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Abstract. We estimate the expected value of the gradient degree of certain Gaussian random
polynomials in two variables and discuss its relations with some other numerical invariants of
random polynomials.

Introduction. We deal with random endomorphisms of the plane defined by two
random polynomials in two variables and estimate the expected value of the topological
degree of such endomorphisms. As usual a polynomial is identified with the collection
of its coefficients so a random polynomial is defined by a given distribution of its coeffi-
cients. In particular, if the vector of coefficients is a random vector with multidimensional
Gaussian (normal) distribution then we speak of a Gaussian random polynomial and we
only consider such random polynomials. This setting is quite natural and closely related
to important problems of mathematics and physics [10], [6], [5], [7].

For random polynomials in one variable, a fundamental problem is to compute the
expected number of real roots , i.e., the mean value (expectation) of the random variable
defined as the number of real roots of random polynomial with a given distribution of
coefficients. In certain cases this problem was solved in the seminal paper of M. Kac [10].
In particular, M. Kac found the expected number of real roots for random polynomial of
fixed algebraic degree m with the coefficients given by independent standard Gaussian
random variables [10]. Nowadays there exists vast literature devoted to random polyno-
mials in one variable and the expected number of real roots is known for many classes of
random polynomials [6].

Similar problems can be formulated for random polynomials in several variables and
random polynomial mappings defined by systems of such polynomials. In particular,
by analogy with the one-dimensional case it is natural to consider a random polynomial
endomorphism of Rn defined by n random polynomials in n variables with fixed algebraic
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multidegree M = (m1, . . . ,mn) and compute the expected number of preimages of the
origin as a function of n and mi.

In other words, this is a question about the expected number of real roots of the cor-
responding (n × n)-system of random polynomial equations. Obviously, one can regard
this number as a certain numerical invariant of the given random polynomial endomor-
phism of Rn which may be interpreted as its expected geometric multiplicity . Recently,
M. Shub and S. Smale succeeded to compute this invariant in arbitrary dimension for
certain special distributions of coefficients [19], which gives a wide generalization of the
mentioned classical results of M. Kac. These and other recent developments in the spirit
of [19] are summarized in [8].

Despite this progress many natural problems remain uninvestigated even for random
endomorphisms of the plane R2 which we call random planar endomorphisms (or random
plends). Here we consider one problem of topological nature which was formulated by
G. Khimshiashvili in the context of algebraic methods for computing topological inva-
riants [12] and investigated in [12], [13], [14] (cf. also [17]).

Notice that a Gaussian random planar endomorphism is almost certainly (i.e., with
probability one) proper and stable in the sense of Whitney [4], in which case we say
that it is typical . As is well known, for a typical planar endomorphism one can introduce
several useful numerical characteristics of its geometric behaviour such as the topological
(mapping) degree [12], the number of cusps [4], and the number of complex points [15].
Hence one can consider the expected values of these characteristics and obtain in this
way numerical invariants of a given random planar endomorphism. Following the strategy
suggested in [12], we study the first invariant using the techniques described in [12] and
then briefly outline how it can be used for estimating the two other invariants.

More precisely, we find the expected value of the topological degree of a random planar
endomorphism defined by the gradient of a random polynomial with a certain rotation
invariant Gaussian distribution of coefficients introduced in [19] (cf. Theorem 3.1 below).
Using the mapping degree formula for the Euler characteristic established in [11], it can
be shown that our result agrees with the results about the average Euler characteristic
of random hypersurfaces obtained in [17]. If all coefficients of a random polynomial are
standard normals, we indicate the asymptotic of the expected value of gradient degree as
the algebraic degree of the random polynomial tends to infinity (Theorem 3.2).

Obviously, topological aspects of random polynomial mappings are too vast to be
satisfactorily covered in a single paper. Our aim was just to make first few steps in the
direction suggested in [12].

Acknowledgements. The author’s work on this paper was supported by INTAS
grant 00-259. The author is grateful to G. Khimshiashvili for suggesting the topic and
numerous useful discussions.

1. Gaussian random polynomials. As was already mentioned, we deal with Gaus-
sian random polynomials , which means that their coefficients are real random variables
and have multivariate normal distribution. The term “random polynomial” always refers
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to this situation. To be more precise, we reproduce some concepts and notation from
probability theory. All necessary background can be found in [18].

Recall that a (one-dimensional) Gaussian (normal) random variable ξ is defined as a
real-valued random variable with Gaussian (normal) density

fξ(x) =
1√
2πσ

exp
(
− (x− a)2

2σ2

)
,

where σ > 0, −∞ < a < +∞. Parameters a and σ determine its expectation and variance:

a = Eξ, σ2 = Dξ.

If a = 0, we speak of a central normal distribution. If a = 0 and σ = 1 one obtains the
standard normal distribution

Φ(x) =
1√
2π
·
∫ x

−∞
e−u

2/2 du.

Recall also that, for a pair of random variables (ξ, η), the number

cov(ξ, η) = E
[
(ξ − Eξ) · (η − Eη)

]

is called the covariation of ξ and η. If cov(ξ, η) = 0, then ξ and η are called non-correlated,
in particular (stochastically) independent random variables are non-correlated [18]. The
variance Dξ is defined as cov(ξ, ξ) = Dξ.

Recall finally that a multidimensional central normal distribution Ξ is defined as a
distribution with density

fΞ(x) =

√
|A|

(2π)n/2
· e−Q(x)/2,

where

Q(x) = xAxT =

n∑

i,j=1

aijxixj ,

and |A| denotes the determinant of a positive definite matrix A = (aij). The word central
indicates again that EΞ = 0 (sometimes one says that this is a distribution with zero
mean [8]). The matrix A is called the covariance matrix of the above distribution because
its elements are given by pairwise covariances of the components of distribution Ξ.

Let P be a Gaussian random polynomial on Rn in the above sense. Then it can be
written as

P (x) =
∑

α

ξαx
α

α = (α1, α2, . . . , αn), x = (x1, x2, . . . , xn), xα = xα1
1 · xα2

2 · . . . · xαnn , where ξα have
multidimensional normal distribution. To specify this distribution it is sufficient to give
its covariance matrix explicitly. Denote by m the algebraic degree of P .

Example 1.1. Let all coefficients ξα be i.i.d. (independent identically distributed)
standard normals. Then P is called a standard Gaussian random polynomial in n variables
of algebraic degree m.

For polynomials in one variable, such type of random polynomial is quite natural and
standard and there exist a lot of results about numerical invariants of standard Gaussian
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polynomials in one variable [6]. However, it turned out that in the case of several variables
such polynomials are sufficiently difficult to work with, so for us especially important is
the following example of Gaussian random polynomial introduced in [19].

Example 1.2 ([19]). Denote by Hm(Rn+1) the set of all homogeneous polynomials
of algebraic degree m (m-forms) on Rn+1 and consider a Gaussian random homogeneous
polynomial f from Hm(Rn+1) having the form

F (x) =
∑

m0+m1+...+mn=m

Fm0,m1,...,mnx
m0
0 xm1

1 . . . xmnn , x ∈ Rn+1,

where Fm0,...,mn are independent normal random variables with zero mean and variances

EF 2
m0,...,mn =

m!

mo! . . .mn!
.

We call it a standard Gaussian random m-form.

It can be verified that such a random polynomial is invariant with respect to the
natural action of the group O(n + 1) on Hm(Rn+1) in which case it is said to be rota-
tion invariant . As was shown in [17], an important characteristic of a rotation invariant
Gaussian random polynomial is given by the so-called parameter r which is defined by
the formula

r =
E
(
∂F
∂x0

(e)
)2

EF (e)2
,

where e = (1, 0, . . . , 0) ∈ Sn is a chosen point. It is possible to check by a direct compu-
tation that in the above example we get r = m.

There is one more type of random polynomial which is relevant for our purposes. It
was introduced in [17] and can be described as follows.

Example 1.3 ([17]). Introduce a scalar product on Hm(Rn+1) by the formula

(f, f ′) =

∫

x∈Sn
f(x)f ′(x) dx, f, f ′ ∈ Hm(Rn+1).

A Gaussian random m-form F is called satisfactory if

E
(
(f, F )(f ′, F )

)
= (f, f ′), f, f ′ ∈ Hm(Rn+1).

According to [17] such a random polynomial is rotation invariant and its parameter r is
equal to

m(m+ n+ 1)

n+ 2
.

Consider now a general (i.e. not necessarily homogeneous) Gaussian random poly-
nomial on Rn+1 of algebraic degree N such that each of its homogeneous components
of degree m ≤ N has standard Gaussian distribution specified in Example 1.1. In such
situation we speak of a standard random polynomial of algebraic degree N . This is pre-
cisely the type of random polynomial we wish to consider. There are (at least) two main
reasons for such choice: first, such polynomials and their numerical invariants appeared
useful in physics [7], [5], and, second, for systems of random polynomials of such type
M. Shub and S. Smale [19] obtained simple explicit formulae for the expected number of
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real roots, which enable one to obtain various results about numerical invariants of such
polynomials.

One can analogously define a (non-homogeneous) satisfactory random polynomial of
algebraic degree N . For such polynomials, one can also obtain some useful results about
their numerical invariants.

2. Expected number of real roots. Our discussion in the next section relies on
some results about the expected number of real roots of random polynomials in one
variable. So we reproduce several relevant results from [8]. Let

P (x) = a0 + a1x+ . . .+ amx
m

be a non-zero polynomial in one variable. Define two (column) vectors

a = (a0, a1, . . . , am)T , V (t) = (1, t, t2, . . . , tm)T .

Suppose now that P is a Gaussian random polynomial as above with some fixed
distribution of coefficients and denote by Em the expected number of its real roots.
Obviously, this number depends on the distribution of vector a. A beautiful geometric
argument going back to [19] shows that in the case of standard Gaussian polynomial P
(actually the same holds if ai are any i.i.d. central normals)

Em =
1

π
|γ|,

where γ(t) ≡ V (t)/‖V (t)‖ is the normalized moment curve on the unit sphere in Rm+1

and |γ| denotes its length [8]. As was shown in [8], this enables one to compute the
expected number of real roots for various Gaussian random polynomials in one variable.
In particular, for a standard Gaussian polynomial of algebraic degree n, one has the
famous Kac formula [10].

Proposition 2.1. The expected number of real roots of a standard Gaussian random
polynomial of algebraic degree n is

Em =
1

π

∫ +∞

−∞

√
∂2

∂x∂y

(
log

1− (xy)m+1

1− xy

)∣∣∣∣
y=x=t

dt.

This version of Kac formula appeared in [8]. It is standard from many points of view.
For example, using it one can write down an asymptotic expansion of Em as m tends to
infinity [8]. In particular, it is known that Em grows as 1

π logm as m tends to infinity.
As was shown in [19], very elegant and explicit results about Em can be obtained for

standard Gaussian polynomial given in Example 1.2. Notice that such random polyno-
mials in one variable have also been studied in the context of some problems of quantum
physics [7]. Although this is just a special case of Example 1.2 we describe it explicitly
because of its importance.

Let P (x) = a0 + a1x + . . . + amx
m be a random polynomial with the coefficients ai

which are independent normal random variables with variances
(
m
i

)
. As was shown in [8],

the density of zeros in this case is

ρ(t) =

√
m

π(1 + t2)
.
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So in this case the density of zeros is given by the Cauchy distribution [18]. Integrating
this density one obtains a simple formula for Em which we need in the next section.

Proposition 2.2 ([19]). The expected number of real roots of standard Gaussian ran-
dom polynomial in one variable of algebraic degree m is equal to

√
m.

Similar results hold for the expected number of real roots of random polynomial
systems defined by Gaussian random polynomials. The following example is instructive
from the point of view of the planar endomorphisms.

Example 2.1. Let (P,Q) be a pair of standard Gaussian random polynomials in two
variables of algebraic degree m. Then the expected number of their common real roots is
equal to m.

In other words, in this case one is able to find the exact value of expected geometric
multiplicity so it becomes natural to try the same for other numerical invariants of a
random plend which were mentioned in the introduction. As is shown in the next section,
in some cases one can find or estimate its expected gradient degree.

3. Expected gradient degree in the plane. Let R2 be the ring of real polynomials
of two variables. For P ∈ R2, let degP denote its algebraic degree, i.e. the highest order of
monomials which appear in P . For convenience, we write a polynomial P with degP = m

in the form

P (x, y) =

m∑

k+l=0

aklx
kyl,

where at least one non-vanishing akl with k + l = m appears. The leader P ∗ is defined
as the sum of monomials of highest order. Obviously it is a non-trivial binary m-form.

By taking a pair of random polynomials of the above form (not necessarily with the
same distribution of coefficients) one gets a random plend

F = (P,Q) : R2 −→ R2

with these polynomials as the components. In this way one can define Gaussian random
plends of various types.

As is well known, if F is proper then its (global) topological degree DegF is well-
defined [16]. As one could expect, a random plend almost certainly has several nice
properties of which we need at the moment only one. It can be proved applying the same
reasoning as was used in [17] to show that a random Gaussian hypersurface is almost
certainly smooth.

Proposition 3.1. A Gaussian random plend is proper with probability one.

Actually, the same is true for many other generic properties of plends, such as stability
in the sense of Whitney [4], which enables one to introduce the random variable equal to
the number of its cusps and consider the expected number of cusps.

Proposition 3.2. A Gaussian random plend is stable with probability one.

For those ω for which F (ω) is not proper, we set DegF (ω) = 0. In this section we are
concerned with estimating the expectation E(DegF ) of random variable DegF .
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In order to obtain the desired result we need to restrict admissible distributions of
coefficients akl. It turns out that an appropriate setting is provided by Example 1.2 in the
special case n = 2. Namely, we start with a random polynomial P of algebraic degree m
whose coefficients akl are independent central Gaussian variables with variances given by
“trinomial coefficients”

Dakl = Ea2
kl =

m!

k!l!(m− k − l)!
and consider a random plend P ′ defined as the gradient of P , i.e., the components of P ′

are given by the partial derivatives Px, Py. In other words, we deal with the gradient of
a standard random polynomial in two variables .

This is obviously a Gaussian random plend and it is easy to write down the covariance
matrix of its coefficients. Notice that the components of P ′ are neither independent nor
have the identical distribution of coefficients. Such random plends were earlier considered
in [14]. As was mentioned in the introduction, they are relevant in some physical problems,
which, in our opinion, gives a sufficient motivation for studying them by their own.

Theorem 3.1. Let P be a standard Gaussian random polynomial in two variables of
algebraic degree m ≥ 1. Then the expectation E(DegP ′) of the topological degree of its
gradient P ′ is equal to 1−√m.

Proof. First of all, notice that it is sufficient to estimate the average topological degree
of the endomorphism (P ∗)′ defined by leaders P ∗x , P ∗y which are binary homogeneous
(m− 1)-forms.

Lemma 3.1. E(DegP ′) = E(Deg(P ∗)′).

Indeed, it is easy to see that almost certainly the components of F ∗ have no common
nontrivial roots. As is well known (see, e.g., [16]), in such case there exists an admissible
(proper) homotopy between P ′ and (P ′)∗ so their topological degrees coincide almost cer-
tainly, which implies the lemma. So it is sufficient to prove the theorem for a homogeneous
random polynomial P ∗.

Notice further that the zero set Z of a homogeneous polynomial P ∗ in two variables
consists of a system of lines in R2 passing through the origin. Their intersections with
the unit circle S1 give a finite set of points Y = Z ∩S1. These points obviously appear in
pairs and those pairs are in a one-to-one correspondence with the real roots of polynomial
in one variable P̂ which is obtained from P ∗ by dehomogenization (i.e. we divide P ∗(x, y)

by ym and introduce a new variable t = x
y ). In other words, the number k of points in Y

equals 2r, where r is the number of real roots of P̂ .
At the same time the number k can be obviously interpreted as the Euler charac-

teristic χ(Y ) of the set Y . According to [12], the Euler characteristic of the zero-set
of homogeneous polynomial P ∗ is related to the mapping degree of its gradient by the
formula

χ(Y ) = 2(1−Deg(P ∗)′).

Thus r = 1 − Deg(P ∗)′ (cf. [16]). Thus we will be able to compute the expected value
of gradient degree if we find the expected value of the random variable equal to r. This
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appears possible due to the following observation which is verified by a straightforward
check.

Lemma 3.2. P̂ is a standard Gaussian random polynomial in one variable of algebraic
degree m.

Notice now that by Proposition 2.2 the expected number of its real roots E(r) is equal
to
√
m. So the result follows by taking the expectations of both sides of the above formula

and applying Lemma 3.1. The proof is thus completed.

We would like to point out that the above argument shows as well that the expectation
of the Euler characteristic of the zero-set of P intersected with the unit circle is equal to
2
√
m. The expectation of Euler characteristic of the projectivized zero-set of Gaussian

random homogeneous polynomial with rotation invariant distribution of coefficients was
computed in [17]. Applying the formula from [17] in our case one gets that the latter
expectation is equal to

√
m, which agrees with our result since the set Y above is the

double of the projectivized zero-set.
It is easy to see that the same geometric argument enables one to obtain similar results

for Gaussian random polynomials of other types. In particular, arguing in the same way
as above and using Proposition 2.1 and the asymptotic of the Kac formula indicated
thereafter, one can find the asymptotic of expected gradient degree for standard Gaussian
polynomial in two variables.

Theorem 3.2. The expected value of the gradient degree of standard Gaussian ran-
dom polynomial in two variables of algebraic degree m is asymptotically equivalent to
− 1
π logm as m tends to infinity.

The list of such results could be extended since the expected number of real roots
of P̂ can be estimated in many cases. For example, the same argument works for the
gradient of satisfactory random polynomial from Example 1.3 but we do not dwell upon
the details for the sake of brevity. There is good evidence that similar arguments based
on the formulae from [12] may work in higher dimensions but it does not seem proper to
go into that in the context of this note.

In the conclusion we wish to say a few words about some other invariants of random
plends mentioned in the introduction, namely, the expectations E(c(F )) and E(s(F )),
where c(F ) and s(F ) are the number of complex points and cusps of F , respectively.
A natural setting in this context is to consider random plends with fixed algebraic degrees
of the components.

Recall that the set of complex points C(F ) of a plend F by definition consists of
such points at which tangent plane to its graph ΓF ⊂ C2 ∼= R2 ×R2 is a complex line in
C2 ∼= R4 [15]. It can be shown that a Gaussian random plend almost certainly has a finite
number c(F ) of complex points so it makes sense to consider the expectation E(c(F )).
From Proposition 3.2 it follows that the same can be said about the number of cusps
s(F ).

Both these expectations give useful characteristics of a random plend. For example,
E(c(F )) would give an estimate for the number of analytic discs attached to the graph
of F [15] while the expected number of cusps and ombilic points plays certain role in
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M. Berry’s approach to the diffraction on Gaussian random surfaces (see [5] and references
therein). So it seems really tempting to express these invariants through the algebraic
degrees of the components.

A natural first step in this direction is to compute these invariants for the gradient
of standard random polynomial as above. The relation of this problem to our results
about the expected gradient degree is given by a variety of so-called mapping degree
formulae for these invariants [1], [2], [3], [9], [12], [13], [15] which enable one to compute
them in terms of the topological degree of effectively constructible gradient plends and
estimate them from above in terms of the algebraic degree. However we do not discuss
these developments here because in all known applications (cf. [5], [7]) one is interested
in exact values of the expectations in question which up to now remain beyond reach.
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