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Abstract. In this work we present a class of partial differential operators with constant co-

efficients, called multi-quasi-hyperbolic and defined in terms of a complete polyhedron. For them

we obtain the well-posedness of the Cauchy problem in generalized Gevrey classes determined

by means of the same polyhedron. We present some necessary and sufficient conditions on the

operator in order to be multi-quasi-hyperbolic and give some examples.

Introduction. We want to generalize a theorem of well-posedness of the Cauchy

problem in Gevrey classes Gs, 1 < s < ∞ (for definition and properties of Gs see

for example Rodino [14]). In fact, solvability of the Cauchy problem in Gevrey spaces

has been obtained for weakly hyperbolic operators with constant coefficients, namely

for the class of the so-called s-hyperbolic operators (see Cattabriga [4], Hörmander [10],

Rodino [14]).

This result can be extended to operators with variable coefficients, for example we

refer to the important contributions of Bronstein [2], Steinberg [15] and Kajitani [11].

Here, remaining in the frame of constant coefficients, we want to improve the previous

result in order to assure the solvability of the Cauchy problem in generalized Gevrey

classes GsP . These classes are defined in terms of a complete polyhedron P . We will treat

them following Zanghirati [17], Corli [7] and give a characterization also by means of

Fourier transform, see Section 1.

Let us observe that Gs ⊂ GsP , cf. Remark 3. This allows in fact a more general result

of well-posedness, by enlarging the class of the admissible data, but we need to ask some

conditions on the operator, in particular to this end we define multi-quasi-hyperbolic

operators as in the following:
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Definition 1. Let 1 < s < ∞ and let P be a complete polyhedron. We say that a

differential operator with constant coefficients in Rn
x ×Rt of the form

P (Dt, Dx) = Dm
t +

∑

|ν|+j≤m
aνjD

ν
xD

j
t(1)

is multi-quasi-hyperbolic of order s with respect to P if there exists a constant C > 0

such that for (λ, ξ) ∈ C×Rn the condition

P (λ, ξ) = λm +
∑

|ν|+j≤m
aνjξ

νλj = 0

implies

=λ ≥ −C|ξ|1/sP ,

where |ξ|P is the weight associated to P , see Section 1 for the definition.

We will see some properties of multi-quasi-hyperbolic operators and give some nec-

essary and sufficient conditions and examples in Section 2. Finally, for them we shall

present a theorem of well-posedness in generalized Gevrey classes in Section 3, giving a

regularity result of the solution in the space and time variables; for the proof we address

to Calvo [3]. With respect to [3], here we prove stronger results concerning the charac-

terization of multi-quasi-hyperbolic operators and give some examples, see Section 2 for

details.

1. Complete polyhedra and generalized Gevrey classes. Here we recall the

definition of complete polyhedra and generalized Gevrey classes following Zanghirati [17],

Corli [7] and give an equivalent characterization based on the Fourier transform, as in

Calvo [3].

A convex polyhedron P in Rn is the convex hull of a finite set of points in Rn. There

is uniquely determined by P a finite set V(P) of linearly independent points, called the

set of vertices of P , as the smallest set whose convex hull is P .

Moreover, if P has a non-empty interior, there exists a finite set

N (P) = N0(P) ∪N1(P)

such that

|ν| = 1 for every ν ∈ N1(P)

and P = {z ∈ Rn : ∀ν ∈ N0(P) ν · z ≥ 0 ∧ ∀ν ∈ N1(P) ν · z ≤ 1}.
The boundary of P is made of faces Fν of the equation

ν · z = 0 if ν ∈ N0(P)

ν · z = 1 if ν ∈ N1(P).

Definition 2. A complete polyhedron is a convex polyhedron P ⊂ Rn
+ satisfying the

following conditions:

1. V(P) ⊂ Nn (i.e. all vertices have integer coordinates);

2. the origin (0, 0, . . . , 0) belongs to P ;

3. dim(P) = n;
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4. N0(P) = {e1, e2, . . . , en}, with ej = (0, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

) ∈ Rn for j = 1, . . . , n;

5. N1(P) ⊂ Rn
+.

We note that condition 5 means that the set

Q(x) = {y ∈ Rn : 0 ≤ y ≤ x} ⊂ P if x ∈ P
and that if s belongs to a face of P and r > s (i.e. each component rj > sj , j = 1, . . . , n),

then r 6∈ P .

We can consider also polyhedra with rational vertices instead of integer vertices and

obtain the same theory. We now give some notation related to a convex polyhedron P .

We define:

L(P) — the cardinality of N1(P);

∀ν ∈ N1(P) Fν(P) = {s ∈ P : ν · s = 1} — a face of P ;

F =
⋃
ν∈N1(P) Fν(P) — the boundary of P ;

V(P) — the set of vertices of P ;

δP = {s ∈ Rn
+ : δ−1s ∈ P}, δ > 0;

k(s,P) = inf{t > 0 : t−1s ∈ P} = maxν∈N1(P) ν · s, s ∈ Rn
+.

Now let P be a complete polyhedron. We say that

µj(P) = maxν∈N1(P) ν
−1
j ;

µ = µ(P) = maxj=1,...,n µj is the formal order of P ;

µ(0)(P) = minγ∈V(P)\{0} |γ| is the minimum order of P ;

µ(1)(P) = maxγ∈V(P) |γ| is the maximum order of P ;

q(P) =
(
µ(P)
µ1(P) , . . . ,

µ(P)
µn(P)

)
;

∀ξ ∈ Rn |ξ|P =
(∑

s∈V(P) ξ
2s
)1/(2µ)

is the weight associated to the polyhedron P .

We observe that the following estimates are satisfied:

|s|
µ ≤ k(s,P) ≤ |s| ∀s ∈ Rn

+;

(1 + |ξ|)µ(0)/µ ≤ |ξ|P ≤ (1 + |ξ|)µ(1)/µ ≤ 1 + |ξ|.
(2)

Considering a polynomial with complex coefficients, we can regard it as the symbol of a

differential operator, and associate a polyhedron to it, as in the following.

Definition 3. Let P (D) =
∑
|α|≤m cαD

α, cα ∈ C be a differential operator with

complex coefficients in Rn and P (ξ) =
∑
|α|≤m cαξ

α, ξ ∈ Rn its characteristic poly-

nomial. The Newton polyhedron or characteristic polyhedron associated to P (D) is the

convex hull of the set

{0} ∪ {α ∈ Zn+ : cα 6= 0}.
There follow some examples of Newton polyhedra related to differential operators.

1. If P (D) is an elliptic operator of order m, then its Newton polyhedron is com-

plete and is the polyhedron of vertices {0,mej , j = 1, . . . , n} and so P = {ξ ∈ Rn :

ξ ≥ 0,
∑n
i=1 ξi ≤ m}.

The set N1(P) is reduced to one point ν = m−1
∑m

j=1 ej = (m−1, . . . ,m−1).

Moreover, mj(P) = µj(P) = µ(0)(P) = µ(1)(P) = µ(P) = m, j = 1, . . . , n;
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q(P) = (1, 1, . . . , 1); k(s,P) = m−1|s| = m−1
∑n
j=1 sj , s ∈ Rn

+.

2. If P (ξ) is a quasi-elliptic polynomial of order m (see for example Hörmander [10],

Rodino [14], Zanghirati [16]), its characteristic polyhedron P is complete and has vertices

{0,mjej , j = 1, . . . , n}, where mj are fixed integers.

The set N1(P) is again reduced to one point: ν =
∑n

j=1m
−1
j ej .

Moreover, P = {ξ ∈ Rn : ξ ≥ 0,
∑n
j=1m

−1
j ξj ≤ 1};

µj(P) = mj , j = 1, . . . , n;

µ(0)(P) = minj=1,...,nmj ;

µ(P) = µ(1)(P) = maxj=1,...,nmj = m;

q(P) = ( mm1
, . . . , mmn ); k(s,P) = µ(P)−1q · s, s ∈ Rn

+.

In this case the unique face of P is defined by the equation

1

m1
x1 + . . .+

1

mn
xn = 1.

We now introduce a class of generalized Gevrey functions with weight given by a

complete polyhedron, as in Corli [7], Zanghirati [17].

They can be regarded as a particular case of inhomogeneous Gevrey classes with

weight λ, in the sense of the definition of Liess-Rodino [14], by choosing λ(ξ) = |ξ|P , cf.

Theorem 3 below.

Following Corli [7] we give first the following definition in terms of the derivatives

of u.

Definition 4. Let P be a complete polyhedron in Rn. Let Ω be an open set in Rn

and s ∈ R, s > 1. We denote by GsP(Ω) the set of all u ∈ C∞(Ω) such that

for all K ⊂⊂ Ω there exists C > 0 such that

∀α ∈ Zn+ |Dαu(x)| ≤ C |α|+1(µk(α,P))sµk(α,P).
(3)

We also define

GsP0 (Ω) = GsP(Ω) ∩ C∞0 (Ω).

The space GsP(Ω) can be endowed with a natural topology. Namely, we denote by

C∞(P , s,K,C) the space of functions u ∈ C∞(Ω) such that

supp u ⊂ K, ‖u‖K,C = sup
α∈Zn

+

sup
x∈K

C−|α|(µk(α,P))−sµk(α,P)|Dαu(x)| <∞.(4)

With such a norm C∞(P , s,K,C) becomes a Banach space. Then

GsP(Ω) =
⋂

K⊂⊂Ω

⋃

C>0

C∞(P , s,K,C)

endowed with the topology of projective limit of inductive limit.

Remark 1. If P is the Newton polyhedron of an elliptic operator, then GsP(Ω) co-

incides with Gs(Ω), the set of the standard s-Gevrey functions in Ω.

Remark 2. If P is the Newton polyhedron of a quasi-elliptic operator, then

GsP(Ω) = Gsq(Ω), where q =
(
m
m1
, . . . , mmn

)
,
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is the set of the anisotropic Gevrey functions, for definition see Hörmander [10],

Rodino [14], Zanghirati [16].

Remark 3. We have the following inclusion:

∀s > 1 ∀P Gs ⊂ GsP ,
as follows immediately from Definition 4 as |α| ≤ µk(α,P) for every P .

More precisely, we have the chain of inclusions

∀s > 1 ∀P Gsµ/µ
(1) ⊂ GsP ⊂ Gsµ/µ(0)

,

where the minimum order µ(0) and the maximum order µ(1) are defined as before. The

inclusion is strict, except the elliptic case.

This implies in particular that for any s > 1 fixed and any r > 1 there is a complete

polyhedron P such thatGr ⊂ GsP , in fact µ
µ(1) may be as large as we want for a suitable P .

We give now equivalent definitions of generalized Gevrey classes. At the end, we obtain

an estimate of the Fourier transform of a generalized Gevrey function with an exponential

of the weight function. With respect to a similar estimate in the standard Gevrey classes,

the proof is more complicated as we have to deal with the weight function associated to

the polyhedron.

Lemma 1. Let s > 1, for every K ⊂⊂ Ω there is a function χ ∈ C∞0 (Rn) such that

χ(x) = 1, x ∈ K,
|Dαχ| ≤ C(CNsµ)α·ν , if α · ν ≤ N, N = 1, 2, . . . , ν ∈ N1(P).

(5)

Lemma 2. With the previous notation, if u ∈ GsP(Rn), then taking χ as in Lemma 1,

we obtain the estimate

|χ̂u(ξ)| ≤ C
(

CNs

|ξ|P +Ns

)µN
, N = 1, 2, . . . .(6)

By using the preceding two lemmas, we obtain the following results. For details and

the proof see Calvo [3].

Theorem 3. Let Ω be an open set in Rn, x0 ∈ Ω, u ∈ D′(Ω). Then u is of the

class GsP in a neighborhood of x0 if and only if there is a neighborhood U of x0 and a

distribution v ∈ E ′(Ω), or v ∈ S ′(Rn), such that

1. v = u in U ,

2. v̂ satisfies

|v̂(ξ)| ≤ C
(
CNs

|ξ|P

)µN
= C

(
C ′N

|ξ|1/sP

)sµN
, N = 1, 2, . . . .(7)

Theorem 4. We have the following characterization of GsP by means of the Fourier

transform:

1. Let u ∈ GsP0 (Rn). Then there exist two constants C > 0, ε > 0 such that

|û(ξ)| ≤ C exp(−ε|ξ|1/sP ).(8)

2. If the Fourier transform of u ∈ E ′(Rn), or u ∈ S ′(Rn) satisfies (8), then u ∈
GsP(Rn).
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2. Multi-quasi-hyperbolic operators. For any complete polyhedron P we define

the corresponding class of multi-quasi-hyperbolic operators according to Definition 1.

For short, we denote multi-quasi-hyperbolic operators of order s with respect to P by

(s,P)-hyperbolic.

There follow some properties of (s,P)-hyperbolic operators and some necessary and

sufficient conditions of (s,P)-hyperbolicity. For the proofs of the next Propositions 5, 6, 7

we refer to [3].

Proposition 5. If P (D) is (s,P)-hyperbolic, 1 < s < ∞, then there is a constant

C > 0 such that for any (λ, ξ) ∈ C×Rn with P (λ, ξ) = 0, we have

|=λ| ≤ C|ξ|1/sP .(9)

Proposition 6. If P (D) is (s,P)-hyperbolic, 1 < s < ∞, then the principal part

Pm(D) of P (D) is hyperbolic, i.e. the homogeneous polynomial Pm(λ, ξ) satisfies

Pm(λ, ξ) = 0, (λ, ξ) ∈ C×Rn ⇒ =λ = 0.(10)

Proposition 7. For a differential operator Pm(D) associated to a homogeneous poly-

nomial Pm(λ, ξ), the notions of hyperbolicity and (s,P)-hyperbolicity coincide, for every s,

1 < s <∞.

Proposition 8. Let P (D) be a differential operator of the form

P (D) = Pm(D) +
∑

|ν|+j≤m−1

aνjD
ν
xD

j
t(11)

with homogeneous principal part

Pm(D) = Dm
t +

∑

|ν|+j=m
bνjD

ν
xD

j
t ,(12)

hyperbolic and such that Pm(λ, ξ) = 0 has roots of multiplicity less than or equal to M .

Let the lower order terms satisfy

|aνjξν | ≤ C|ξ|kP(1 + |ξ|)m−M−j for |ν|+ j ≤ m− 1, k < M.(13)

Then P (D) is (Mk ,P) hyperbolic.

To prove Proposition 8 we use the following lemma, for the proof see for example

Mizohata [13].

Lemma 9. Let P = P (Dt, Dx) be an hyperbolic operator in R × Rn with principal

symbol Pm(λ, ξ) whose roots have maximal multiplicity equal to M . Then there is a con-

stant C > 0 such that

|Pm(λ, ξ)| ≥ C(|λ|+ |ξ|)m−M |=λ|M .(14)

Proof of Proposition 8. The roots λj(ξ) (j = 1, . . . ,m) of P (λ, ξ) = 0 must

satisfy for ε > 0 the inequality

|λ| ≤ ε−1|ξ|,(15)

and for λj(ξ) we can write

Pm(λ, ξ) = −(P (λ, ξ)− Pm(λ, ξ)) = −
∑

|ν|+j≤m−1

aνjξ
νλj .(16)
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So, by the hypothesis (13) and the estimate (15) we obtain for Pm(λ, ξ)

|Pm(λ, ξ)| ≤
∑

|ν|+j≤m−1

|aνjξνλj |

≤ C
∑

|ν|+j≤m−1

|ξ|kP(1 + |ξ|)m−M−j|λ|j ≤ C ′|ξ|kP(1 + |ξ|)m−M .
(17)

By Lemma 9 we have also for large λ

|Pm(λ, ξ)| ≥ C(|λ|+ |ξ|)m−M |=λ|M ≥ C(1 + |ξ|)m−M |=λ|M .
Both together give

|=λ|M (1 + |ξ|)m−M ≤ C ′′|ξ|kP(1 + |ξ|)m−M ,
and this implies

|=λ| ≤ C ′′|ξ|M/k
P ,(18)

i.e. P = P (Dx, Dt) is
(
M
k ,P

)
-hyperbolic as we wanted to prove.

Proposition 10. Any differential operator P (D) = Dm
t +

∑
|ν|+j≤m−1 aνjD

ν
xD

j
t sat-

isfying the condition

|aνjξν | ≤ C|ξ|k−jP for |ν|+ j ≤ m− 1, k < m(19)

is (mk ,P) hyperbolic.

We note that the principal part is only Dm
t and is obviously hyperbolic. Proposition 10

states that in this particular case we may replace (13) by the weaker assumption (19).

Proof. In this case the roots of P (λ, ξ) satisfy for ε > 0 the inequality

|λ| ≤ ε−1|ξ|P .(20)

For (λ, ξ) satisfying P (λ, ξ) = 0 we write

λm = −(P (λ, ξ)− λm) = −
∑

|ν|+j≤m−1

aνjξ
νλj .

In view of the estimate (20) for λ and (19) for aνjξ
ν we conclude

|λ|m ≤ C ′
m−1∑

j=0

|ξ|k−jP |λ|j ≤ C ′′|ξ|kP .

Hence,

|=λ|m ≤ C ′′|ξ|kP , |=λ| ≤ C ′′′|ξ|k/mP ,

i.e. P (D) is (mk ,P) hyperbolic.

Remark 4. A more general version of Proposition 10 is easily obtained by assuming

as in Proposition 8 that P (D) has a hyperbolic homogeneous principal part Pm(D) =∑
|ν|+j=m bνjD

ν
xD

j
t with

|bνjξν | ≤ C|ξ|m−jP , j = 0, 1, . . . ,m− 1(21)

and still keeping condition (19) for the lower order terms.

Observe however that (21) implies bνj = 0 for all j, except the quasi-homogeneous

case.
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There follow some examples of multi-quasi-hyperbolic operators. The result is similar

to Proposition 8 for systems as in Calvo [3]. The analogue of Proposition 10 to systems

will be presented in a forthcoming paper.

Remark 5. Proposition 12 in the next section will give for these examples a result of

well-posedness for data in generalized Gevrey classes, which are strictly larger than the

standard Gevrey classes, as obtained in [4], [10], [14].

1. If P (D) is a differential operator in Rn with symbol P (ξ) and complete Newton

polyhedron P of formal order µ, then the differential operator in Rn+1

Q(D) = Dm
t + P (Dx),

with m > µ, is multi-quasi-hyperbolic of order m
µ with respect to P .

In fact, the roots of the symbol of Q(D) satisfy

|=λ| ≤ C|ξ|µ/mP .

Let us observe that, arguing in the standard Gevrey classes Gs, and applying the classical

result of s-hyperbolicity mentioned in the introduction (see [2], [4], [5], [10], [11], [14]),

we would obtain for the previous operator well-posedness in Gm/µ
(1)

, where µ(1) is the

maximal order of P , i.e. the classical order of P (Dx). Since according to Remark 3 we

have Gm/µ
(1) ⊂ Gm/µ,P , our result is stronger, providing a larger class of admissible data.

Observe however that the classical Gs result keeps valid for m > µ(1), whereas we may

argue only under the stronger condition m > µ.

2. A particular case of Proposition 8 is: if P is the polyhedron in R2 with vertices

(0, 0), (0, 2), (1, 0), then µ = 2 and the operator

P (Dx1
, Dx2

, Dt) = P3(Dx1
, Dx2

, Dt) + C1D
2
x2

+ C2Dx1
+ C3Dx2

+ C4Dt + C5

where P3(Dx1
, Dx2

, Dt) is a hyperbolic homogeneous operator of order 3 and C1, . . . , C5

belong to C, is multi-quasi-hyperbolic of order 3
2 with respect to P .

3. If P is the same polyhedron as in Example 2, then the operator of order 3

P (Dx1
, Dx2

, Dt) = P3(Dx1
, Dx2

, Dt)

+ C1Dx1
Dx2

+ C2D
2
x2

+ C3Dx2
Dt + C4Dx1

+ C5Dx2
+ C6Dt + C7,

where C1, . . . C7 ∈ C and the principal part P3(Dx1
, Dx2

, Dt) is hyperbolic and has roots

of maximal multiplicity equal to 2, is (2,P)-hyperbolic. In fact, its terms satisfy (13).

4. Another particular case of Proposition 8 is: if P is the polyhedron in R2 with

vertices (0, 0), (0, 3), (1, 2), (2, 0), then the formal order is µ = 4 and the operator of

order 4

P (Dx1
, Dx2

, Dt) = P4(Dx1
, Dx2

, Dt) + C1D
2
x2

+ C2Dx1
Dx2

+ C3Dx2
Dt

+ C4Dx1
+ C5Dx2

+ C6Dt + C7,

where P4(Dx1
, Dx2

, Dt) is a hyperbolic homogeneous operator of order 4 and C1, . . . , C7

belong to C, is multi-quasi-hyperbolic of order 4
3 with respect to P .

5. Let P be the same polyhedron as in Example 4. Then any operator of order 5 of

the form

P (Dx1
, Dx2

, Dt) = P5(Dx1
, Dx2

, Dt)
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+ C1D
3
x2

+ C2D
2
x2
Dt + C3Dx1

D2
x2

+ P2(Dx1
, Dx2

, Dt)

with hyperbolic principal part P5(Dx1
, Dx2

, Dt), having roots of multiplicity less than or

equal to 4, where P2(Dx1
, Dx2

, Dt) denotes a generic operator with constant coefficients

of order 2 and C1, . . . , C3 ∈ C, is
(

4
3 ,P

)
-hyperbolic as its terms satisfy condition (13).

3. Well-posedness in generalized Gevrey classes. We now present results of

well-posedness of the Cauchy problem in generalized Gevrey classes for multi-quasi-

hyperbolic operators. First we give a result of regularity with respect to the space vari-

ables. Then we extend the regularity to the time variable. To do so, we need to extend

the polyhedron to one more dimension. In this connection we shall present two theorems.

The first one allows a better result in a particular situation. Then the general case is

presented. For brevity, we omit the proofs, that are based on the properties of complete

polyhedra, on the associated weight functions, on the properties of the Fourier transform

and on the generalized Gevrey functions. For details see Calvo [3].

Theorem 11. Let P (D) be a differential operator in Rt×Rn
x and let us consider the

corresponding Cauchy problem

P (D)u = Dm
t u+

∑
|ν|+j≤m aν+jD

ν
xD

j
tu = 0,

Dk
t u(0, x) = fk(x), x ∈ Rn, k = 0, 1, . . . ,m− 1,

(22)

and let P be multi-quasi-hyperbolic of order s with respect to a complete polyhedron P
in Rn, with 1 < s <∞. Let 1 < r < s and assume fk ∈ GrP0 (Rn

x) for k = 0, 1, . . . ,m−1.

Then there exists a unique solution u(t, ·) ∈ GrP(Rn
x), for t ∈ R, satisfying (22).

Now we will discuss the regularity with respect to the time variable. For this reason

we extend the polyhedron to (n+ 1) variables, that is possible by means of the following

proposition:

Proposition 12. Given a complete polyhedron P in Rn, we define P ′ as the convex

hull in Rn+1 of the vertices of P, regarded as points in Rn+1with zero as first component,

plus the vector (µ0, 0, . . . , 0) with µ0 ∈ Q+, 0 < µ0 ≤ µ. Then P ′ is a complete polyhedron

in Rn+1 with the same formal order µ of P. We call P ′ an extension of P in Rn+1.

If the further vertex has coordinates (µ, 0, . . . , 0) with µ denoting the formal order

of P, we say that P ′ is the maximal extension of P in Rn+1.

Now we present two results for regularity with respect to the time variable.

Theorem 13. Let us suppose the assumptions of Theorem 11. If the terms aνjξ
ν

satisfy the condition

|aνjξν | ≤ C|ξ|m−jP , j = 0, 1, . . . ,m− 1,(23)

then the solution u of the Cauchy problem (22) belongs to the class GrP
′
(Rn+1), where

P ′ denotes the maximal extension of P to Rn+1.

In the general case, we have the following result, that allows to consider a smaller

Gevrey class, as we ask for a stronger condition on the polyhedron P ′.
Theorem 14. Under the assumptions of Theorem 11 the solution u to the Cauchy

problem (22) belongs to GrP
′
(Rn+1), where P ′ is the extension of P to Rn+1 which is
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obtained by adding to P the vertex

s0 = (µ0, 0, . . . , 0), µ0 = µ(0),

µ(0) = µ(0)(P) = min{mj : mjej ∈ V(P), j = 1, . . . , n} = minγ∈V(P)\{0} |γ|.
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