(
p(ρ0, θ0)− p0

)
n̄0‖23/2,S ≤ c11φ(0) ≤ c11ε ≤ c11)

there exists a local solution of (1.1) in the interval [T, 2T ] and

(3.16)

‖u‖2AT,ΩT + ‖ϑσ‖2AT,ΩT + ‖ησ‖2BT,ΩT
≤ ψ2(A, T )

(
‖u(T )‖22,ΩT + ‖ϑσ(T )‖22,ΩT + ‖ησ(T )‖22,ΩT + ‖ut(T )‖21,ΩT

+ ‖ϑσt(T )‖21,ΩT + ‖utt(T )‖20,ΩT + ‖ϑσtt(T )‖20,ΩT
)
≤ c3ψ2(A, T )

c2
ε,

where u, ϑσ, ησ denote v, θσ, ρσ written in the Lagrangian coordinates ξ ∈ ΩT connected
with Eulerian coordinates x by the relation

x = ξ +
∫ t

T

u(ξ, t′) dt′;

AT,ΩT and BT,ΩT are defined in Section 2.
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Since by Remark 3.2 the shape of Ωt does not change much for t ≤ T , condition (3.14)
is satisfied with the constant c(ΩT ) such that

sup
ΩT
|u|2 + sup

ΩT
|ϑσ|2 + sup

ΩT
|ησ|2

≤ c(ΩT )
(
‖u(t)‖22,ΩT + ‖ϑσ(t)‖22,ΩT + ‖ησ(t)‖22,ΩT

)
for T ≤ t ≤ 2T.

Therefore in view of (3.16) and (3.11)–(3.12) we have

(3.17) ∀x ∈ Ω̄t, t ∈ [0, 2T ], ρ1 < ρ(x, t) < ρ2

and

(3.18) ∀x ∈ Ω̄t, t ∈ [0, 2T ], θ1 < θ(x, t) < θ2.

Now, we prove that the volume and the shape of Ωt change in [0, 2T ] no more than they
do in [0, T ]. To do this we consider

∫ t
0 v(x, t′) dt′ for 0 ≤ t ≤ 2T . We estimate

∫ T
0 v(x, t′) dt′

by applying Lemma 3.3 and to estimate
∫ 2T
T

v(x, t′) dt′ we use inequality (3.16). Thus,
we have

(3.19)

∣∣∣∣
∫ t

0
v(x, t′) dt′

∣∣∣∣ ≤
∫ T

0
|v(x, t′)| dt′ +

∫ 2T

T

|u(ξ, t′) dt′

≤ T 1/2
[
c12

(∫ T

0
‖v‖22,Ωt′ dt

′
)1/2

+ c6
c3
c2
ε1/2

]

≤ T 1/2ε1/2
(

c12c
1/2
3

(c2µ0)1/2
+ c6

c3
c2

)
≤ T 1/2ε1/2

(
c12c

1/2
3

c
1/2
2 µ

1/2
0

+ c6
c3
c2

)
,

where c2, c3 are the constants from (3.10), µ0 is the constant from Lemma 3.3 and c6 is
the constant from Remark 3.2.

For sufficiently small ε estimates (3.17)–(3.19) imply that the differential inequal-
ity (2.17) can be derived in [T, 2T ] with the same constants c0, c1 and with function
φ̄(t) replaced by φ̄T (t) which has analogous form to φ(t), but the integrals over
Ω, Ω̃i are replaced by integrals over ΩT , Ω̃i,T = {x : x = ξ +

∫ T
0 u(ξ, t′) dt′, ξ ∈ Ω̃i},

respectively.
From the forms of φ̄(t) and φ̄T (t) it follows that

φ̄T (T ) ≤
[
1 + c13T‖u‖2AT,Ω ]φ̄(T ).

Hence by estimate (2.11), Lemma 3.3, estimate (3.10) and assumption (3.7) we get

φ̄T (T ) ≤
(

1 + c13
c3
c2
Tψ2(A, T )ε

)
c3εe

−µ0T .

Therefore, choosing ε so small that

c14e
−µ0T ≡

(
1 + c13

c3
c2
Tψ2(A, T )ε

)
e−µ0T < 1,

we obtain
φ̄T (T ) ≤ c3ε.

Thus, we see that at t = T functions φ̄(t) and φ̄T (t) are estimated by the same con-
stant c3ε.

Next, for ε sufficiently small, estimates (3.17)–(3.19) also yield inequality (3.3) for
function φ̄T (t) (T ≤ t ≤ 2T ) with the same constants c2 and c3. Moreover, also the
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constants ci (i = 4, . . . , 12) and µ0 are the same in [T, 2T ] as in [0, T ]. Therefore, esti-
mate (3.15) and Lemmas 2.3, 3.1 and 3.3 yield

(3.20) φ̄T (t) ≤ c3ε for T ≤ t ≤ 2T.

Hence

(3.21) φ(t) ≤ c3
c2
ε for t ≤ 2T.

Estimates (3.20)–(3.21) allow to extend the solution on the interval [2T, 3T ].
Now, assume that there exists a local solution in [0, kT ] (where k ≥ 3) satisfying

(3.22) ‖u‖2AT,ΩjT + ‖ϑ‖2AT,ΩjT ≤ A for j = 1, . . . , k − 1,

(3.23) ‖η‖2BT,ΩjT ≤ ψ1(A) for j = 1, . . . , k − 1,

(3.24) φ̄jT (t) ≤ c3ε for jT ≤ t ≤ (j + 1)T, j = 0, . . . , k − 2,

(3.25) φ(t) ≤ c3
c2
ε for t ≤ (k − 1)T,

(3.26) ‖u‖2AT,ΩjT + ‖ϑσ‖2AT,ΩjT + ‖ησ‖2BT,ΩjT ≤
c3
c2
ψ2(A, T )ε for j = 0, . . . , k − 1,

where in (3.24) by φ̄jT (T ) we mean the function given by (2.16) with the integrals over
Ω, Ω̃i replaced by integrals over ΩjT , Ω̃i,jT , respectively; φ̄0T (t) = φ̄(t) for t ∈ [0, T ].

Moreover, assume that the volume and shape of Ωt change in [0, (k − 1)T ] no more
than they do in [0, T ] and estimates (3.11)–(3.12) hold for t ≤ (k− 1)T (so the constants
ci, i = 1, . . . , 12 and µ0 are the same in each [(i − 1)T, iT ], i = 1, . . . , k − 1). Since the
argument used to show estimates (3.11)–(3.12) for t ≤ kT is the same as for t ≤ T and
for t ≤ 2T , to prove the existence of a local solution in [0, (k + 1)T ] it remains to show
that the volume and shape of Ωt change in [0, kT ] no more than they do in [0, T ].

Applying Lemma 3.3 and estimates (3.22)–(3.26) we have, for t ∈ [0, kT ]

(3.27)

∣∣∣∣
∫ t

0
v(x, t′) dt′

∣∣∣∣ ≤
k−2∑

i=0

∫ (i+1)T

iT

|v(x, t′)| dt′ +
∫ kT

(k−1)T
|u(ξ, t′)| dt′

≤ T 1/2
[
c12

k−2∑

i=0

(∫ (i+1)T

iT

φ(t′) dt′
)1/2

+ c6
c3
c2
ε1/2

]

≤ T 1/2
[
c12c

3/2
3

(µ0c2)1/2
(1− e−µ0T )1/2

k−2∑

i=0

(
φ̄iT (iT )

)1/2
+ c6

c3
c2
ε1/2

]

≤ T 1/2
{

c12c
3/2
3

(µ0c2)1/2
(1− e−µ0T )1/2

[
φ̄(0)

(
1 + c14e

−µ0T + c214e
−2µ0T + . . .

)]1/2

+ c6
c3
c2
ε1/2

}
≤ T 1/2ε1/2

(
c12c

3/2
3

µ
1/2
0 c

1/2
2

(
1− e−µ0T

1− c14e−µ0T

)1/2

+ c6
c3
c2

)
,

where c2 and c3 are the constants from (3.10), µ0 is the constant from Lemma 3.3 and
c6 is the constant from Remark 3.2.

Thus, the right-hand side of (3.27) does not depend on k. Therefore, for ε sufficiently
small the shape of Ωt change in [0, kT ] no more than it does in [0, T ] and the constants
ci (i = 1, . . . , 13) and µ0 are the same in each [iT, (i+ 1)T ] for i = 0, . . . , k − 1.
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Estimates (3.24)–(3.25), (3.27) and Lemmas 2.3, 3.1 and 3.3 give φ̄(k−1)T (t) ≤ c3ε for
(k − 1)T ≤ t ≤ kT and φ(t) ≤ c3

c2
ε for t ≤ kT .

This completes the proof of the theorem.
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