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Abstract. We present the review of noncommutative symmetries applied to Connes’ for-
mulation of spectral triples. We introduce the notion of equivariant spectral triples with Hopf
algebras as isometries of noncommutative manifolds, relate it to other elements of theory (equiv-
ariant K-theory, homology, equivariant differential algebras) and provide several examples of
spectral triples with their isometries: isospectral (twisted) deformations (including noncommu-
tative torus) and finite spectral triples.

1. Introduction. Spectral triples were proposed (in their present form) by Alain
Connes [13] as the noncommutative generalisation of spin manifolds. The theory, for-
mulated in an axiomatic way, uses the representation of an algebra on a Hilbert space
together with an unbounded Dirac operator. The latter determines both the differential
calculus as well as the metric. The natural symmetries, which appear in this approach,
are related to the automorphism group of the algebra. Although this seems to be suffi-
cient in the classical case, one may conjecture that for noncommutative algebras there is
still place for symmetries in the form of Hopf algebras.

This paper is a self-contained review of a proposition for the definition of a noncom-
mutative version of an isometry of a spectral triple, in the form of a Hopf algebra H. It is
organised as follows: in the next section we review the basic notions and definitions used
in the paper, in particular, these of equivariant modules and bimodules. We explicitly
present the example of the tautological line bundle over the quantum sphere. We mention
also the relation with the equivariant Hochschild (co)homology and K-theory. Further,
we define equivariant Fredholm modules and cycles, then equivariant spectral triples and
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232 A. SITARZ

equivariant real spectral triples. In the last section we discuss the basic examples: the
noncommutative torus and more general isospectral deformations and the spectral triples
over discrete spaces.

2. Hopf algebras as symmetries. We briefly recall here the most important no-
tions used further. H will always denote a Hopf algebra. We use Sweedler’s notation for
the coproduct: ∆h = h(1)⊗h(2). Omitted proofs can be found in the textbooks by Shahn
Majid [31] or Chari and Pressley [10].

2.1. Action on algebras, modules and bimodules

Definition 2.1. An H-module is a pair (V, ρ), where V is a linear space and ρ is a
complex linear representation of H on V . To simplify the notation we shall write h . v,
h ∈ H, v ∈ V instead of ρ(h)v.

Definition 2.2. An algebra A is a left H-module algebra if A is a left H-module and
the representation respects the algebra structure in A:

h . (a1a2) = (h(1) . a1)(h(2) . a2),(1)

for all h ∈ H, a1, a2 ∈ A. In the case of unital A:

h . 1 = ε(h), ∀h ∈ H,(2)

whereas the action of 1 ∈ H is:

1 . a = a, ∀a ∈ A.(3)

The canonical examples of Hopf algebra actions are given through the adjoint action
of the Hopf algebra on itself and the action of its dual:

Example 2.3. Every Hopf algebra is an H-module algebra through the left adjoint
action on itself:

h .Ad g = h(1)g(Sh(2)),(4)

for h, g ∈ H.

Example 2.4. If there exist the dual Hopf algebra H∗, then there is a canonical
action of the Hopf algebra H on its dual H∗:

h . φ = φ(1)〈h, φ(2)〉,(5)

where h ∈ H,φ ∈ H∗.
The adjoint action of the group algebra is the linear extension of the adjoint action

of the group. In particular, for any algebra A, if A+ is a group of its invertible elements,
then the group algebra CA+ acts on A by the adjoint action:

(∑

i

cigi

)
. a =

∑

i

cigiag
−1
i ,(6)

for gi ∈ A+ and ci ∈ C, i = 1, . . . , n.
There exists always a trivial action of H on any algebra A, given through:

h . a = ε(h)a.(7)
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Definition 2.5. For a pair (H,A), a Hopf algebra H and an H-module algebra A
the left cross product algebra AoH1 is the linear space A⊗H equipped with the product:

(a⊗ h)(b⊗ g) = (a(h(1) . b)⊗ h(2)g).(8)

One defines similarly right H-module algebras (and constructs right cross products). For
right and left H-module algebras one can introduce the notion of an H-bimodule algebra:

Definition 2.6. We say thatA is anH-bimodule algebra ifA is an H-left and H-right
module algebra and the left and right actions commute with each other:

(h . a) / g = h . (a / g),(9)

for all h, g ∈ H and a ∈ A.

One can extend the notion of the action of Hopf algebras to modules over algebras.

Definition 2.7. Let M be an A-left module and let A be an H-module algebra (left).
Then M is an H-equivariant A-module if M itself is an H-module and:

h . (am) = (h(1) . a)(h(2) . m),(10)

for all h ∈ H, a ∈ A, m ∈M .

Clearly, an equivalent definition (but with right A-module structure) gives us right
H-equivariant A-modules. Putting these two conditions together we define H-equivariant
A-bimodules. In such a case we have:

h . (amb) = (h(1) . a)(h(2) . m)(h(3) . b),(11)

for all h ∈ H, a, b ∈ A, m ∈M .
Note the following:

Proposition 2.8. If A is a left H-module algebra and M is an H-equivariant left
A-module then M is a left module over the cross product algebra AoH, with the module
multiplication:

(a⊗ h)m = a(h . m).

Since the converse is trivially true, we see the equivalence of H-equivariant modules
with modules over the cross product algebras.

Before we proceed with the properties of equivariance, let us define invariant elements.
We say that an element m ∈M of an H-equivariant module is invariant under the action
of H if h . m = ε(h)m for all h ∈ H. A submodule N ⊂ M is invariant if (h . N) ⊂ N

for all h ∈ H. It is clear that a submodule generated by invariant elements is invariant.
One can state:

Proposition 2.9. If r : M → N is a module epimorphism between left A-modules,
M is H-equivariant and ker r ⊂ M is an H-invariant submodule then N is also H-
equivariant.

1Note that in the literature this is also called a smash product algebra while the name cross
product is used to denote a larger class of products, where the action of the Hopf algebra is
twisted by a cocycle.
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Proof. It is sufficient to define the action of h ∈ H on n ∈ N through:

h . n = r
(
h . r−1(n)

)
.(12)

As an immediate corollary we have:

Corollary 2.10. If M is an H-equivariant A-module and N is its H-invariant sub-
module, then the quotient module M/N is also H-equivariant.

It is natural to define equivariant module morphisms:

Definition 2.11. Let M,N be equivariant (left-, right- or bi-) modules over an H-
module algebra A. A linear map ψ : M → N is an equivariant (left-, right-, bi-) module
morphism if ψ is a (left-, right-, bi-) module morphism and for every h ∈ H, m ∈M

h . ψ(m) = ψ(h . m).

It is easy to see that the projection r from Proposition 2.9 is equivariant. On the other
hand, we may easily observe:

Proposition 2.12. If M,N are equivariant (left-, right- or bi-) modules over an
H-module algebra A and ψ an equivariant (left- right-, bi-) module morphism between
them, then the kernel of ψ is H-invariant.

Of course, any H-module algebra is H-equivariant as a left module, right module, and
a bimodule over A. This extends also to any free left (or right) module over an H-module
algebra A. However, it is interesting to observe that there are many possible actions of
H on An:

Proposition 2.13. For every linear map H 3 h 7→ aij(h) ∈Mn(A), which satisfies:

n∑

j=1

(
h(1) . a

i
j(g)

)
ajk(h(2)) = aik(hg), h, g ∈ H, i, k = 1, . . . , n,(13)

there is an action of the Hopf algebra H on the free module An, given on the canonical
basis of An, ei, i = 1, . . . , n as:

h . ei =
∑

j

aij(h)ej .(14)

In particular, every finite-dimensional representation of H, aji (h) ∈ Mn(C) satisfies
the condition (13).

The equivariant left (right- and bi-) modules behave well under direct sums. Consider
now their tensor products. Notice that for a left A-module M and a vector space N ,
M ⊗N has a natural left-module structure given by a (m⊗ n) = am⊗ n. We have:

Proposition 2.14. If M is an H-equivariant left A-module, and N is an H-module,
then M ⊗N is an H-equivariant left A-module with the action of H:

h . (m⊗ n) = (h(1) . m)⊗ (h(2) . n).(15)

This result can be extended to the situation where N is an H-equivariant right A-
module:
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Proposition 2.15. If M,N are respectively left and right A-modules which are H-
equivariant then M ⊗N is an H-equivariant bimodule over A with the module structure
given by:

a (m⊗ n)b = am⊗ nb,
and the action (15).

Finally, if both M and N are H-equivariant bimodules, we have:

Proposition 2.16. If M,N are H-equivariant A-bimodules then their tensor product
over A is an H-equivariant bimodule.

Proof. Due to Proposition 2.15, M ⊗N is already an H-equivariant bimodule. There-
fore, it is sufficient to demonstrate that the subbimodule I generated by the elements
ma⊗ n−m⊗ an is H-invariant:

h . (m⊗ an−ma⊗ n)

= h(1) . m⊗ h(2) . (an)− h(1) . (ma)⊗ (h(2) . n)

= (h(1) . m)⊗ (h(2) . a)(h(3) . n)− (h(1) . m)(h(2) . a)⊗ (h(3) . n),

and the last expression is still in I, so I is indeed H-invariant. For this reason the quotient
(M ⊗N)/I is H-equivariant.

2.2. Equivariant bimodules and Yetter-Drinfeld H-algebras. A particularly interest-
ing example of equivariant bimodules is given by the Yetter-Drinfeld H-algebra structure
(see [28] for details). Recall that an H-module algebra is a Yetter-Drinfeld module algebra
A if it is simultaneously a right Hop-comodule algebra with the following compatibility
condition between the coaction ρ : A → A⊗Hop, ρ(a) =: a(0) ⊗ a(1) (summation under-
stood) and the H-module structure:

ρ(h . a) =
(
h(2) . a(0)

)
⊗ h(3)a(1)(S

−1h(1)),(16)

for all a ∈ A, h ∈ H.
We assume here that H has an invertible antipode. We use here the left-module and

right-comodule version of the definition but, clearly, all four versions (left-left, right-left
left-right and right-right) are completely equivalent by replacing H with its opposite
algebra, or coopposite coalgebra structure.

Proposition 2.17. 2 Let A be a left H-module algebra and a right H-comodule.
Assume that A ⊗ H is a left H-module via the diagonal action: h . (a ⊗ g) := (h(1) .

a) ⊗ h(2)g. Then A is a Yetter-Drinfeld module algebra if and only if A ⊗ H is an H-
equivariant A-bimodule with the natural left A-multiplication and a right A-multiplication
such that ((a ⊗ g)b)h = (a ⊗ gh)b, ∀ a, b ∈ A, g, h ∈ H (right H-linearity of the right
A-multiplication).

Note that the aforementioned H-linearity of the right A-module structure could be
rephrased as the H-equivariance with respect to the trivial right H-action on A.

2I am grateful to P. M. Hajac for a discussion that led me to this result.
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Proof. Assume that A is a Yetter-Drinfeld module algebra. First, using its coaction
ρ, we define a right A-module structure on A⊗H:

(a⊗ h)b = ab(0) ⊗ b(1)h, ∀a, b ∈ A, h ∈ H.
The left A-module structure is the obvious one. Clearly, A⊗H is an H-equivariant left
module. Let us now check, using the condition (16), whether the action of H is compatible
with the right multiplication:

(
h(1) . (a⊗ g)

)
(h(2) . b) =

(
(h(1) . a)⊗ h(2)g

)
(h(3) . b)

= (h(1) . a)(h(3) . b)(0) ⊗ (h(3) . b)(1)h(2)g

= (h(1) . a)
(
h(4) . b(0)

)
⊗ h(5)b(1)(S

−1h(3))h(2)g

= (h(1) . a)
(
h(4) . b(0)

)
⊗ h(5)b(1)S

−1 ((Sh(2))h(3)
)
g

= (h(1) . a)
(
h(2) . b(0)

)
⊗ h(3)b(1)g

= h(1) . (ab(0))⊗ h(2)b(1)g

= h . ((a⊗ g)b) .

The H-linearity of the right A-module structure on A⊗H is obvious.
Conversely, suppose that A⊗H is an H-equivariant bimodule with a right H-linear

right A-module structure. Let us define a linear map ρ : A → A⊗Hop:

ρ(a) = (1⊗ 1)a, ∀a ∈ A.
Since the right A-multiplication on A ⊗H is right H-linear, we clearly see that ρ is an
algebra homomorphism:

ρ(ab) =
(
a(0) ⊗ a(1)

)
b = a(0) ((1⊗ 1)b) a(1)

= a(0)
(
b(0) ⊗ b(1)

)
a(1) = a(0)b(0) ⊗ b(1)a(1).

The verification of the Yetter-Drinfeld compatibility condition (16) between the left H-
module structure and the right Hop-comodule structure follows directly from the equiv-
ariance requirement and the right H-linearity:

ρ(h . a) = (1⊗ 1)(h . a)

= ε(h(2))⊗ h(3)S
−1(h(1)))(h(4) . a)

= (h(2) . 1⊗ h(3)S
−1(h(1)))(h(4) . a)

= (h(2) . (1⊗ S−1(h(1))))(h(3) . a)

= (h(2) . ((1⊗ S−1(h(1)))a))

= (h(2) . (((1⊗ 1)a)S−1(h(1)))

= (h(2) . (a(0) ⊗ a(1)S
−1(h(1)))

= h(2) . a(0) ⊗ h(3)a(1)S
−1(h(1)).

This ends the proof.

2.3. Equivariant projective modules. Having shown that free modules over an H-
module algebra are equivariant, we shall now investigate the case of finitely generated
projective modules. The example, which we shall demonstrate explicitly, is the tautolog-
ical line bundle over the equatorial Podleś quantum sphere.
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We take the description of finitely generated projective modules through the idem-
potents in Mn(A). The problem is to define conditions for such idempotents, which
determine whether they give equivariant left modules. For free modules the equivariant
action is given by the relation (13). Let ρ be an n-dimensional right-representation of the
Hopf algebra H. Then, for a free module An, with its canonical basis ei, we set:

h . ei =
n∑

j=1

ejρ(h)ij ,(17)

and thus we obtain the structure of an H-equivariant left module.
Now, to say that a projection P ∈Mn(A) defines an equivariant H-module is equiv-

alent to the statement that its kernel is H-invariant. We shall now derive the necessary
conditions for this, restricting ourselves to the case of the action given by finite dimen-
sional representations. Let us denote:

eiP =
n∑

j=1

P ije
j , P ij ∈ A, i = 1, . . . , n.

Then we have the following result:

Proposition 2.18. If there exists a linear map M : H →Mn(A) such that for every
h ∈ H:

n∑

j=1

ρlj(h)P jk =
n∑

i=1

(h(1) . P
l
i )M

i
k(h(2)), l, k = 1, . . . , n,(18)

then the kernel of P is H-invariant.

Proof. Let us assume that An 3 m =
∑n
i=1 v

iei is in the kernel of P . Then for every
j = 1, . . . n, we have

∑n
i=1 v

iP ij = 0. Using (18) we calculate for a given h ∈ H:

(h . m)P =
n∑

i,j=1

(h(1) . v
i)ρij(h(2))(e

jP )

=
n∑

i,j,k=1

(h(1) . v
i)ρij(h(2))P

j
ke
k

=
n∑

i,j,k=1

(h(1) . v
i)(h(2) . P

i
j )M

j
k(h(3))e

k

=
n∑

j,k=1

(
h(1) .

( n∑

i=1

viP ij

))
M j
k(h(2))e

k = 0.

We shall illustrate the requirement (18) with an interesting example of the Podleś
equatorial quantum sphere:

Example 2.19. Let A(S2
q ) be the algebra defining the Podleś equatorial quantum

sphere [37]. It is given by the relations:

ba = q2ab, a∗b = q2ba∗,
a∗a+ b2 = 1, q2aa∗ + 1

q2 b
2 = q2.

(19)
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The action of Uq(su2) (for the relations and coproduct relations of this quantum group,
see for instance [31]) is expressed on the generators of A(S2

q ) through:

k . a = qa, e . a = −(1 + q2)q−
5
2 b, f . a = 0

k . a∗ = 1
qa
∗, e . a∗ = 0, f . a∗ = (1 + q2)q−

3
2 b,

k . b = b, e . b = q
1
2 a∗, f . b = −q 3

2 a.

The tautological line bundles over S2
q (see [7]) are defined as projective modules with

the projectors:

P±q =
1
2

(
1∓ 1

q2 b ∓qa
∓ 1
qa
∗ 1± b

)
.(20)

Using the condition (18) and Proposition 2.18 we shall demonstrate that these are
Uq(su2)-equivariant projective modules. The map M i

k(h) is in this particular case given
by M i

k(h) = ρij(h)P jk .
Let us show the calculation for h = e only, it is done in a similar manner for other

generators of Uq(su2). We use the two-dimensional fundamental representation of Uq(su2):

e =
(

0 1
0 0

)
, k =


 q

1
2 0

0 q−
1
2


 ,

First, the left-hand side is:

ρ(e)P±q = 1
2

(
∓ 1
qa
∗ 1± b

0 0

)
,

and after some calculation we see that the right-hand side is the same:

1
4

(
∓q− 3

2 a∗ ±q− 3
2 (1 + q2)b

0 ±q 1
2

)
 q

1
2 0

0 q−
1
2



(

1∓ 1
q2 b ∓qa

∓ 1
qa
∗ 1± b

)
+

+
1
4

(
1∓ 1

q2 b ∓a
∓a∗ 1± b

)(
0 1
0 0

)(
1∓ 1

q2 b ∓qa
∓ 1
qa
∗ 1± b

)

=
1
4

(
∓ 1
qa
∗ 1± b

0 0

)(
1∓ 1

q2 b ∓qa
∓ 1
qa
∗ 1± b

)
=

1
2

(
∓ 1
qa
∗ 1± b

0 0

)
.

2.4. Action and star structures

Definition 2.20. If both A and H have a star structure and, additionally, H is a
star Hopf algebra (see [31], p. 31, for instance) we say that the action is compatible with
the star structure if:

(h . a)∗ = (Sh)∗ . a∗.(21)

As a nice little exercise we demonstrate that the properties of the star as well as of
the action hold and are compatible with the equation (21):

(h . (ab))∗ = (h(2) . b)
∗(h(1) . a)∗ = ((Sh(2))

∗ . b∗)((Sh(1))
∗ . a∗)

= (Sh)∗ . (b∗a∗) = (Sh)∗ . (ab)∗,
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and:

(hg . (a))∗ = ((S(hg))∗ . a∗) = ((Sg) (Sh))∗ . a∗ = (Sh)∗ . ((Sg)∗ . a∗)

= (Sh)∗ . (g . a)∗ = (h . (g . a))∗ .

We shall call such an algebra A a star H-module algebra. Having a star Hopf algebra
H and a star H-module algebra A we define the star involution on the cross-product
(smash-product) AoH through:

(a⊗ h)∗ = (h∗(1) . a
∗)⊗ h∗(2).(22)

It should be noted that this is a special case of a cleft Hopf-Galois extension with
a star structure. Recall that a Hopf-Galois extension A ⊂ P is an algebra P with a
left A-module structure and a right H-comodule algebra structure such that A is the
subalgebra of coinvariants of P satisfying certain conditions. For details on Hopf-Galois
extensions we refer to [39]. We say that P is a star Hopf-Galois extension if all morphisms
preserve the star structure.

An extension is cleft if there exists a cleaving map j : H → A⊗H. A cleaving map
is a (unital) homomorphism which is convolution invertible, i.e.,

j(h(1))j
−1(h(2)) = ε(h) = j−1(h(1))j(h(2)), ∀h ∈ H,

and intertwines between the right coaction on P and the right coaction on H given by
the coproduct. For cleft Hopf-Galois extensions we have an isomorphism i of A⊗H with
P as left A-modules and right H-comodules:

i : (a⊗ h) 7→ aj(h) ∈ P, ∀a ∈ A, h ∈ H.
Assuming that the cleaving map preserves the star structure, we can carry the star from
P to A⊗H:

(a⊗ h)∗ = i−1(i(a⊗ h)∗) = i−1((aj(h))∗) = i−1(j(h)∗a∗)) =

= i−1(j(h∗(1))a
∗j−1(h∗(2))j(h

∗
(3)))

= j(h∗(1))a
∗j−1(h∗(2))⊗ j(h∗(3)),

where in the last line we used the properties of the cleaving map j and the isomorphism
i (see [31], p. 268).

Note that in our particular case (smash product) when j is an algebra homomorphism,
it defines an action of H on A in the following way:

h . a = j(h(1))aj
−1(h(2)).

Here we look at A as a subalgebra of P . This proves the formula (22).

2.5. Equivariant differential bimodules. Let A be a unital algebra and Ω1(A) a dif-
ferential bimodule over A. Throughout this section we shall always assume that A is an
H-module algebra.

Definition 2.21. Ω1(A) is an H-equivariant differential bimodule over A if it is a
differential, H-equivariant bimodule and the action of H intertwines with the Ω1(A)-
valued derivation d:

h . (da) = d(h . a), ∀a ∈ A, h ∈ H.(23)
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The basic example of an H-equivariant differential bimodule is given by the universal
differential bimodule over any H-module algebra. Indeed, Ω1

U (A) is defined as a kernel of
the multiplication map m : A⊗A → A. Therefore, since m is a bimodule morphism and,
evidently, m is H-equivariant, from Proposition 2.12 we see that its kernel is H-invariant.
It remains only to check the condition (23):

h . (da) = h . (a⊗ 1− 1⊗ a)(24)

= (h . a)⊗ 1− 1⊗ (h . a) = d(h . a).

Since, from the universality of Ω1
U (A), every differential bimodule over an algebra A is

obtained as a quotient of the universal differential bimodule, we get:

Corollary 2.22. The differential bimodule Ω1(A) is H-equivariant if and only if the
submodule I ⊂ Ω1

U (A) such that Ω1(A) = Ω1
U (A)/I is H-invariant, that is, ∀h ∈ H :

(h . I) ⊂ I.

The right equivariance is defined similarly and bicovariance (under the action of Hopf
algebra) follows as the requirement that Ω1(A) is an H-bimodule (like A) and d inter-
twines both the left and right actions. Further, we extend the notion of equivariance to
the full differential algebra:

Definition 2.23. Let Ω∗(A) be a graded differential algebra over A. We say that it
is H-equivariant if it is an H-module algebra and the action of H intertwines with the
external derivative.

Again, it is an easy exercise to verify that the universal differential algebra over an
H-module algebra is H-equivariant. Similarly like in the case of the differential bimodule,
it follows from universality that every H-equivariant differential algebra is a quotient of
the universal one by an H-invariant differential ideal.

2.6. H-equivariant Hochschild homology. The notion of equivariant Hochschild com-
plex was studied by many persons. In particular, the equivariant version of Hochschild-
Konstant-Rosenberg map was constructed by Block and Getzler [5]. Brylinski [6] showed
that for any topological algebra and G a compact Lie group, which acts continuously on
it, for the continuous Hochschild cohomology HHG

∗ (A) = HH∗(AoG).
In the group case the definition of a M -valued equivariant Hochschild complex, where

M is a G-bimodule is straightforward, in fact the generalisation to the Hopf algebra case
is also not difficult.

Let us recall the construction of the Cbar∗ complex (for details, further definitions and
properties of Hochschild (co)homology see, for instance, the book of Loday [30]).

Definition 2.24. Let A be an algebra. Cbar∗ is the following complex:

b′→ · · ·A⊗n b′→ A⊗(n−1) b′→ · · · b
′
→ A⊗3 b′→ A⊗2,

where b′ is a linear map on A⊗n defined as b′ =
∑n−1
i=0 (−1)iδi, where:

δi(a0 ⊗ a1 ⊗ · · · ai ⊗ ai+1 ⊗ · · · ⊗ an) = a0 ⊗ a1 ⊗ · · · aiai+1 ⊗ · · · ⊗ an.
Proposition 2.25. Let A be an H-module algebra and let us extend the action of H

to the complex Cbar∗ using (15). Then the boundary b′ is an equivariant map.
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Proof. First, check that for each 0 ≤ i < n, δi is an equivariant linear map:

δi (h . (a0 ⊗ a1 ⊗ · · · ⊗ an))

= δi
(
(h(1) . a0)⊗ (h(2) . a1)⊗ · · · ⊗ (h(n+1) . an)

)

=
(
(h(1) . a0)⊗ · · · ⊗ (h(i+1) . ai)(h(i+2) . ai+1)⊗ · · · ⊗ (h(n+1) . an)

)

=
(
(h(1) . a0)⊗ · · · ⊗ (h(i+1) . (aiai+1)⊗ · · · ⊗ (h(n) . an)

)

= h . (a0 ⊗ · · · ⊗ (aiai+1)⊗ · · · ⊗ an)

= h . (δi(a0 ⊗ a1 ⊗ · · · ⊗ an)) .

So b′ =
∑n−1
i=0 (−1)iδi is also equivariant.

Note that the equivariant bar complex is still acyclic for a unital algebra A. In fact,
the operator s:

s(a0 ⊗ a1 ⊗ · · · ⊗ an) = (1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an),

which gives the contracting homotopy, is again H-equivariant:

h . (s(a0 ⊗ a1 ⊗ · · · ⊗ an)) = s (h . (a0 ⊗ a1 ⊗ · · · ⊗ an)) .

Therefore the equivariant Cbar∗ complex is not an interesting object in itself. Note that
a naive extension of the action onto the more interesting Hochschild complex does not
work. Instead, we may turn to the Hochschild cohomology with values in an H-equivariant
bimodule M .

Proposition 2.26. Take an H-equivariant bimodule M and the complex Cbar∗ over an
H-module algebra A. Consider the linear space of all H-equivariant bimodule morphisms
φ : Cbar∗ →M , we denote by φn the restriction of φ to the subspace A⊗(n+1). Define the
coboundary δ:

(δφ)n+1 = −(−1)nφn ◦ b′, n = 1, 2, . . .(25)

Then the space HomH(Cbar∗ ,M) with δ as a coboundary is a cochain complex, which we
shall call an H-equivariant Hochschild cochain complex valued in M .

The subset of H-equivariant Hochschild cochains is a subcomplex of the complex
of Hochschild cochains. Its cohomology is the H-equivariant Hochschild cohomology
HH∗H(A,M).

In practice, we shall use the equivalent description of Hochschild n-cochains as linear
maps from A⊗n → M , with the standard formula for the coboundary. Clearly, we have
some immediate follow-ups of the above proposition.

Lemma 2.27. HH0
H(A,M) is an H-invariant subspace of central elements of M on

which H acts trivially:

HH0
H(A,M) = {m ∈M : h . m = ε(h)m, ∀h ∈ H; am = ma, ∀a ∈ A}

Lemma 2.28. H-equivariant 1-cocycles are H-equivariant M -valued derivations on A
and HH1

H(A,M) are H-equivariant outer derivations.

Proof. Indeed, the cocycle requirement for a map D : A →M gives:

aD(b)−D(ab) +D(a)b = 0,
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whereas the equivariance tells us that:

D(h . a) = h . (D(a))(26)

for all a, b ∈ A, h ∈ H.

Note that (26) exactly matches the requirement for the H-equivariance of differential
structures (23). Furthermore, the equivariant coboundaries are exactly inner derivations
by an H-invariant element from M .

The presented definition and construction of an equivariant M -valued Hochschild
cohomology is a special case. The Hochschild cohomology of an algebra A takes the
opposite algebra Aop as the bimodule M . Since, in general, this is not an H-equivariant
bimodule, we cannot define equivariant cochains.

There are several possible solutions to define equivariant Hochschild cohomology of
A. The trivial one is to use the trivial H-module structure on Aop. One may also, for
instance, take the bimodule of complex linear functionals on A ⊗ H, as M , with the
bimodule structure:

(af)(b, h) = f(ba, h), (fa)(b, h) = f((Sh(1) . a)b, h(2)).(27)

This was first presented by Akbarpour and Khalkhali [1] and was used to extend the
notion of cyclic cohomology on Hopf module algebras using the Connes-Moscovici cyclic-
ity operator on Hopf algebras [15]. Further developments were presented recently by
Khalkhali and Rangipour [27] and Hajac, Khalkhali, Rangipour and Sommerhäuser [24].

It is worth noting that the twisted version of Hochschild and cyclic cohomology (as
developed by Kustermans, Murphy and Tuset [29]) is just a Z-equivariant version of
Hochschild (cyclic) cohomology, with the Z action given by a twisting automorphism
related to the Haar measure.

2.7. Equivariant K-theory. In the K-theory of C∗-algebras, the notion of equivariance
with respect to the action of a group is, in principle, well defined. Many results are,
however, restricted to the case of finite or compact Lie groups. Basically, for commutative
algebras of functions on a manifold the notion is that of a G vector bundle. This translates
easily to an equivariant finitely generated projective module, or, equivalently, classes of
G-invariant idempotents (see the book of Blackadar [4] for introduction).

In the case of not necessarily commutative C∗-algebras, we might consider their equiv-
ariant K-theory or the K-theory of cross product algebras. The latter is called analytic
equivariant K-theory. In some cases they are known to be isomorphic, as shown in one
of the crucial results of G-equivariant K-theory obtained by Julg [25]:

Lemma 2.29. For a C∗-algebra A and a continuous free action of a compact group G
we have:

KG
0 (A) = K0(AoG).

From the algebraic point of view, K0 of an algebra is the theory of projective modules
over the algebra, hence, the step towards the definition of H-equivariant K-theory is, in
principle, a simple one. The definition given here is similar to presented by Akbarpour
and Khalkhali [1] as well as Neshveyev and Tuset [34].
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Definition 2.30. The H-equivariant KH
0 (A) group of the H-module algebra A is

the Grothendieck group of H-equivariant stable isomorphism classes of H-equivariant
finitely generated projective left modules over A.

Clearly this group is not empty as all free modules over H-module algebra are equiv-
ariant.

3. Equivariant Fredholm modules. The basic roots for the K-homology lie in the
index theorem of Atiyah and Singer—when it was understood that the correct objects,
which pair with the K-theory of topological spaces are elliptic pseudodifferential oper-
ators. This led Kasparov [26] to the abstract notion of generalised elliptic operators. It
was developed into the theory of Fredholm modules and the K-homology and finally into
KK-theory of C∗-algebras by generalising the results of Brown, Douglas and Fillmore.
To fix the notation we briefly review the fundamental definitions. The basic ingredients
to construct a Fredholm module are rather simple: an involutive algebra A, its repre-
sentation π on a separable Hilbert space H and an operator F . By B(H) we denote the
algebra of bounded operators on H.

Definition 3.1. The data (A, π,H, F ) is a Fredholm module if F = F ∗, F 2 = 1 on
H and for every a ∈ A, π(a) ∈ B(H) and for every a ∈ A the commutator [F, π(a)] is
compact on H. If there exists a grading γ = γ∗, γ2 = 1 and γF = −Fγ then we have an
even Fredholm module, otherwise we have an odd Fredholm module.

As we have mentioned, the prototype of a Fredholm module is given by the sign of
an elliptic differential operator over a compact manifold M . The Hilbert space is then
the the space of summable sections of a vector bundle over M , on which the operator is
acting. With an appropriate definition of the equivalence relations (which we shall not
enter into) and with the natural addition we obtain the abelian groups of K0 (in the even
case) and K1 (in the odd case) of K-homology of the underlying algebra.

The known passage from the “differential geometry” data to K-homology motivated
the search for noncommutative counterparts of well known objects from classical com-
mutative geometry. This led to the introduction of the notion of K-cycles or unbounded
Fredholm modules:

Definition 3.2 (Connes, [12], p. 310). An unbounded Fredholm module (K-cycle) is
given by an involutive algebra A, its star representation π as bounded operators on a
Hilbert space and an unbounded selfadjoint operator D with compact resolvent such that
[D, π(a)] is bounded for all a ∈ A.

There exists a canonical assignment of a Fredholm module to the K-cycle given by
F = sign(D) outside ker D. On the finite dimensional kernel of D one takes an arbitrary
isometry (see [12], p. 310 for details).

One of the most interesting problems in noncommutative geometry is an explicit
construction of the inverse map, that is, an assignment of a K-cycle to a given Fredholm
module. It seems to be a rather delicate task and up to now an explicit construction
is possible only in special cases. It is known, however, (even in a more general setup of
KK-theory) that all the elements of K-homology arise from appropriate constructions
of unbounded “K-cycles” [2].
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We are now ready for the definition of H-equivariant Fredholm modules. The notion
of Hopf algebra equivariance (using coaction) was already introduced some time ago by
Baaj and Skandalis [3] in the setup of Kasparov KK theory. Here, we rather follow the
well-established methods of G-equivariant theory. The definition of equivariant spectral
triples suggested in [36] goes along the same lines. First let us define:

Definition 3.3. Let H be a Hopf algebra and A an H-module algebra. We call the
data (A, π, F,H) an equivariant Fredholm module (respectively odd or even) if it is a
Fredholm module and there exists a dense linear subspace V ⊂ H such that V is an
H-equivariant A module, and for every h ∈ H, [F, h] = 0 (on the subspace V ). In the
even case we shall also require that H respects the grading, that is, γh = hγ on V .

Note that in case of Hopf algebras, which have bounded representations on the Hilbert
space we might simply take V = H. In such a case we shall have a bounded representation
of the cross-product algebra AoH.

The equivalence classes of equivariant Fredholm modules give rise to the respective
odd (even) H-equivariant K-homology of A.

Consider as an example the simplest case of A = C with the unique trivial action
h . 1 = ε(h). Then, each equivariant Fredholm module gives simply a representation of
H, so the equivariant K-homology of C is the representation ring of H.

A nontrivial noncommutative example of an equivariant Fredholm module is given by
the construction of Masuda, Nakagami and Watanabe [33] of the Fredholm module on
the Podleś sphere. It is Uq(su2)-equivariant in the sense of Definition 3.3. We state this
here without proof, which will be given elsewhere.

3.1. Cycles and equivariant cycles. A cycle is a noncommutative generalisation of
the basic structure in differential geometry, given by a differential algebra and a closed,
graded linear functional (integral) on it.

Definition 3.4 (Connes, see [12], p. 183). A cycle of dimension n over A is a graded
differential algebra Ω with a homomorphism i : A → Ω0 and a closed graded trace∫

: Ω→ E, where E is a linear space.

Using cycles one might easily construct cyclic cocycles. In particular, for E = C, the
character of the cycle, which is defined as a linear map, ρ : A⊗(n+1) → C,

ρ(a0, . . . , an) =
∫
i(a0) d(i(a1)) . . . d(i(an)).(28)

is a cyclic cocycle (see Connes [12], p. 186)
Given a Fredholm module (3.1) one easily defines a graded differential algebra Ω(A)

as the subalgebra generated by operators of the type:

a0[F, a1] · · · [F, an],(29)

with the natural grading. The differential d is given naturally by the graded commutator
with F . If the commutators [F, a] fall into the Schatten ideal of p-summable compact
operators, i.e. operators such that Tr |T |p is finite (see [9], p. 310), one easily defines the
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closed graded trace of dimension p− 1 given (in the odd case) by:
∫
ω = 1

2 Tr (ω + FωF ),(30)

where ω is a Fredholm module p-form.
Now, let us proceed with the Hopf algebra symmetries:

Definition 3.5. An H-equivariant cycle over A is a cycle over an H-module algebra
such that Ω∗(A) is an H-equivariant differential algebra, the inclusion i is an equivariant
map, E is an H-module and the closed graded trace (valued in E) is equivariant:

∫
(h . ω) = h .

∫
ω,(31)

for any h ∈ H and ω ∈ Ωn.

The character of the equivariant cycle is an invariant cyclic cocycle valued in E, where
the invariance means:

ρ(h(1) . a0, . . . , hn+1 . an) = h . ρ(a0, . . . , an).(32)

Note that in case of a C-valued cocycle (E = C) the action must be trivial, so then
the Hochschild cycle is in fact H-invariant.

The action of the Hopf algebra on the differential one-forms obtained from the equiv-
ariant Fredholm module is given as:

h . ([F, π(a)]) = h(1)[F, π(a)](Sh(2)),

where both sides are understood as operators on the dense subspace V . The right-hand
side defines the adjoint action of H on the restrictions of the operators to the subspace
V . Note that for the Hopf algebras, which have bounded representations on H, one can
easily observe that an equivariant Fredholm module gives rise to an equivariant cycle over
A only if S2 = idH . Only then (when S = S−1) the tracial property of the closed graded
trace defined in (30) gives the desired equivariance (31), then, of course, the cyclic cocycle
obtained this way is H-invariant (32). This, however, is still far from having an equivariant
version of Connes-Chern map, since neither coboundary nor cyclicity is well-defined on
invariant cochains. Therefore an alternative approach was proposed recently [34].

4. Equivariant spectral triples

4.1. Real spectral triples. The basic data of a spectral triple is almost the same as
that of a K-cycle. That was the original formulation, which appeared in earlier papers by
Connes. The extra structures, which were introduced later (see the textbook [9], chapter
10 and the review [14] for a detailed account and literature, and [12] for an account
of K-cycles) were motivated by the need for description of the real spin structure on
commutative and noncommutative manifolds and by some arguments from theoretical
physics [11].

Let us recall the definition:

Definition 4.1. An algebraic real (even) spectral triple is given by the data (A, π,H,
D, J, γ), where A is an involutive algebra, π its faithful bounded star representation on
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a Hilbert space H, D a selfadjoint operator with compact resolvent such that [D, π(a)] is
bounded for every a ∈ A, γ is a hermitian Z2 grading, Dγ = −γD, and J is an antilinear
isometry such that:

[Jπ(a)J−1, π(b)] = 0, ∀a, b ∈ A,(33)

and
[
Jπ(a)J−1, [D, π(b)]

]
= 0, ∀a, b ∈ A.(34)

The latter requirement is called the order-one condition. The dimension of the real spec-
tral triple is defined as an integer n such that there exists an n-Hochschild cycle with
coefficients in the bimodule A⊗Aop,

a0 ⊗ b0 ⊗ a1 ⊗ · · · ⊗ an = c ∈ Z0(A,A⊗Aop),
for which

π(c) = π(a0)
(
Jπ(b0)J−1) [D, π(a1)] · · · [D, π(an)] = γ.(35)

Moreover, one assumes further relations:

DJ = εJD, J2 = ε′, Jγ = ε′′γJ.(36)

where ε, ε′, ε′′ are ±1 depending on n modulo 8 according to the following rules:

n mod 8 0 1 2 3 4 5 6 7
ε + – + + + – + +
ε′ + + – – – – + +
ε′′ + – + –

If we do not assume existence of J , we have a spectral triple without real structure.

We restrict ourselves only to the algebraic requirements and we refer the reader to
the textbook [9] for details on further analytic requirements like regularity, summability,
finiteness conditions as well as the Poincaré duality.

It is reasonable to assume always that the subalgebra of elements of A which commute
with D is C (in case of a unital A). Otherwise the differential algebra defined by D will
be degenerate, that is, there will be a nontrivial kernel of d in A. Spectral triples such
that [D, π(a)] = 0 implies a ∈ C will be called non-degenerate.

4.2. Equivariance. In this section we shall review the applications of Hopf algebra
symmetries to spectral triples. The definition and results are based on ideas presented in
the papers [36] and [40].

Our aim is to regard isometries of spectral triples in the same sense as one takes the
isometries of manifolds. Basically, each real (algebraic) spectral triple defines a funda-
mental class in K-homology. What we want to study are the noncommutative symmetries
and respective equivariant representatives of this K-homology class.

Definition 4.2. Suppose that we have an algebraic spectral triple (as defined earlier)
over an H-module algebra A. We say that the spectral triple (A, π,H, D) is H-equivariant
if there is a dense subspace V ⊂ H such that V is an H-equivariant A-module, i.e.:

h(π(a)v) = π(h(1) . a)h(2)v, ∀a ∈ A, h ∈ H, v ∈ V,
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and for every h ∈ H the Dirac operator is equivariant, i.e. [D,h] = 0, on an intersection
of V and the domain of D, which is dense in H. If the triple is even, then we require that
[γ, h] = 0. H will be called the isometry of the spectral triple.

The easiest example of a Hopf algebra acting on the algebra A is the group algebra
CU(A) of the unitary group of A, with the adjoint action (6). However, it is clear that
there is no non-degenerate spectral triple for which this would be an isometry.

We define the bimodule Ω1(A) as the linear space spanned by all operators of
π(a)[D, π(b)], a, b ∈ A, with the bimodule structure given by operator multiplication.
The elements [D, a] are denoted as da.

Lemma 4.3. Let (A,H, D) be an H-equivariant spectral triple. Then the first order
differential bimodule is an H-equivariant differential bimodule.

Proof. Let us simply set (h.da) = [D, (h.π(a))] and extend it on the entire bimodule
of one-forms through:

h . (adb) = (h(1) . a)d(h(2) . b),(37)

It is an easy exercise to check that the definition is correct. First, assume that for
some ai, bi ∈ A we have

∑
i ai dbi = 0. Calculate, for any h ∈ H π(h . (

∑
i ai dbi))v for

v ∈ V :

π
(
h .
(∑

i

ai dbi

))
v =

∑

i

π(h(1) . ai)[D, π(h(2) . bi)]v

=
∑

i

π(h(1) . ai)[D,h(2)π(bi)(Sh(3))]v

=
∑

i

h(1)π(ai)(Sh(2))h(3)[D, π(bi)](Sh(4))v

= h(1)

(∑

i

π(ai)[D, π(bi)]
)

(Sh(2))v = 0.

It is obvious that d is an equivariant map and to see that Ω1(A) is an equivariant
bimodule it is sufficient to use the Leibniz rule:

a1 db a2 = a1 (d(ba2)− b da2) .

Then using the definition (37) we get:

h . (a1 db a2) = (h(1) . a1)(d((h(2) . b)(h(3) . a2))− (h(2) . b)d(h(3) . a2))

= (h(1) . a1)(d(h(2) . b))(h(3) . a2).

Next, we extend the equivariance property to the case of real spectral triples.

Definition 4.4. The algebraic spectral triple (A, π,H, D, J, γ) is a real H-equivariant
algebraic spectral triple if H is a Hopf algebra with an involution and A is an involutive
H-module algebra (in the sense of (21)), (A, π,H, D, γ) is an H-equivariant spectral
triple, and:

J−1hJ = (Sh)∗.(38)

on a dense subspace V ⊂ H.
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To see that the definition is self-consistent let us verify that we have a well-defined
action of Hcop on the opposite algebra Aop. Using the faithful representation π and the
reality operator J we can identify Aop with Jπ(A)J−1. Indeed, a 7→ Jπ(a∗)J−1 is a real
representation of Aop:

(Jπ(a)∗J−1)(Jπ(b)∗J−1) = J(ba)∗J−1, ∀a, b ∈ A.
We check the equivariance:

J−1π(h . b)∗J = J−1(h(1)π(b)(Sh(2)))
∗J

= J−1(Sh(2))
∗π(b)∗h∗(1)J

=
(
J−1(Sh(2))

∗J
) (
J−1π(b)∗J

)
J−1(h∗(1)J)

= h(2)(J
−1π(b)∗J)(Sh∗(1))

∗

= h(2)π(bop)(S−1h(1)),

so (h . b)op = (h .′ bop), where .′ is the action of H on the operators (acting on the dense
subspace V ) defined as O 7→ h(2)O(S−1h(1)). Since S−1 is the antipode for H with the
coopposite algebra structure (see p.9, [31]) we obtain the desired result. Note that if one
restricts oneself to cocommutative algebras, then there is no difference between these two
actions.

Finally, observe that if (A,H, D, γ) is an H-equivariant spectral triple then the data
(A,H, sign(D), γ) gives an H-equivariant Fredholm module. Since both 1 and γ are evi-
dently H-invariant (by definition), the image of the Hochschild cycle c ∈ Zn(A⊗Aop,A)
is H-invariant (that is, it commutes with H). Note that this does not mean that the cycle
itself is equivariant.

5. Examples of isometries of spectral triples. Before we present examples which
will illustrate the notion of equivariant spectral triples, let us mention what are the advan-
tages of this notion. Using spectral properties of Hopf algebra representations (similarly
to the case of groups) we might easily compute simple examples of spectral triples. In
particular, we shall use the isometries to calculate the spectrum of the (equivariant) Dirac
operator.

There are three basic categories of examples: finite spectral triples, isospectral defor-
mations, in particular the noncommutative torus, and a generalisation of the latter.

5.1. Quantum symmetries of the noncommutative torus. The spectral triple of the
noncommutative torus is the best known noncommutative object. We shall show that this
(real) spectral triple is equivariant and investigate its slightly bigger quantum symmetry
from the point of view of equivariance of spectral triples.

Let us briefly recall the definition of the noncommutative torus, for details we refer
to the book of Connes [12].

Definition 5.1. Consider the Hilbert space l2(Z2) with the orthonormal basis {|n,m〉,
n,m ∈ Z} and the unitary operators:

U |n,m〉 = |n+ 1,m〉,
V |n,m〉 = λ−n|n,m+ 1〉,
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where λ is a complex number with |λ| = 1. The algebra generated by these operators will
be called the algebra of functions on the noncommutative torus.

Note that we defined so far the algebra of polynomials and we might complete it either
to a Fréchet algebra or a C∗-algebra.

Proposition 5.2. Let u(1) × u(1) be the universal enveloping algebra of the Lie al-
gebra generated by two derivations on the noncommutative torus:

δ1 . U = U, δ2 . U = 0,

δ1 . V = 0, δ2 . V = V.

Then, with the representation:

δ1|n,m〉 = n|n,m〉,
δ2|n,m〉 = m|n,m〉,

we have the representation of the cross-product algebra of the functions on the noncom-
mutative torus by the symmetry algebra. Here, we take as the dense subspace V the linear
space spanned by the basis |n,m〉, n,m ∈ Z.

To construct the real spectral triple we need a grading γ (which just doubles the
Hilbert space) and the antilinear isometry J , which we recover from the Tomita-Takesaki
theory:

J0|n,m〉 = λ−nm| − n,−m〉.
To obtain J , which satisfies the algebraic requirements of the real spectral triple, we
still use this Hilbert space but we have to tensor J0 with a suitable matrix from M2(C).
Taking γ to be block diagonal we have:

γ =
(

1 0
0 −1

)
, J =

(
0 −J0

J0 0

)
.

Being selfadjoint and anticommuting with γ, any operator D must be of the form

D =
(

0 ∂

∂∗ 0

)
.

Proposition 5.3. Every Dirac operator D, for which u(1)×u(1) is an isometry must
be of the form given above, with ∂:

∂|n,m,−〉 = dn,m|n,m,+〉, n,m ∈ Z.
This follows directly from the requirement [D, δi] = 0, i = 1, 2. As we shall see, this

assumption, together with other algebraic requirements fixes ∂ up to a normalisation
factor.

Lemma 5.4. Any Dirac operator D, which has u(1)× u(1) as an isometry and which
is order-one (see (34)), is defined by the set of complex coefficients dn,m obeying the
following recursion relations:

dn+2,m = 2dn+1,m − dn,m,
dn,m+2 = 2dn,m+1 − dn,m.
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The solution (up to a multiplicative constant) is:

dn,m = n+mτ, τ ∈ C.
Proof. Direct calculation of the order-one condition.

Corollary 5.5. The above-defined Dirac operator gives a real spectral triple over the
noncommutative torus: for the proof of the smoothness and finiteness properties see [13]
or [9] p. 540.

The result obtained gives the “standard” Dirac operator on the noncommutative
torus. One should stress that as compared to usual constructions, we have derived it here
from the order-one condition using additionally the principle of equivariance.

This is, however, not the end of the story. One can find a bigger symmetry of the
noncommutative torus and, in fact, attempt to construct the corresponding equivariant
spectral triple. The only difference is that we have to employ multiplier Hopf algebras
instead of Hopf algebras. Recall that a multiplier Hopf algebra is a nonunital algebra
with a coproduct valued in the multiplier of the tensor square of the algebra, satisfying
certain conditions (for precise definition and properties see [19, 20])

Let us consider a nonunital algebra U2 (over complex numbers) with the basis P i,k,
Rj,l, i, j, k, l ∈ Z and relations:

P i,kP j,l = δijδklP i,k,

P i,kRj,l = δijδklRi,k,

Ri,kP j,l = δilδkjRi,k,

Ri,kRj,l = δilδkjP i,k.

(39)

We now state:

Proposition 5.6. The algebra U2 is a multiplier Hopf algebra with the coproduct,
counit and the antipode given by:

∆P i,k =
∑

j,l∈Z
P (i−j),(k−l) ⊗ P j,l,

∆Ri,k =
∑

j,l∈Z
eπiθ(kj−il)R(i−j),(k−l) ⊗Rj,l,

ε(P i,j) = δi0δj0, ε(Ri,j) = δi0δj0, S(P i,j) = P−i,−j , S(Ri,j) = R−j,−i.

(40)

for all i, k ∈ Z and where 0 ≤ θ < 1 is a real parameter. We define: q = e2πiθ.

Proof. It is easy to see that the product in U2 is non-degenerate, it is also an easy
technical exercise to check the coassociativity of the coproduct (in the sense of multiplier
Hopf algebras) and the axioms concerning the counit and the antipode. For example, to
check the coassociativity, one must verify that for every a, b, c ∈ U2,

(a⊗ 1⊗ 1)(∆⊗ id)(∆(b)(1⊗ c)) = (id⊗∆)((a⊗ 1)∆(b))(1⊗ 1⊗ c).
Taking a = P i,k, b = Rj,l, c = Pm,n we have on the left-hand side:

(P i,k ⊗ 1⊗ 1)(∆⊗ id)(eπiθ(lm−jn)R(j−m),(l−n) ⊗Rm,n)

= eπiθ(lm−jn)eπiθ(k(j−m−i)−i(l−n−k))Ri,k ⊗R(j−m−i),(l−n−k) ⊗Rm,n
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= eπiθ(lm−jn+kj−km−il+in)Ri,k ⊗R(j−m−i),(l−n−k) ⊗Rm,n,
whereas on the right-hand side:

(id⊗∆)(eπiθ(kj−il)Ri,k ⊗R(j−i),(l−k))(1⊗ 1⊗ Pm,n)

= eπiθ(kj−il)eπiθ(m(l−n−k)−n(j−m−i)Ri,k ⊗R(j−m−i),(l−n−k) ⊗Rm,n

= eπiθ(kj+ml−mk−il+in−nj)Ri,k ⊗R(j−m−i),(l−n−k) ⊗Rm,n,
and we can clearly see that they are the same.

We shall verify here the remaining condition, which is that the maps:

T1(a⊗ b) = ∆(a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)∆(b),

are one-to-one and have their range equal to U2 ⊗ U2.
We calculate explicitly on the basis:

T1(P i,k ⊗ P j,l) = P (i−j),(k−l) ⊗ P j,l,
T1(P i,k ⊗Rj,l) = P (i−j),(k−l) ⊗Rj,l,

T1(Ri,k ⊗ P j,l) = eπiθ(kj−il)R(i−j),(k−l) ⊗Rj,l,
T1(Ri,k ⊗Rj,l) = eπiθ(kj−il)R(i−j),(k−l) ⊗ P j,l,

T2(P i,k ⊗ P j,l) = P i,k ⊗ P (j−i),(l−k),

T2(P i,k ⊗Rj,l) = eπiθ(kj−il)Ri,k ⊗R(j−i),(l−k),

T2(Ri,k ⊗ P j,l) = Ri,k ⊗ P (j−i),(l−k),

T2(Ri,k ⊗Rj,l) = eπiθ(kj−il)P i,k ⊗R(j−i),(l−k),

and it becomes evident that the range of both maps is in U2 ⊗ U2 and that both maps
are one-to-one.

For other details on this algebra see [21], where it is derived as the dual to the quantum
double-torus (the latter constructed in [23]). Note that there is no problem in defining
the action of this multiplier Hopf algebra on polynomials in U, V from the algebra of
functions on the noncommutative torus: Indeed, we have:

P i,k . U = δi1δk0 U, Ri,k . U = δi0δk1 V,

P i,k . V = δi0δk1 V, Ri,k . V = δi1δk0 U.
(41)

for all i, k ∈ Z.
We check explicitly that the above defined action is compatible with the relation

UV = λV U . For any i, k ∈ Z:

P i,k . (UV − λV U) = δi1δk1(UV )− λδi1δk1(V U) = 0,

and:

Ri,k . (UV − λV U) = eπiθδi1δk1(V U)− λe−πiθδi1δk1(UV )

= δi1δk1(eπiθV U − eπiθλUV ) = δi1δk1e−πiθV U(e2πiθ − λ2).

so, the necessary and sufficient condition for the action (41) to be well-defined on the
algebra of polynomials on the noncommutative torus is that e2πiθ = λ2.

It is easy to find a bounded representation of the defined multiplier Hopf algebra on
the Hilbert space on which we had the representation of the noncommutative torus. It is
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sufficient to have:
P i,k|n,m〉 = δinδkm|n,m〉,
Ri,k|n,m〉 = δimδkn|m,n〉,(42)

for any i, k,m, n ∈ Z.
Before we proceed, we need to define an H-module algebra A over a multiplier Hopf

algebra H.

Definition 5.7. If H is a multiplier Hopf algebra, we say that A is an H-module
algebra if it is a module over the multiplier algebra M(H) and for all a, b ∈ A and h ∈ H
we have

h . (ab) = (h(1) . a)(h(2) . b).

Using this we extend the definition of equivariant spectral triples 4.2 to include mul-
tiplier Hopf algebras as symmetries just by replacing Hopf algebra with multiplier Hopf
algebra.

Then we can observe that the spectral data of the noncommutative torus is equivariant
with respect to the action of the multiplier Hopf algebra of the dual quantum double-torus
U2 (40-41), if the eigenvalues of the operator ∂ (which defines the Dirac operator) are
(up to a multiplicative constant):

dn,m = n+m.(43)

However, such data does not define a real two-dimensional spectral triple, as the dimen-
sion axiom (existence of a Hochschild cycle) cannot be fulfilled. First, observe that when
working within the framework of multiplier algebras, we may easily identify a subalgebra
of the multiplier of U2 as u(1)× u(1) Lie algebra by taking

δ1 =
∑

n,m∈Z
nPn,m, δ2 =

∑

n,m∈Z
mPn,m.(44)

This allows us to use some results of Lemma 5.4, in particular the already calculated
form of the equivariant Dirac operator. It is easy to see that for such a Dirac operator,
the requirement that it commutes with all Ri,k, i, k ∈ Z, gives for the operator ∂ (as
defined in Proposition 5.3):

Ri,k∂|n,m,−〉 = (n+mτ)δimδkn|m,n,+〉,
∂Ri,k|n,m,−〉 = (m+ nτ)δimδkn|m,n,+〉.

Hence τ must be 1.
Now, if dn+m = n + m we can check that the representation images of one-forms

U−1[D,U ] and V −1[D,V ] are equal to each other and their square is 1. Therefore any
expression of the form π(a0)Jπ(b0)J−1[D, π(a1)][D, π(a2)] with a0, a1, a2, a3 from the
algebra of functions on the noncommutative torus cannot be γ, since both the represen-
tation of the functions on the noncommutative torus as well as the opposite algebra are
diagonal (that is, they are identical on both copies of the Hibert space).

In fact, we have shown that the requirement of a bigger symmetry is incompatible
with the assumed form of the spectral triple of dimension 2. We thus conclude:
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Corollary 5.8. The multiplier Hopf algebra U2 cannot be an isometry of the non-
commutative torus.

5.2. Isometries of isospectral deformations. The isospectral deformation has appeared
originally in the construction of the examples of noncommutative 4-spheres, which have
the same instanton bundle as the “classical” sphere. One of the initial questions posed
by the construction was whether the constructed spheres are still symmetric, i.e. whether
the natural SO(5) symmetries (or, respectively, SO(4) for the 3-sphere) are preserved (in
the form of Hopf algebras) and whether the constructed spectral triples are equivariant.

The answer about symmetries was provided independently by Varilly [41], Sitarz [40]
and Connes, Dubois-Violette [17]. In the first and last approaches the group point view
was taken, whereas our approach was focused on the dual version of symmetries (given by
actions and not coactions) and the symmetry was described in terms of the deformation of
the universal enveloping algebra (cocycle twists) acting on the deformation of the algebra
of functions on the sphere.

Let us state here the main result:

Theorem 5.9. Let (A,H, D, J, γ)H be the data defining an equivariant real spectral
triple (of dimension n). Let Ψ (called a cocycle) be an invertible element in H ⊗H such
that:

Ψ12(∆⊗ id)Ψ = Ψ23(id⊗∆)Ψ,(45)

(ε⊗ id)Ψ = 1 = (id⊗ ε)Ψ,(46)

and Ψ acts naturally on A ⊗ A and A ⊗ V , where V is the dense subspace of H. Then
the spectral triple (AΨ,H, D, JΨ, γ) is equivariant with respect to the Hopf algebra HΨ,
where HΨ is the Drinfeld twist of the Hopf algebra H.

For more details on Drinfeld twist we refer to [10], pp. 130. Before we proceed with
the sketch of the proof and the corollaries let us recall the definition of AΨ and its
representation.

Definition 5.10. The algebra AΨ is a vector space A with the product mψ : AΨ ⊗
AΨ → AΨ

mΨ (iΨ(a)⊗ iΨ(b)) = iΨ (m (Ψ . (a⊗ b))) ,(47)

for any a, b ∈ A. We denote the identity map A → AΨ as iΨ, m denotes the standard
product on A.

Proposition 5.11. With the assumption as in the proposition above, the map:

mπ
Ψ : (iΨ(a), v)→ mπ (Ψ . (a⊗ v)) ,

a ∈ A, v ∈ V , defines a representation of AΨ on V .

In this proposition the action of Ψ on a⊗v is through the action of H on A in the first
leg and the H-module structure of V in the second leg. The map mπ is mπ(a, v) = π(a)v.

We have:

Lemma 5.12. The algebra AΨ is an HΨ-module algebra and the representation mπ
Ψ

of AΨ defined above is HΨ-equivariant.
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Proof. Of course, we work on the dense subspace V . The coproduct in HΨ is given
by:

∆ψh = Ψ−1∆hΨ, h ∈ HΨ.(48)

The action of HΨ on AΨ is defined as:

h .Ψ iΨ(a) = iΨ(h . a), h ∈ HΨ, a ∈ A.(49)

Then AΨ is still an HΨ-module (since H and HΨ are isomorphic as algebras), it is also
an HΨ-module algebra because:

h . (iΨ(a)iΨ(b)) = iΨ (h . m (Ψ . (a⊗ b)))
= iΨ (m (((∆h)Ψ) . (a⊗ b)))
= iΨ

(
m
(
(ΨΨ−1(∆h)Ψ) . (a⊗ b)

))

= iΨ (m (Ψ . (∆Ψh) . (a⊗ b)))
= mΨ ((∆Ψh) . (a⊗ b)) .

Similarly one verifies that the representation from Lemma 5.11 is equivariant.

We shall need also the star structure on the algebra AΨ. It is not difficult to observe
that if H is a star Hopf algebra then the twisted algebra HΨ is also a star Hopf algebra
provided that Ψ∗ = Ψ−1. The following lemma shows that there exists a star structure
on AΨ compatible with the action of HΨ.

Lemma 5.13. Let H be a Hopf star algebra, A an H-module algebra with a star struc-
ture, Ψ a cocycle satisfying Ψ∗ = Ψ−1, HΨ the twisted Hopf algebra and AΨ the twisted
HΨ-module algebra. Let u = (Ψ−1)1(S(Ψ−1)2), where we use the notation Ψ = Ψ1 ⊗Ψ2

(and similarly for its inverse; remember, however, that neither is necessarily a simple
tensor). Then

(iΨ(a))? = iΨ((u∗ . a)∗)

gives a star structure on AΨ, compatible with the HΨ action.

We use here ? to denote the star structure on AΨ to distinguish it from the star (∗)
on A.

Proof. First, let us check that the defined star is an antihomomorphism (it is clear
that it is antilinear).

(iΨ(a)iΨ(b))? = iΨ(u∗ . ((Ψ1 . a)(Ψ2 . b)))∗

= (u−1)∗ . ((Ψ2 . b)∗(Ψ1 . a)∗)

= m(∆(u−1)∗ . ((SΨ2)∗ ⊗ (SΨ1)∗) . (b∗ ⊗ a∗))
= m(∆(u−1)∗∆(u∗)Ψ((u−1)∗ ⊗ (u−1)∗) . (b∗ ⊗ a∗))
= m(Ψ . ((u−1)∗ ⊗ (u−1)∗) . (b∗ ⊗ a∗))
= mΨ(((u−1)∗ ⊗ (u−1)∗) . (b∗ ⊗ a∗))
= mΨ((iΨ(b))? ⊗ (iΨ(a))?) = (iΨ(b))?(iΨ(a))?,

where we have used S(u∗) = u−1 and the following identity (after taking ∗ of both sides):

(u⊗ u)(SΨ2 ⊗ SΨ1) = Ψ−1(∆(u)).
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The relations and identities, quoted here, can be found in [31], pp. 58–60.
Finally, let us check that ? ◦ ? is identity:

((iΨ(a))?)? = iΨ(u∗ . (iΨ(a)?))∗

= iΨ(u∗ . (u∗ . a)∗)∗ = iΨ((u−1)∗ . (u∗ . a))

= iΨ((u−1)∗u∗ . a)) = iΨ(1 . a) = iΨ(a),

where we have again used that S(u∗) = u−1.

To have the full algebraic picture of a real spectral triple we need to define J and γ.
Leaving the grading γ (in the even case, of course) intact, we set:

JΨ = Ju∗.(50)

It is easy to check that this agrees with the requirement of equivariance (38), as for any
h ∈ H we have:

(JΨ)−1h(JΨ) = (Ju∗)−1h(Ju∗) = (u−1)∗(J−1hJ)u∗

= (u−1)∗(Sh)∗u∗ = (uS(h)u−1)∗ = (SΨh)∗.

We have used here the definition of the twisted antipode: SΨ(h) = uS(h)u−1.
The dimension condition, that is, the existence of a certain Hochschild cycle, is a more

involved problem and we postpone the analysis of the behaviour of Hochschild homology
under deformation induced by twisting to future research. Although it is known that
Hochschild homology of both algebras is different (e.g. take the noncommutative torus),
one may conjecture that the top dimension does not change. However, at the moment we
need to assume that the cycle of the initial data is Ψ-invariant, in other words that the
iterated action of Ψ on c does not change c and it still remains a Hochschild cycle over AΨ.
This is, for example, the case in the later discussed situation of isospectral deformations
based on a twist defined over a Cartan subalgebra. Then, since D commutes with the
action of H, we get that the image of c is again γ or 1 (for even and odd dimensions,
respectively).

Note that apart from the dimension axiom (existence of an appropriate Hochschild
cocycle) and assuming that the action of the Hopf algebra and the cocycle Ψ is well-
defined, we have shown that our construction shall always give a deformed spectral triple
with the same Dirac operator, thus it justifies the name of “isospectral” deformations.

Let us consider a concrete example, with the cocycle construction based on the Cartan
subalgebra. Let H be a Hopf algebra which is an isometry of the spectral triple (A,H, D)
and let δ1, δ2 be the elements from the Cartan subalgebra of C ⊂ H (we assume that it
is at least of dimension 2), ∆δi = 1⊗ δi + δi ⊗ 1, i = 1, 2.

We take Ψc to be a cocycle taken from the multiplier of the Hopf algebra, which is
closely related to this Cartan algebra. To be more precise, this is a multiplier Hopf algebra
which is a subalgebra of the one considered in Proposition 5.6. We take its subalgebra
which is the subspace with the basis {P i,j , i, j ∈ Z}. It is a multiplier Hopf algebra such
that the generators of the Cartan subalgebra C can be identified as the elements in its
multiplier (see 44). We set:
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Ψ =
∑

m,n,k,l∈Z
λ−mnPm,k ⊗ P l,n,(51)

where λ is a complex number of module 1. Note that identifying δ1, δ2 as the elements in
the multiplier we can write

Ψc = λ−δ1⊗δ2 ,(52)

where the expression has a well-defined meaning in the multiplier of the tensor square of
the nonunital algebra generated by the elements Pm,n. Indeed, taking into account (44)
and setting λ = e2πiθ we have:

λ−δ1⊗δ2(Pm,k ⊗ P l,n) =
∞∑

s=0

(2πiθ)s(−1)smsns

s!
(Pm,k ⊗ P l,n)

= λ−mn(Pm,k ⊗ P l,n).

Although the action of δ1, δ2 and their powers is well defined on A (for example,
A is an algebra of smooth functions on a compact manifold and each δi is a generator
of the action of a circle) we must show that the twisting by the action of the cocycle
defined above is well-defined. Only then the deformed product mΨc and the deformed
representation mπ

Ψc can make sense. We shall show that it is possible to take a smaller
algebra (and a smaller subspace of H) for which this is always possible.

The resulting twisted algebra AΨc in this case (we shall call it Aλ) is an isospectral
deformation of A, the latter as defined by Connes-Landi in [16]. Moreover the deformed
data is a real spectral triple with the same Dirac operator.

First, notice that the cocycle action is well-defined for certain elements of A and H.
Indeed, if a, b are homogeneous elements of A with respect to the action of δ1 and δ2,
respectively, that is, there exist numbers n,m such that:

δ1 . a = na, δ2 . b = mb,

then the twisted product mΨc for them simply becomes:

mΨc(a, b) = λ−nmiΨc(ab).

Similar argument works for the representation of a homogeneous element of A on a ho-
mogeneous element of a dense subspace of H. Next, taking the subalgebra of A generated
by such homogeneous elements and restricting appropriately the dense subspace of H to
the linear span of homogeneous elements is sufficient for the consistent definition of the
twisted algebra and representation. One would like it still to be a dense subspace of the
Hilbert space in order that the equivariance condition is satsfied on a dense subspace. In
the case of A being smooth functions on a manifold the proof is in [16].

For this version of the isospectral deformation it is relatively easy to get the desired
Hochschild cycle c. One might proceed as follows: using the assumption that the action
of δi comes from the circle actions, one averages c over this action to get a cycle, which
shall be Ψc invariant.

Remark 5.14. The noncommutative torus is an example of an isospectral deforma-
tion of a torus and its equivariant spectral triple could obtained from the construction
presented above.
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Note that the Drinfeld twist does not change u(1)×u(1) and the isometry remains the
same, although the twisted u(1) × u(1) module algebra Aλ is different. The generators
U, V of the algebra of functions on the two-torus are homogeneous with respect to the
actions of δ1 and δ2, so the twist is well-defined on the algebra of polynomials (and one
can easily verify that this could be extended to a larger class of functions). The same is
true for the linear span of the basis {|n,m〉, n,m ∈ Z}, since each element of the basis is
again homogeneous, therefore there is no problem with the twisted representation on a
dense subspace of the Hilbert space.

5.3. Isometries of finite spectral triples. The simplest possible examples of spec-
tral triples as noncommutative geometries are given by finite-dimensional semisimple
∗-algebras. In such a case, we do not need to distinguish between spectral triples and
algebraic spectral triples as most of the additional analytical axioms are void. The con-
struction and complete characterisation of finite spectral triples was presented in [35].
Throughout this section H is always a finite Hopf algebra.

Let us begin with a simple observation. Consider a spectral triple over H and the
adjoint action of H on itself. Then there is no finite spectral triple equivariant with respect
to this action. Indeed, it is clear that any operator commuting with the representation
of H (as a symmetry) must also commute with the representation of H (as an algebra).
Hence the differential calculus must be trivial and the spectral triple is degenerate. Note
that if we consider a proper sub-Hopf algebra H0 ⊂ H (H0 6= C) and its adjoint action
on H, the result will still be analogous and there cannot be a H0-equivariant spectral
triple over H. Therefore we need to look for external symmetries, like the action of the
dual of H or its subalgebra.

Example 5.15. Let us consider an algebra A of complex functions on the Z2 × Z2

group and a subgroup of its symmetry: Z2. The algebra A is generated by four mutually
commuting idempotents, eab where a, b are labelled by elements of Z2. We choose the
diagonal nontrivial action of Z2 on the algebra given by:

g . eab = e(ga)(gb),

From the classification of real spectral triples (as derived in [35]) we know that the
finite dimensional spectral triple is characterised entirely by its intersection matrix. This
is an integer-valued symmetric square matrix, such that the number of columns (and
rows) is the number of simple components of the finite dimensional algebra. The finite
dimensional Hilbert space is split into subspaces relative to their bimodule structure over
the algebra (the right-module multiplication is introduced through the reality operator
J). The absolute value of the entry in n-th row and k-th column of the intersection matrix
gives the multiplicity of the dimension of the subspace which is a left module over the
n-th simple component and right module over the k-th simple component of the algebra.
(The full dimension is this number multiplied by the dimensions of minimal modules for
both simple subalgebras). The sign of this entry tells the eigenvalue of the γ operator.
For details, we refer again to [35].

Knowing this, it is not difficult to satisfy the equivariance of the representation of the
algebra. IfH denotes the Hilbert space and π the representation ofA, the representation is
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equivariant provided that the Hilbert subspaces π(eab)H and π(e(ga)(gb))H are isomorphic
to each other. In the finite-dimensional case this simply means that their dimensions are
equal.

Moreover, from the requirement that the real structure is equivariant, we obtain the
same condition for Jπ(e(a)(b))JH and Jπ(e(ga)(gb))JH. The most general intersection
form of such a spectral triple is given by the matrix:




n1 m1 k1 l1
m1 n2 m2 k2

k1 m2 n3 m3

l1 k2 m3 n4


 .

and the equivariance forces:

|n1|+ |m1|+ |k1| = |k2|+ |m3|+ |n4|,
|m1|+ |n2|+ |k2| = |k1|+ |n3|+ |m3|.

To find all admissible Dirac operators one needs to know only the signs in the inter-
section matrix (as D is chiral, it acts between the subspaces of different signs in the inter-
section form). We shall present here the lowest dimensional example of a possible spectral
triple and the restriction on D (we assume again that the triple is non-degenerate, that
is, [D, a] is nonzero for all a different from a constant element). The intersection matrix is




0 1 0 −2
1 0 −1 0
0 −1 0 1
−2 0 1 0


 .

Let us see what is the requirement for the considered Z2-symmetry to be an isometry
of the Dirac operator. First of all, from the intersection form and the analysis of admissible
Dirac operators (again we refer to [35]) one sees that D shall only have components acting
between H1,2 and H1,4 as well as H4,1 and H4,3. (Here HI,J denotes the subspace of the
Hilbert space corresponding to the I, J entry in the intersection matrix, and D(I,J)(K,L)

denotes the part of D mapping HI,J to HK,L.)
The action of Z2 interchanges H1,2 with H4,3, similarly for the second and third row,

so in effect we have:

Remark 5.16. An isometric Dirac operator for the above spectral triple has the prop-
erty that D(1,2)(1,4) = D(4,3)(4,1) and D(2,1)(2,3) = D(3,4)(3,2).

Note that this relation is a straightforward consequence of the Z2 symmetry and would
not appear in the general construction of the Dirac operator for the spectral triple under
consideration.

In the context of applications to physical models (gauge theory) one might interpret
the relation as the equality of masses of the fermions present in the model. Instead of four
massive fermions with a priori arbitrary masses we see that the Z2 symmetry enforces
(as was to be expected) the degeneracy: we have two pairs of massive fermions with the
same masses within each pair.
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The example based on the same algebra was discussed also (but rather in a different
context of gravity) in [32].

The above example is a particular case of a much general picture, which is the invari-
ance under the canonical action of the dual Hopf algebra H∗ on H given in Example 2.4.
We can have either the strong version (with the full dual algebra) or a smaller one, with
a Hopf subalgebra of the dual being an isometry. Note that in the case discussed earlier
we had exactly such a situation: the action of the diagonal subgroup of the dual Hopf
algebra (which is a group algebra) was an isometry of the spectral triple.

Let us turn to another example, now with the algebra of functions on a finite group.

Example 5.17. Take a commutative algebra of functions on a group, C(G), with
its basis {eg, g ∈ G}, egeh = δg,heg and its dual, the group algebra CG with the basis
{g, g ∈ G}. Then the action of CG on C(G), expressed using the above basis becomes:

g . eh = ehg−1 .

The cross product algebra is generated by orthogonal projectors eg and g, with the
cross-commutation rules:

geh = ehg−1g.(53)

To study the equivariance of this spectral triple we need first to determine the repre-
sentation of the cross product. Using the projectors eh we split the Hilbert space H into
subspaces Hgh, defining:

Hgh = π(eg)Jπ(eh)J−1H, g, h ∈ G.
Further, using the rule (53) we see that for each i ∈ G, g acts as a linear map (remember
that H is CG module), g : ⊕jHij → ⊕jH(ig−1)j .

Let us denote its restriction toHij , which maps it toH(ig−1)l, by gij,l. (Note that, since
g is invertible, Hij and H(ig−1)l must be of the same dimension if gij,l 6= 0.) Introducing
the Dirac operator D, which commutes with every g, we obtain:∑

m

Dkl,(ig−1)mgij,m =
∑

m

g(kg)m,lD(kg)m,ij , k, l,m, i, j, g ∈ G.

After taking into account other restriction on D (from the order-one condition) this gives:

Dkj,(ig−1)jgij,j = g(kg)j,jD(kg)j,ij ,

and ∑

m

D(ig−1)l,(ig−1)mgij,m =
∑

m

gim,lDim,ij ,

for all k, l,m, i, j, g ∈ G.
This is the most general form of restrictions on possible Dirac operators on the spectral

triple built over the algebra of functions on a finite group, with the group algebra as its
symmetry.

Example 5.18. Let us now consider the dual situation: a spectral triple over the
group algebra CG, with the equivariance given by the action of the dual. The notation
is the same as in the above example, here, however:

eh . g = δh,gg, h, g ∈ G.
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The cross product algebra in this dual picture is again generated by orthogonal pro-
jectors eg and g, with the cross-commutation rules:

ehg = geg−1h.(54)

Here, instead of studying the matrix elements of the Dirac operator we shall investi-
gate the structure of the differential calculus set by the Dirac operator D and find the
restrictions posed by the requirement of equivariance.

First of all, consider the universal calculus. As a left-module it is generated by forms
χg = g−1 dg, g 6= e, (here e denotes the neutral element of G) the right and left module
structures are related through:

hχg = (χgh
−1 − χh−1

)h, h, g ∈ G, g 6= e.(55)

Now, let us take any C(G) equivariant calculus. Every such calculus is always given by
a representation of the group G. Indeed, assume that an element ω =

∑
e6=g,h∈G cg,hhχ

g ∈
Ω1
u(CG) is in the subbimodule which defines the first order calculus. Then from the

required invariance of the ideal we have:

ep . ω =
∑

e6=g∈G
cg,ppχ

g.

Therefore, multiplying the result by p−1 we get that
∑
e6=g∈G cg,pχ

g is also in the ideal.
Hence, the ideal is generated (as a bimodule) by a subspace of invariant forms χg. There-
fore the equivariant differential bimodule which we want to study is always of the form:

Ω1(CG) ∼ V ⊗ CG
where V is a representation space of G. If we denote the representation by ρ, the bimodule
structure is given by:

h (v ⊗ g)h′ = ρ(h)v ⊗ (hgh′), g, h, h′ ∈ G, v ∈ V.
Note that in the group algebra situation the covariance under the action of the dual

gives the same characterisation of the differential calculi as left covariance (or bicovari-
ance, since we are dealing with a cocommutative coproduct) for the coaction, which were
studied in [35].

Now, using the above characterisation of equivariant differential calculi we may show
an interesting no-go statement: not every equivariant first-order differential calculus is
obtained from a spectral triple.

To see this, it is sufficient to note that for certain (adjoint) representations of the
group G we shall have:

ρ(g)vh = vghg−1 ,

and therefore the element
∑
e6=g∈G(vg ⊗ g) would be central in the bimodule Ω1(CG).

Since the latter is incompatible with a real finite spectral triple ([35], observation 6) we
get immediately our result. A concrete example of CS3 was studied in [35].

6. Outlook. Having presented here a review of the definitions and a couple of illustra-
tive examples let us present several questions and problems, which should be considered
in future research.
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First of all, one would like to have more examples with genuine quantum group type
symmetries. Some steps in this directions were already done. In fact, it is not difficult
(see [8]) to construct the example of an Uq(su(2)) equivariant Laplace-type operators for
SUq(2) or the Podleś sphere, the real difficulty lies in the reality condition and the deep
relations between K-cycles and cyclic cohomology. An important background has been
set by the work of Schmüdgen on the cross product algebras for quantum groups [38].
Some results on the construction of the algebraic data of a real spectral triple for the
standard quantum Podleś sphere are in this volume [18].

A further most welcomed input would be to provide an equivariant version of Chern-
Connes pairing between equivariant Fredholm modules and a version of equivariant cyclic
cohomology. Note that some attempts in this direction in the formalism of J-L-O cocycles
appeared recently [22].

To extend the notion of isometry one may consider equivariant spectral triples, with
Hopf algebra symmetries such that D does not necessarily commute with H but each
commutator is bounded. (An infinitesimal version of this, which could be the natural
version used for the Fredholm modules should require the commutator [F, h] to be com-
pact). One could consider the action of the Hopf algebra H (by the usual adjoint action)
on the space of allowed Dirac operators. Clearly, this might be formulated only in some
special cases unless we change the axioms of spectral triples.

From the physical point of view, however, the most interesting seems to be the search
for symmetries in examples of finite spectral triples, as related to the quest for “hidden
symmetries” in the fundamental theories.

Acknowledgements. The author would like to thank the referees and Piotr M. Hajac
for their efforts.
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