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Abstract. We consider the Gaudin model associated to a point z ∈ Cn with pairwise
distinct coordinates and to the subspace of singular vectors of a given weight in the tensor
product of irreducible finite-dimensional sl2-representations, [G]. The Bethe equations of this
model provide the critical point system of a remarkable rational symmetric function. Any critical
orbit determines a common eigenvector of the Gaudin hamiltonians called a Bethe vector.

In [ReV], it was shown that for generic z the Bethe vectors span the space of singular vectors,
i.e. that the number of critical orbits is bounded from below by the dimension of this space. The
upper bound by the same number is one of the main results of [SV].

In the present paper we get this upper bound in another, “less technical”, way. The crucial
observation is that the symmetric function defining the Bethe equations can be interpreted as
the generating function of the map sending a pair of complex polynomials into their Wroński
determinant: the critical orbits determine the preimage of a given polynomial under this map.
Within the framework of the Schubert calculus, the number of critical orbits can be estimated
by the intersection number of special Schubert classes. Relations to the sl2 representation theory
([F]) imply that this number is the dimension of the space of singular vectors.

We prove also that the spectrum of the Gaudin hamiltonians is simple for generic z.

1. Introduction. The Gaudin model of statistical mechanics is a completely inte-
grable quantum spin chain associated to the Lie algebra sl2 = sl2(C), [G]. Denote by Lλj
the irreducible sl2-module with highest weight λj ∈ C. The space of states of the model
is the tensor product L = Lλ1

⊗ . . .⊗Lλn . Associate with any Lλj a complex number zj ,
and assume z1, . . . , zn to be pairwise distinct, z = (z1, . . . , zn). The Gaudin hamiltonians
H1(z), . . . ,Hn(z) are mutually commuting linear operators on L which are defined as
follows:

Hj(z) =
∑

i6=j

Cij
zj − zi

, j = 1, . . . , n,
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where Cij is the operator which acts as the Casimir element on the i-th and j-th factors
of L and as the identity on the others.

One of the main problems in the Gaudin model is to find common eigenvectors and
eigenvalues of the Gaudin hamiltonians, and the algebraic Bethe Ansatz is one of the
most effective methods for solving this problem. The idea of this method is to find some
function with values in the space of states, and to determine a certain special value of its
argument in such a way that the value of this function is an eigenvector. The equations
which determine these special values of the argument are called the Bethe equations , and
the common eigenvector corresponding to a solution of the Bethe equations, is called the
Bethe vector , [FaT].

It is enough to diagonalize the Gaudin hamiltonians in the subspace of singular vectors
of a given weight. The Bethe equations associated to the space Singk(L) of singular vectors
of the weight λ1 + . . .+ λn − 2k, where k is a positive integer, have the form

n∑

l=1

λl
ti − zl

=
∑

j 6=i

2

ti − tj
, i = 1, . . . , k.

This system is symmetric with respect to permutations of unknowns t1, . . . , tk, and any
solution t0 = (t01, . . . , t

0
k) to this system defines an eigenvector v(t0) ∈ Singk(L) of the

Gaudin hamiltonians {Hj(z)}, [G].
A conjecture related to the Bethe Ansatz says that the Bethe vectors give a basis of

the space of states. For the sl2 Gaudin model, the conjecture was proved in [ReV] in the
case of generic z and generic (non-resonant) weights λ1, . . . , λn. In the case of integral
dominant weights, which is a non-generic one, results of Sec. 9 of [ReV] imply only that
for generic z the number of Bethe vectors is at least the dimension of the space of singular
vectors, see also Theorem 8 in [SV]. The proof of the Bethe Ansatz conjecture for the
sl2 Gaudin model was completed in our work with A. Varchenko [SV], where the bound
from above for the number of the Bethe vectors by the dimension of the space of singular
vectors was obtained.

In [SV], we studied the function

Φ(t) =
k∏

i=1

n∏

l=1

(ti − zl)−λl
∏

1≤i<j≤k
(ti − tj)2.

If all λl are positive integers, then this function is rational, and the Bethe equations are
exactly the equations on the critical points of this function with non-zero critical values,

1

Φ(t)
· ∂Φ

∂ti
(t) = 0, i = 1, . . . , k.

The critical points split into orbits of the permutation group. One of the main results
of [SV] was as follows.

Claim. The number of critical orbits with non-zero critical values of the function
Φ(t) is at most the dimension of Singk.

Our proof was difficult, see Theorems 9–11 of [SV]. As we pointed out in Sec. 1.4
of [SV], the critical orbits are labeled by certain two-dimensional planes in the linear space
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of complex polynomials. This observation suggests to apply the Schubert calculus in order
to prove the Claim. In the present paper, this approach is realized via the Wroński map.

The Wroński determinant of two polynomials f(x), g(x) in one variable is a non-
zero polynomial iff f(x) and g(x) are linearly independent, i.e. span a two-dimensional
plane in the linear space of polynomials. Another basis of the same plane has the same
Wrońskian, up to a non-zero constant factor. This defines a map from the Grassmannian
of two-dimensional planes of complex polynomials to the space of monic polynomials
called the Wroński map.

The function Φ(t) turns out to be the generating function of the Wroński map: the
critical orbits label elements in the preimage under this map of the polynomial

W (x) = (x− z1)λ1 · · · (x− zn)λn .

In fact, this is a reformulation of a classical result of Heine and Stieltjes, see Ch. 6.8
of [Sz].

To calculate the cardinality of a preimage of the Wroński map is a problem of enu-
merative algebraic geometry, and an upper bound can be easily obtained in terms of the
intersection number of special Schubert classes. A well-known relation between represen-
tation theory and the Schubert calculus (see [F]) implies that the obtained upper bound
coincides with the dimension of Singk(L).

In Sec. 2 relevant facts related to Bethe Ansatz in the Gaudin model are collected. In
Sec. 3 we show that the function defining the Bethe equations is the generating function
of the Wroński map, and in Sec. 4 we obtain an upper bound for the number of critical
orbits of the generating function by the intersection number of special Schubert classes.

Another conjecture related to the Gaudin model says that for generic z the Gaudin
hamiltonians have a simple spectrum. In [ReV] it was proved that Bethe vectors differ by
their eigenvalues for generic λ1, . . . , λn and for real z of the form zj = sj , where s � 1.
If it is known that the Bethe vectors form a basis, then the simplicity of the spectrum
follows.

In Sec. 5 we deduce the simplicity of the spectrum of the Gaudin hamiltonians for
generic z and for integral dominant sl2 weights (which are non-generic) from the relation
to linear differential equations.

The arguments which are presented here work and give the similar results for the slp
Gaudin model associated with the tensor product of symmetric powers of the standard
slp-representation, see Sec. 5 of [S1]. The link between the Bethe vectors and the Wroński
map seems to be useful for study rational maps; see [S2] where the case of rational
functions is treated.

Acknowledgments. The author is thankful to A. Eremenko, E. Frenkel, F. Sottile,
A. Varchenko, V. Zakalyukin for interesting discussions, to G. Fainshtein and D. Karzov-
nik for stimulating comments.

2. Gaudin’s model. We collect here some known facts on the Bethe Ansatz in
Gaudin’s model, following [G], [FaT], [Fr], [ReV], [SV].

2.1. The Gaudin hamiltonians. Assume that m1, . . . ,mn are nonnegative integers,
M = (m1, . . . ,mn). Denote by Lmj the irreducible sl2-module with highest weight mj .
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The space of states of the Gaudin model is the tensor product

L⊗M = Lm1
⊗ . . .⊗ Lmn .(1)

Associate with any Lmj a complex number z0
j , and assume z0

1 , . . . , z
0
n to be pairwise

distinct, z0 = (z0
1 , . . . , z

0
n). Let e, f, h be the standard generators of sl2,

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

and

C = e⊗ f + f ⊗ e+
1

2
h⊗ h ∈ sl2 ⊗ sl2

the Casimir element. For 1 ≤ i < j ≤ n, denote by Cij : L⊗M → L⊗M the operator
which acts as C on the i-th and j-th factors of L⊗M and as the identity on all others.
The hamiltonians of the Gaudin model are defined as follows:

Hi(z0) =
∑

j 6=i

Cij
z0
i − z0

j

, i = 1, . . . , n.(2)

2.2. Subspaces of singular vectors. Let |M | = m1+. . .+mn. For a nonnegative integer
k such that |M |−2k ≥ 0, define Singk, the subspace of singular vectors of weight |M |−2k

in L⊗M ,

Singk = Singk(L⊗M ) =
{
w ∈ L⊗M | ew = 0, hw = (|M | − 2k)w

}
.(3)

Theorem 1 ([SV], Theorem 5). We have

dim Singk(L⊗M) =

n∑

q=0

(−1)q
∑

1≤i1<...<iq≤n

(
k + n− 2−mi1 − . . .−miq − q

n− 2

)
,

here we set
(
a
b

)
= 0 for a < b.

The subspace Singk is an invariant subspace of the Gaudin hamiltonians for any
0 ≤ k ≤ |M |/2, and the singular vectors generate the whole of L⊗M . Therefore it is
enough to diagonalize Gaudin hamiltonians in a given Singk.

2.3. Bethe equations associated to Singk and z0. The Bethe equations for the Gaudin
model associated to Singk and z0 have the form

n∑

l=1

ml

ti − z0
l

=
∑

j 6=i

2

ti − tj
, i = 1, . . . , k.(4)

Any solution t0 = (t01, . . . , t
0
k) to this system defines an eigenvector v(t0) ∈ Singk of the

Gaudin hamiltonians, Hj(z0)v(t0) = µjv(t0), with eigenvalues

µj = µj(t
0) =

∑

l 6=j

mlmj

2(z0
j − z0

l )
−

k∑

i=1

mj

z0
j − t0i

, j = 1, . . . , n.(5)

2.4. The master function of the Gaudin model. Consider the following function in
variables t = (t1, . . . , tk) and z = (z1, . . . , zn),

Ψ(t, z) =
∏

1≤i<j≤n
(zi − zj)mimj/2

k∏

i=1

n∏

l=1

(ti − zl)−ml
∏

1≤i<j≤k
(ti − tj)2,(6)
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defined on

C = C(t; z)
=
{
t ∈ Ck, z ∈ Cn | ti 6= zj , ti 6= tl, zj 6= zq, 1 ≤ i 6= l ≤ k, 1 ≤ j 6= q ≤ n

}
.

(7)

Consider the (multivalued) function

S(t, z) = ln Ψ(t, z)

=
∑

1≤i<j≤n

mimj

2
ln(zi − zj)−

k∑

i=1

n∑

l=1

ml ln(ti − zl) +
∑

1≤i<j≤k
2 ln(ti − tj).

(8)

The both functions S(t, z) and Ψ(t, z) have clearly the same critical set in C(t; z). Define

Z = {z ∈ Cn | zj 6= zq, 1 ≤ j 6= q ≤ n } .
Let π : C → Z be the natural projection, π(t, z) = z. For fixed z0 ∈ Z, the equations (4)
form a critical point system of the function S(t, z0) considered as a function in t on
π−1(z0),

∂S

∂ti
(t, z0) = 0, i = 1, . . . , k,

and the equalities (5) can be re-written in the form

µj =
∂S

∂zj
(t0, z0), j = 1, . . . , n,

where t0 = t0(z0) is a solution to the Bethe equations. In terms of the function Ψ(t, z),
the Bethe equations (4) are

1

Ψ(t, z0)
· ∂Ψ

∂ti
(t, z0) = 0, i = 1, . . . , k,

and

µj =
1

Ψ(t0, z0)
· ∂Ψ

∂zj
(t0, z0), j = 1, . . . , n.

2.5. The Shapovalov form. Let m be a nonnegative integer. For the sl2-module Lm
with highest weight m, fix the highest weight singular vector

vm ∈ Lm , hvm = mvm, evm = 0.

Denote by Bm the unique bilinear symmetric form on Lm such that

Bm(vm, vm) = 1, Bm(hx, y) = Bm(x, hy), Bm(ex, y) = Bm(x, fy)

for all x, y ∈ Lm. The vectors vm, fvm, . . . , fmvm are orthogonal with respect to Bm and
form a basis of Lm.

The bilinear symmetric form on L⊗M given by

B = Bm1
⊗ . . .⊗Bmn(9)

is called the Shapovalov form.
Let j1, . . . , jn be integers such that 0 ≤ ji ≤ mi for any 1 ≤ i ≤ n. Write J =

(j1, . . . , jn) and |J | = j1 + . . .+ jn. Let

fJvM = f j1vm1
⊗ . . .⊗ f jnvmn .(10)
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The vectors
{
fJvM

}
are orthogonal with respect to the Shapovalov form B and provide

a basis of the space L⊗M . We have

h(fJvM ) =
(
|M | − 2|J |

)
fJvM , e(fJvM ) = 0,

i.e. the vector fJvM is a singular vector of weight |M |−2|J |. The space Singk is generated
by the vectors fJvM with |J | = k.

2.6. Bethe vectors. For J = (j1, . . . , jn) with integer coordinates such that 0 ≤ ji ≤
mi and |J | = k, and for (t, z) in C given by (7) set

AJ(t, z) =
1

j1! · · · jn!
Symt

[ n∏

l=1

jl∏

i=1

1

tj1+...+jl−1+i − zl

]
,

where

Symt F (t) =
∑

σ∈Sk
F
(
tσ(1), . . . , tσ(k)

)

is the sum over all permutations of t1, . . . , tk.

Theorem 2 ([ReV]).

(i) If t(i) is a nondegenerate critical point of the function S(t, z0), given by (8), then
the vector

v(t(i), z0) =
∑

J : |J|=k
AJ(t(i), z0)fJvM(11)

is an eigenvector of the operators H1(z0), . . . ,Hn(z0).

(ii) For generic z0, the eigenvectors v(t(i), z0) corresponding to all critical point of
the function S(t, z0) generate Singk.

The words “generic z0” mean that z0 does not belong to a suitable proper algebraic
set of Cn.

The set of critical points of the function S(t, z0) is invariant with respect to the
permutations of t1, . . . , tk, and critical points belonging to the same orbit clearly define
the same vector. Theorem 2 gives a lower bound for the number of critical orbits of the
function S(t, z0) by the dimension of Singk. In [SV] the upper bound by the same number
was obtained.

Theorem 3 ([SV]). For fixed generic z0, all critical points of the function S(t, z0)

are nondegenerate, and the number of orbits of critical points is at most the dimension
of Singk.

Corollary 1 ([SV]). For generic z0, the Bethe vectors of the sl2 Gaudin model form
a basis in the space of singular vectors of a given weight.

The statement that all critical points of the function S(t, z0) are nondegenerate is easy,
see Theorem 6 in [SV]. The difficult part of [SV] was to estimate from above the number
of critical orbits (see Theorems 9–11 in [SV]), i.e. to prove the following statement.

Proposition. The number of orbits of critical points of the function S(t, z0) is at
most the dimension of Singk.
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This statement is clearly equivalent to the Claim of the Introduction. As we will see
below, within the framework of the Schubert calculus, the Proposition is a direct and
immediate corollary of easy Theorem 7 of Sec. 4.2.

3. The generating function of the Wroński map

3.1. The Wroński map. Let Polyd be the vector space of complex polynomials of de-
gree at most d in one variable. Denote by G2(Polyd) the Grassmannian of two-dimensional
planes in Polyd. The complex dimension of G2(Polyd) is 2d− 2.

For any V ∈ G2(Polyd) define the degree of V as the maximal degree of its polynomials
and the order of V as the minimal degree of its non-zero polynomials. Let V ∈ G2(Polyd)
be a plane of order a and of degree b. Clearly 0 ≤ a < b ≤ d. Choose in V two monic
polynomials, F (x) and G(x), of degrees a and b respectively. They form a basis of V . The
Wrońskian of V is defined as the monic polynomial

WV (x) =
F ′(x)G(x)− F (x)G′(x)

a− b .

The following lemma is evident.

Lemma 1.

(i) The degree of WV (x) is a+ b− 1 ≤ 2d− 2.

(ii) The polynomial WV (x) does not depend on the choice of a monic basis.

(iii) All polynomials of degree a in V are proportional.

Thus the mapping sending V ∈ G2(Polyd) to WV (x) is a well-defined map from the
Grassmannian G2(Polyd) to CP2d−2. We call it the Wroński map. This is an algebraic
map between smooth complex algebraic varieties of the same dimension, and hence the
preimage of any polynomial consists of a finite number of planes. On Wroński maps see,
e.g., [EGa].

3.2. Planes with a given Wrońskian

Lemma 2. Any element of G2(Polyd) with a given Wrońskian is uniquely determined
by any of its polynomial.

Proof. Let W (x) be the Wrońskian of a plane V ∈ G2(Polyd) and f(x) ∈ V . Take
any polynomial g(x) ∈ V linearly independent with f(x). The plane V is the solution
space of the following second order linear differential equation with respect to unknown
function u(x), ∣∣∣∣∣∣

u(x) f(x) g(x)

u′(x) f ′(x) g′(x)

u′′(x) f ′′(x) g′′(x)

∣∣∣∣∣∣
= 0.

The Wrońskian of the polynomials f(x) and g(x) is proportional to W (x), therefore this
equation can be re-written in the form

W (x)u′′(x)−W ′(x)u′(x) + h(x)u(x) = 0,

where

h(x) =
−W (x)f ′′(x) +W ′(x)f ′(x)

f(x)
,
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as f(x) is clearly a solution to this equation.

We call a plane V ∈ G2(Polyd) generic if for any x0 ∈ C there is a polynomial
P (x) ∈ V such that P (x0) 6= 0. In a generic plane, the polynomials of any basis do not
have common roots, and almost all polynomials of the bigger degree do not have multiple
roots.

The following lemma is evident.

Lemma 3. Let V ∈ G2(Polyd) be a generic plane.

(i) If P (x) = (x − x1) · · · (x − xl) ∈ V is a polynomial without multiple roots, then
WV (xi) 6= 0 for all 1 ≤ i ≤ l.

(ii) If x0 is a root of multiplicity µ > 1 of a polynomial Q(x) ∈ V , then x0 is a root
of WV (x) of multiplicity µ− 1.

A generic plane V is nondegenerate if the polynomials of the smaller degree in V do
not have multiple roots.

Lemma 4. Let V ∈ G2(Polyd) be a nondegenerate plane. If the Wrońskian WV (x)

has the form

WV (x) = xmW̃ (x), W̃ (0) 6= 0,

then there exists a polynomial F0(x) ∈ V of the form

F0(x) = xm+1F̃ (x), F̃ (0) 6= 0.

Proof. Let G(x) ∈ V be a polynomial of the smaller degree. We have G(0) 6= 0, due
to Lemma 3. Let F (x) ∈ V be a polynomial of the bigger degree. The polynomial

F0(x) = F (x)− F (0)

G(0)
G(x) ∈ V

satisfies F0(0) = 0 and therefore has the form

F0(x) = xlF̃ (x), F̃ (0) 6= 0,

for some integer l ≥ 1. The polynomials G and F0 form a basis of V , therefore the
polynomial F ′0(x)G(x)−F0(x)G′(x) is proportional to WV (x). The smallest degree term
in this polynomial is l · al ·G(0)xl−1, where al is the coefficient of xl in F0(x). Therefore
l = m+ 1.

3.3. Nondegenerate planes in Polyd with a given Wrońskian. Recall that the resultant
Res(P,Q) of polynomials P (x) and Q(x) is an irreducible integral polynomial in the
coefficients of P (x) and Q(x) which vanishes whenever P (x) and Q(x) have a common
root, and the discriminant ∆(P ) of P (x) is an irreducible integer polynomial in the
coefficients of P (x) which vanishes whenever P (x) has a multiple root.

Our aim is to describe the nondegenerate planes of a given order in the preimage of
the polynomial

W (x) = (x− z1)m1 · · · (x− zn)mn .(12)

under the Wroński map.
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If plane V of order k and of degree d has the WrońskianW (x), then d = |M |+1−k > k.
Let F (x) be an unknown polynomial of degree 1 ≤ k ≤ |M |/2. Consider the function

Φ = Φ(F ;W ) =
∆(F )

Res(W,F )
.

This function appeared originally in an unpublished note of V. Zakalyukin on the Wroński
map, [Z].

If the polynomial F (x) belongs to a plane in Poly|M |+1−k with the Wrońskian W (x),
then W (x) = F ′(x)Q(x) − F (x)Q′(x) for some polynomial Q(x). Differentiating gives
W ′(x) = F ′′(x)Q(x)− F (x)Q′′(x), and we have

W ′

W
=
F ′′Q− FQ′′
F ′Q− FQ′ .

If the plane spanned by F (x) and G(x) is non-degenerate, then polynomials F and Q do
not have common roots, polynomial F does not have multiple roots, and polynomials W
and F do not have common roots, by Lemmas 3 and 4. Therefore at each root ti of F
we get

W ′(ti)
W (ti)

=
F ′′(ti)
F ′(ti)

, i = 1, . . . , k.(13)

3.4. Theorem of Heine-Stieltjes. In order to re-write down the function Φ as a func-
tion in unknown roots of F (x), recall that if F (x) = (x − t1) · · · (x − tk) and if W (x) is
as in (12), then

∆(F ) =
∏

1≤i<j≤k
(ti − tj)2, Res(W,F ) =

k∏

i=1

n∏

j=1

(ti − zj)mj .

We have

Φ = Φ(t; z,M) =

k∏

i=1

n∏

l=1

(ti − zl)−ml
∏

1≤i<j≤k
(ti − tj)2.(14)

The critical points of this function were studied by Heine and Stieltjes in connec-
tion with second order linear differential equations having polynomial coefficients and
a polynomial solution of a prescribed degree. The result of Heine and Stieltjes can be
formulated as follows.

Theorem 4 (Heine-Stieltjes, cf. [Sz], Ch. 6.8). Let t0 be a critical point with non-
zero critical value of the function Φ(t) given by (14). Then F (x) = (x − t01) · · · (x − t0k)

is a polynomial of the smaller degree in a nondegenerate plane with the Wrońskian W (x)

given by (12).
Conversely, if F (x) = (x − t01) · · · (x − t0k) is a polynomial of the smaller degree in a

non-degenerate plane V with the Wrońskian WV (x) = W (x), then t0 = (t01, . . . , t
0
k) is a

critical point with non-zero critical value of the function Φ(t).

The function Φ(t) is symmetric with respect to permutations of t1, . . . , tk, critical
points belonging to one orbit define the same polynomial F (x) and hence, according to
Lemma 2, the same plane.



258 I. SCHERBAK

3.5. Bethe vectors and nondegenerate planes. The function Φ(t) given by (14) and
the function Ψ(t, z) given by (6) differ in a factor depending only on z and M ,

Ψ(t, z) =
∏

1≤i<j≤n
(zi − zj)mimj/2 · Φ(t; z,M).

An easy calculation shows that (13) is exactly the system defining the critical points with
non-zero critical values of the function Φ(t). The theorem of Heine-Stieltjes implies the
following result.

Corollary 2. There is a one-to-one correspondence between the critical orbits with
non-zero critical value of the function (14) and the nondegenerate planes of order k and
of degree |M |+ 1− k having Wrońskian (12).

Corollary 3. For fixed z ∈ Z, M = (m1, . . . ,mn) and k, there is a one-to-one
correspondence between the Bethe vectors of the sl2 Gaudin model associated to z and
Singk given by (3) and the nondegenerate planes of order k with the Wrońskian (12).

Corollary 4. The Bethe equations associated to z and (3) coincide with the critical
point system of the generating function associated to order k and the Wrońskian (12).

The function Φ is called the generating function of the Wroński map: for any given
monic polynomial W (x) and any given order k, 1 ≤ k ≤ degW/2, the critical orbits of
the function Φ determine the non-degenerate planes of order k in the preimage of W (x).
We shall show below that for generic z the critical orbits determine all planes of order k
in the preimage, see Corollary 5 in Sec. 4.2.

4. The preimage of a given Wrońskian. The number of nondegenerate planes
with a given Wrońskian can be estimated from above by the intersection number of
Schubert classes. We recall first some basic facts related to the Schubert calculus, follow-
ing [GrH] and [F].

4.1. Schubert calculus. Let G2(d + 1) = G2(Cd+1) be the Grassmannian variety of
two-dimensional subspaces V ⊂ Cd+1. A chosen basis e1, . . . , ed+1 of Cd+1 defines the
flag of linear subspaces

E• : E1 ⊂ E2 ⊂ . . . ⊂ Ed ⊂ Ed+1 = Cd+1 ,

where Ei = Span{e1, . . . , ei}, dimEi = i. For any integers a1 and a2 such that 0 ≤
a2 ≤ a1 ≤ d − 1, the Schubert cell Ω◦a1,a2

(E•) ⊂ G2(d+ 1) is formed by the elements
V ∈ G2(d+ 1) such that

dim(V ∩ Ei) =





0, 1 ≤ i < d− a1

1, d− a1 ≤ i ≤ d− a2

2, d− a2 < i ≤ d+ 1.

The Schubert variety Ωa1,a2
(E•) is the closure of the Schubert cell,

Ωa1,a2
= Ωa1,a2

(E•) = {V ∈ G2(d+ 1) | dim (V ∩ Ed−a1
) ≥ 1, dim (V ∩ Ed+1−a2

) ≥ 2} .
The variety Ωa1,a2

= Ωa1,a2
(E•) is an irreducible closed subvariety of G2(d+ 1) of the

complex codimension a1 + a2.
The homology classes [Ωa1,a2

] of Schubert varieties Ωa1,a2
are independent of the

choice of flag, and form a basis for the integral homology of G2(d+ 1). Denote by σa1,a2
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the cohomology class in H2(a1+a2)(G2(d+ 1)) whose cap product with the fundamental
class of G2(d + 1) is the homology class [Ωa1,a2

]. The classes σa1,a2
are called Schubert

classes . They give a basis over Z for the cohomology ring of the Grassmannian. The
product or intersection of any two Schubert classes σa1,a2

and σb1,b2 has the form

σa1,a2
· σb1,b2 =

∑

c1+c2=a1+a2+b1+b2

C(a1, a2; b1, b2; c1, c2)σc1,c2 ,

where C(a1, a2; b1, b2; c1, c2) are nonnegative integers called the Littlewood-Richardson
coefficients .

If the sum of the codimensions of classes equals dimG2(d+ 1) = 2d−2, then their in-
tersection is an integer (identifying the generator of the top cohomology group σd−1,d−1 ∈
H4d−4(G2(d+ 1)) with 1 ∈ Z) called the intersection number .

When (a1, a2) = (q, 0), 0 ≤ q ≤ d − 1, the Schubert varieties Ωq,0 are called special
and the corresponding cohomology classes σq = σq,0 are called special Schubert classes .

As it is well-known, the Littlewood-Richardson coefficients appear also in the decom-
position of the tensor product of two irreducible finite-dimensional sl2-modules into the
direct sum of irreducible sl2-modules. This leads to the following claim connecting the
Schubert calculus and the representation theory of the Lie algebra sl2(C).

Denote by Lq the irreducible sl2-module with highest weight q.

Theorem 5 ([F]). Let q1, . . . , qn+1 be integers such that 0 ≤ qi ≤ d − 1 for all
1 ≤ i ≤ n+ 1 and q1+. . .+qn+1 = 2d−2. The intersection number of the special Schubert
classes, σq1 · . . . · σqn+1

, coincides with the multiplicity of the trivial sl2-module L0 in the
tensor product Lq1 ⊗ . . .⊗ Lqn+1

.

Theorems 1 and 5 imply the following explicit formula.

Theorem 6. Let q1, . . . , qn+1 be integers such that 0 ≤ qi ≤ d−1 for all 1 ≤ i ≤ n+1

and q1 + . . .+ qn+1 = 2d− 2. Then
n∑

l=1

(−1)n−l
∑

1≤i1<...<il≤n

(
qi1 + . . .+ qil + l − d− 1

n− 2

)

is the intersection number σq1 · . . . · σqn+1
.

We did not find this formula in the literature on the Schubert calculus.

4.2. Planes with a given Wrońskian and Schubert classes. Applying the Schubert
calculus to the Wroński map, we arrive at the following result.

Theorem 7. Let m1, . . . ,mn be positive integers, |M | = m1 + . . .+mn. For generic
z ∈ Z and for any integer k such that 1 ≤ k < |M | + 1 − k, the preimage of the
polynomial (12) under the Wroński map consists of at most

σm1
· . . . · σmn · σ|M |−2k

nondegenerate planes of order k and of degree < |M |+ 1− k.

Proof. Any plane of order k with the Wrońskian of degree |M | lies in G2(Poly|M |+1−k),
as Lemma 1 shows. Hence it is enough to consider the Wroński map on G2(Poly|M |+1−k).

For any zj , define the flag Fzj in Poly|M |+1−k,

F0(zj) ⊂ F1(zj) ⊂ . . . ⊂ F|M |+1−k(zj) = Poly|M |+1−k ,



260 I. SCHERBAK

where Fi(zj) consists of the polynomials P (x) ∈ Poly|M |+1−k of the form

P (x) = ai(x− zj)|M |+1−k−i + . . .+ a0(x− zj)|M |+1−k.

We have dimFi(zj) = i + 1. Lemma 4 implies that the nondegenerate planes with a
Wrońskian having at zj a root of multiplicity mj lie in the special Schubert cell

Ω◦mj ,0(Fzj ) ⊂ G2(Poly|M |+1−k).

The maximal possible degree of the Wrońskian WV (x) for V ∈ Poly|M |+1−k is clearly
2|M | − 2k. Denote by m∞ = |M | − 2k the difference between 2|M | − 2k and |M |. If m∞
is positive, it is the multiplicity of W (x) at infinity .

The nondegenerate planes with a Wrońskian having given multiplicity m∞ at infinity
lie in the special Schubert cell Ω◦m∞,0(F∞), where F∞ is the flag

Poly0 ⊂ Poly1 ⊂ . . . ⊂ Poly|M |+1−k .

We conclude that the nondegenerate planes of order k which have the Wrońskian (12)
lie in the intersection of special Schubert cells

Ω◦m1,0(Fz1) ∩ Ω◦m2,0(Fz2) ∩ . . . ∩ Ω◦mn,0(Fzn) ∩ Ω◦m∞,0(F∞).(15)

The dimension of G2(Poly|M |+1−k) is exactly m1 + . . . + mn + m∞, therefore this
intersection consists of a finite number of planes, and the intersection number of the
special Schubert classes

σm1
· . . . · σmn · σ|M |−2k

provides an upper bound.

Theorems 5 and 7, together with Corollary 2, imply the Proposition of Sec. 2.6 and
hence, the Claim of the Introduction.

Corollary 5. For generic z ∈ Z, all planes in the preimage under the Wroński map
of the polynomial W (x) given by (12) are nondegenerate.

Corollary 6. For generic z ∈ Z, the intersection of Schubert varieties

Ωm1,0(Fz1) ∩ Ωm2,0(Fz2) ∩ . . . ∩ Ωmn,0(Fzn) ∩ Ωm∞,0(F∞)

is transversal, coincides with (15) and consists of nondegenerate elements.

5. The simplicity of the spectrum of the Gaudin hamiltonians

5.1. Fuchsian differential equations with only polynomial solutions and the Wroński
map. Consider a second order Fuchsian differential equation with regular singular points
at z1, . . . , zn, n ≥ 2, and at infinity. If the exponents at zj are 0 and mj + 1, 1 ≤ j ≤ n,
then this equation has the form

F (x)u′′(x) +G(x)u′(x) +H(x)u(x) = 0,

F (x) =

n∏

j=1

(x− zj),
G(x)

F (x)
=

n∑

j=1

−mj

x− zj
,

(16)

where H(x) is a polynomial of degree not greater than n− 2. On Fuchsian equations see
Ch. 6 of [R].
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Theorem 8 (cf. Sec. 1.4 of [SV]). Any nondegenerate plane V ∈ G2(Polyd) with the
Wrońskian (12) is the solution space of such an equation.

Proof. Let f(x) and g(x) be non-zero monic polynomials in V such that deg f < deg g.
As we have seen in course of the proof of Lemma 2, the plane V is the solution space of
the equation

W (x)u′′(x)−W ′(x)u′(x) + h(x)u(x) = 0,

where

h(x) =
−W (x)f ′′(x) +W ′(x)f ′(x)

f(x)

is a polynomial proportional to the Wrońskian of f ′(x) and g′(x). One can easily check
that

W ′(x)

W (x)
=

n∑

j=1

mj

x− zj
.

Moreover, if zj is a root of W (x) of multiplicity mj > 1, then all coefficients of the
equation have (x− zj)mj−1 as a common factor, and the equation can be reduced to the
required form (16).

In [Fr], a correspondence between eigenvalues of the Gaudin hamiltonians and the
sl2-opers which determine a trivial monodromy representation

π1

(
P 1 \ {z1, . . . , zn,∞}

)
→ PGL2

was established. Notice that any nondegenerate plane with a given Wrońskian defines
such an oper, and any oper with trivial monodromy defines a plane in G2(Polyd) for
some d.

5.2. Bethe vectors differ by their eigenvalues. Let t(1) and t(2) be two solutions to
the Bethe equations (4) associated to fixed z0 ∈ Z and Singk. Denote by v(t(i), z0)

the corresponding Bethe vectors given by (11) and µ(i) = (µ1(t(i)), . . . , µn(t(i))) their
eigenvalues given by (5), i = 1, 2.

Theorem 9. If µ(1) = µ(2), then v(t(1), z0) = v(t(2), z0).

Proof. Let fi(x) = (x − t(i)1 ) · · · (x − t(i)k ) be the corresponding polynomials, i = 1, 2.
Any of these polynomials defines a differential equation of the form (16). A classical fact
of the theory of Fuchsian equations is that if an equation of the form (16) with positive
integer m1, . . . ,mn has a polynomial solution without multiple roots, then all solutions
to this equation are polynomials, see Ch. 6 of [R] or Sec. 3.1 of [SV]. We have

Hi(x) = −F (x)f ′′i (x) +G(x)f ′i(x)

fi(x)
, i = 1, 2.

Polynomials H1(x) and H2(x) have degree at most n− 2. We will show that these poly-
nomials in fact coincide. Indeed, the substitution of zj into Hi gives

Hi(zj) = mj ·
f ′i(zj)
fi(zj)

n∏

l 6=j
(zj − zl).
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An easy calculation shows that

f ′i(zj)
fi(zj)

=

k∑

l=1

1

zj − t(i)l
, i = 1, 2,

and the condition µ(1) = µ(2) together with (5) imply

f ′1(zj)

f1(zj)
=
f ′2(zj)

f2(zj)
, j = 1, . . . , n.

We conclude that H1(x) and H2(x) coincide at n points, therefore H1(x) = H2(x). Thus
polynomials f1(x) and f2(x) are monic polynomials of the minimal degree in the same
solution plane. Hence f1(x) = f2(x), the solutions t(1) and t(2) of the Bethe equations lie
in the same orbit, and v(t(1), z0) = v(t(2), z0).

Corollary 7. For generic z0 ∈ Z, the sl2 Gaudin hamiltonians (2) have a simple
spectrum.
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