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Abstract. In this paper a general class of Boltzmann-like bilinear integro-differential systems of
equations (GKM, Generalized Kinetic Models) is considered. It is shown that their solutions can
be approximated by the solutions of appropriate systems describing the dynamics of individuals
undergoing stochastic interactions (at the “microscopic level”). The rate of approximation can
be controlled. On the other hand the GKM result in various models known in biomathemat-
ics (at the “macroscopic level”) including the “SIR” model, some competitive systems and the
Smoluchowski coagulation model.

1. Introduction. Usually the description of biological populations is carried out on
macroscopic level of interacting subpopulations of the system. However in many cases
the description on microscopic level of interacting individuals (e.g. cells) seems to be
more adequate.

For example the evolution of a neoplastic cell (see e.g. [He], [BD]), can be described
according to the following steps:

1. loss of differentiation and replication: the cells start to reproduce in the form of
identical descendants (so-called clonal expansion);
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2. interaction (activation or inhibition) and competition at the cellular level with immune
and environmental cells, e.g. through the emission of cytokine signals;
3. condensation of tumour cells, macroscopic diffusion and angiogenesis;
4. detachment of metastases and propagation.

The first two steps imply cellular and sub-cellular interactions, while the last two can
be described at the macroscopic level.

Mathematical models of cellular phenomena related to the interaction between tumour
cells and the immune system have been developed by Bellomo and Forni [BF] by methods
which are typical of kinetic theory. Bellomo and Forni’s model is a generalization of the
Jäger and Segel [JS] kinetic model.

In [ABL] a class of models of population dynamics with kinetic interactions taking in-
to account transitions among different populations was proposed. Further generalization
of the class [ABL] was proposed and analysed in [LW2] (see also [La4] and references the-
rein). This class includes, as particular cases, not only the Jäger and Segel model [JS], the
Bellomo and Forni model [BF] and the models considered in [ABL], but also the models of
Lachowicz and Wrzosek [LW1], as well as of Geigant, Ladizhansky and Mogilner [GLM].

In [AGL] and [KKL] various models of cellular tumour dynamics in competition with
the immune system were proposed. The interacting individuals were the cells of the
populations involved in the competition between the tumour and the immune system.

The models considered in [JS], [BF], [ABL], [GLM], [KKL], [LW1,2] and [La4] are
stated in terms of systems of integro-differential equations (like the Boltzmann kine-
tic equation), with quadratic nonlinearities, describing the evolution of the densities of
individuals.

The important problem is understanding relationships between different models de-
veloped at different levels of description. One can distinguish three possible levels of
description as follows:

(I) the level of interacting individuals (“microscopic” description),
(II) the level of statistical description of test–individual (sometimes called a “mesosco-

pic” description),
(III) the “macroscopic” level.

In the context of kinetic theory of gases a huge bibliography on this topic exists (see
references in [BGL], [La2,3,4], and [LM]), but the relationships between the different
models are still not fully understood. The situation is definitely more complex in the case
of biological systems.

Paper [La4] gives the conceptual framework for a program for finding possible transi-
tions between the different levels of description with particular attention to the relation-
ships between (II) to (III)).

The present paper is dedicated to the limits (I) to (II) and (I) to (III). Following
the methods developed in kinetic theory [LP] it is shown that the appropiate systems
composed of a large number N of stochastic interacting indiviudals approximate the
solution to Eq. (1.3). The control of rates of approximations by the parameters of the
individuals system is provided.
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2. Generalized Kinetic Models. A general class of bilinear systems of Boltzmann-like
integro-differential equations describing the dynamics of individuals undergoing kinetic
(stochastic) interactions was proposed and analysed in [LW2]. These equations can model
interactions between pairs of individuals of various populations at the level (II).

The class of equations in [LW2] can be regarded as a generalization of the Jäger and
Segel kinetic model [JS], as well as those of Arlotti and Bellomo [AB1,2], Arlotti, Bellomo
and Lachowicz [ABL], Lachowicz and Wrzosek [LW1], Geigant, Ladizhansky and Mogilner
[GLM]. In the literature these kind of models are referred to as the GKM, Generalized
Kinetic Models.

The models refer to a (large) number of individuals of several populations: Each indi-
vidual is characterized by the pair u = (j, u), where j ∈ J characterizes the population
of the individual and u ∈ U is the (physical or biological) state (e.g. position, velocity,
activation state, domination) of the individual, J ⊂ N0 = {0, 1, 2, . . .}, and U is a domain
in Rd, d ≥ 1. The evolution is determined by the interactions between pairs of individuals
(analogously to kinetic theory only binary interactions are taken into account here).

The function f = f(t,u), f : R+ × J × U → R+, u = (j, u), defines the density of
individuals of the j-th population with state u at time t ≥ 0.

The total number of individuals at time t ≥ 0 is given by

(2.1)
∫

J×U
f(t,u) dµ(u),

where µ is a measure defined on J × U such that

(2.2) µ(J1 × U1) = δ(J1)λ(U1),

δ is a (discrete) measure in J (e.g. the counting measure), J1 is a (finite) subset of J ,
and λ is the Lebesgue measure in U , U1 is a λ-measurable subset of U .

The rate of interaction between the individuals of the j-th population (j ∈ J ) with
state u ∈ U and the individual of the k-th population (k ∈ J ) with state v ∈ U is given
by the function

a = a(u,v), a : (J × U)2 → R+,

where u = (j, u), v = (k, v).
The transition into the j-th population (j ∈ J ) with state u ∈ U due to the interaction

of individuals of the k-th population (k ∈ J ) with state v ∈ U with individuals of the
l-th population (l ∈ J ) with state w ∈ U is described by the function

A = A(u; v,w), A : (J × U)3 → R+,

where u = (j, u), v = (k, v), w = (l, w).
Referring to [LW2] the model (GKM) reads

(2.3) ∂tf(t,u) = G[f ](t,u)− f(t,u)Lf(t,u), u ∈ J × U ,
where G is the gain term,

G[f ](t,u) =
∫

(J×U)2
A(u; v,w)a(v,w)f(t,v)f(t,w) dµ(v) dµ(w),
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and fLf is the loss term,

Lf(t,u) =
∫

J×U
a(u,v)f(t,v) dµ(v).

In the present paper the following particular (conservative) case is considered (cf.
[La4]):

(2.4)
∫

J×U
A(u; v,w) dµ(u) = 1, for µ-a.a. v,w in J × U .

In this case the total number of individuals (2.2) is (formally) preserved and A is a
probability density with respect to the first variable.

Various models known in the literature can be covered by the above general model.
In [LW2] and [La4] some examples were given. Here we mention

Example 2.1. For some particular choices of functions A and a (constant with respect
to u, v and w) Eq. (2.3) results in an important model known in the literature, the
Kermack–McKendrick (”SIR”) model in theory of epidemics ([Ca]). Consider

(2.5) J = {1, 2, 3, 4}, U such that λ(U) = 1,

and A(j, u; k, v, l, w) and a(j, u, k, v) independent of u, v and w. Assume

(2.6a)
A(2; 1, 2) = A(2; 2, 1) = 1, A(i; 1, 2) = A(i; 2, 1) = 0, i = 1, 3, 4,
A(3; 2, 4) = A(3; 4, 2) = A(4; 2, 4) = A(4; 4, 2) = 1

2 ,

A(i; 2, 4) = A(i; 4, 2) = 0, i = 1, 2,

(2.6b) a(1, 2) = a(2, 1) = γ1, a(2, 4) = a(4, 2) = γ2,

where γ1 and γ2 are given positive constants, while all other a(j, k) are assumed to be
equal 0. Hence Eq. (2.3) leads to the Kermack–McKendrick model

(2.7) ˙̄f1 = −γ1f̄1f̄2,
˙̄f2 = γ1f̄1f̄2 − γ2f̄2,

˙̄f3 = γ2f̄2,

where f̄j(t) =
∫
U f(t, j) dλ(u), are densities of susceptibles, infectives and removed indi-

viduals, respectively for j = 1, 2, 3, the constant density f̄4 plays an auxiliary rôle.

Example 2.2. If J = N = {1, 2, 3, . . .} and

(2.8) A(j, u; k, v, l, w) =
1
2
δj,k+l, a(j, u, k, v) = aj,k,

where ak,l are given and independent of u, v, w, for k, l ∈ N, then Eq. (2.3) is the
Smoluchowski infinite system of equations describing the binary coagulation of colloids.

If J = N and

(2.9a) A(j, x; k, y, l, z) =
1
2
δj,k+l Ãk,l(x; y, z), a(j, x, k, y) = aj,k(x, y),

where Ãk,l and ak,l are given (measurable) functions of x, y, z and x, y, respectively, for
k, l ∈ N,

(2.9b)
∫

U
Ãk,l(x; y, z) dλ(x) = 1 for k, l ∈ J and λ-a.a. y, z in U ,

then Eq. (2.3) is the nonlocal coagulation model proposed in [WL1]. Actually, in [WL1],
the more general nonlocal coagulation–fragmentation model including diffusion according
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to Fick’s law was proposed and analyzed. The variables x and y, z were interpreted as
the positions (after and before the interaction, respectively) of interacting clusters in the
physical space U .

The model SIR (2.7) refers to the conservative case. The conservativity of the coagu-
lation models of Example 2.2 refers to the measure µ such that

(2.10) δ(J1) =
∑

j∈J1

j, J1 ⊂ N,

that corresponds to the total mass conservation law in the coagulation process. This,
however, is not directly expressed in terms of (2.4).

Example 2.3. Particular forms of Eq. (2.3) has been developed in order to describe
the competition between a tumour and the immune system in [AGL] and [KKL]); the
parameter u ∈ U = [0, 1] is related to activation state of active tumour cells (in [AGL]) or
tumour (leukemia) cells, macrophages, NK-cells and Tc-cells (in [KKL]). These models
do not however correspond to the conservative case (2.4).

Some models that do not correspond to the conservative case (2.4) can result from
Eq. (2.3).

Example 2.4. Assume that J = {1} and U ⊂ R1. Let α and β be positive constants.
Let a(u, v) = β|v| and A = A(u) be such that

(2.11) A ≥ 0,
∫

U
A(u) dλ(u) = 1,

∫

U
|u|A(u) dλ(u) =

α

β
.

Define

(2.12) f̄ =
∫

U
f(u) dλ(u), f̂ =

∫

U
|u|f(u) dλ(u).

Consider the particular version of Eq. (2.3)

(2.13) ∂tf(t, u) = βA(u)f̄(t)f̂(t)− βf(t, u)f̂(t),

with the initial data

(2.14) f |t=0 = F, F̄ = 1.

By (2.12), Eq. (2.13) corresponds to the conservative case (2.4) and we have

(2.15) f̄(t) = F̄ = 1, for t > 0.

On the other hand, f̂ satisfies the following logistic equation

(2.16)
d
dt
f̂ = αf̂ − βf̂2.

Similarly Eq. (2.3) can result in the competitive Verhulst–Volterra systems (cf. [La5]).
The models (2.7) and (2.16) are macroscopic ones (the level (III)).

Remark 2.1. Referring to the coagulation model described in Example 2.2 we consider
J = N, U = [0, 1], and

(2.17a) A(j, u; k, v, l, w) = δj,k+lA
′(u; v, w),

(2.17b) a(j, u, k, v) = aj,k v,
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for all j, k, l ∈ J and λ-a.a. u, v, w ∈]0, 1[;

(2.17c) A′(u; v, w) ≥ 0, λ-a.a. u, v, w ∈ ]0, 1[,

(2.17d)
∫ 1

0
A′(u; v, w) dλ(u) = 1, λ-a.a. v, w ∈ ]0, 1[,

and {aj,k}(j,k)∈J 2 are given nonnegative coagulation coefficients aj,k = ak,j . Therefore
we are dealing with the conservative (2.4) case of the GKM (Eq. (2.3)). Moreover, assume
that

(2.18)
∫ 1

0
uA′(u; v, w) dλ(u) =

v

2
, λ-a.a. v, w ∈]0, 1[.

Thus f̂j(t) =
∫ 1

0 uf(t, j, u) dλ(u), j ∈ J , satisfy (formally) the Smoluchowski infinite
coagulation system.

The analogous strategy can be applied for the nonlocal coagulation model [WL1].
The relationships between the particle systems and the Smoluchowski coagulation

models were studied in a number of papers—see [DF], [DS], [Gu], [LX] and references
therein.

These examples together with those in [LW2] and [La4] show that Eq. (2.3) is a
general structure which can be particularized in various important models. Paper [LW2]
was a first step in the description of the mathematical properties of Eq. (2.3). It provides
some existence and uniqueness theorems for Eq. (2.3), discusses its equilibrium solutions,
and studies its diffusive limit. In [LW2] the existence of unstable equilibrium solutions
which are inhomogeneous with respect to the u-variable was proved. The case when
only homogeneous equilibrium solutions exist was specified. Under suitable scaling it
was proved that the one–dimensional version of Eq. (2.3) is asymptotically equivalent to
the nonlinear porous medium equation also used in mathematical biology as the model
for density dependent population dispersal. In [La4] research perspectives for finding
possible transitions from (II) to (III) were presented. In the present paper the results
on the relationships between (I) and (II) and then between (I) and (III) are proved.

3. Interaction of individuals. The important but still unsolved problem is derivation
of kinetic equations ((II)) and then hydrodynamic equations ((III)) from particle dyna-
mics ((I)). In view of the lack of a suitable mathematical theory allowing to derive first
the kinetic and then the hydrodynamic equations from (deterministic) particle systems,
the very important problem is to construct a theory starting from stochastic particle
systems. On the other hand stochastic particle methods are widely used in the numeri-
cal simulations in kinetic theory (see [BB], [CPW], [PWZ], [Wa1,2], [Wl], and references
therein).

The idea of approximating the Boltzmann equation by stochastic particle systems
appeared in the 1930-ies in the paper by Leontovich [Le] but had rather been ignored
by the mathematicians. In the spatially homogeneous case the derivation of a simplified
Boltzmann-type equation (the so-called caricature of a Maxwellian gas) from a stochastic
model was proposed by Kac [Ka]. Kac’s model was studied by McKean [Mc]. Nowadays
there is a huge literature on various stochastic approaches in the kinetic theory—see
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for example [Ar], [BB], [CPW], [GM], [LP], [La1], [PWZ], [Sk], [Wa1,2,3] and references
therein.

In [LP] the starting point is a system of identical point particles that can interact in
pairs, when the distance between two of them is not greater than some number (which is
one of the parameters of the model). As a result of the interaction there are jumps of the
velocities of two interacting particles. The main result of [LP] is related to approximations
(in L1) of both solution of the Boltzmann equation and macroscopic parameters given
by a solution of the Euler system by the solution of the prospective equation (i.e. the
modified Liouville equation) of the model. Approximations are realized if the parameters
of the model are suitably chosen. All estimations of [LP] allow to control the rates of
approximations. [La1] was a continuation of [LP]. In a sense, Skorohod’s approach ([Sk])—
which allows to construct processes in complex phase spaces by stochastic differential
equations—was combined with derivation of the hydrodynamic equations from the kinetic
equation.

Here we follow the idea of [LP]. We show that the solution of Eq. (1.3) can be appro-
ximated by solutions of (linear) equations describing the dynamics of a suitable system
of interacting individuals.

Consider a system composed of N interacting individuals. Every individual n (n ∈
{1, 2, . . . , N}) is characterized by un = (jn, un), where jn ∈ J characterizes the popu-
lation of the n-individual and un ∈ U—its state. The n-individual interacts with the
m-individual and the interaction take place at random times. After the interaction both
individuals may change their population or/and their state.

Consider the Markov process of N individuals with infinitesimal generator given by

ΛNφ(u1,u2, . . . ,uN ) =
1
N

∑

1≤n,m≤N
n6=m

a(un,um)

×
(∫

J×U
A
(
v; un,um

)
φ
(
u1, . . . ,un−1,v,un+1, . . . ,uN

)
dµ(v)− φ

(
u1, . . . ,uN

))
,

where φ is an appropriate test function.
We are interested in the conservative case defined by (2.4) and therefore we assume

that

(3.1)
∫

J×U
A(u; v,w) dµ(u) = 1, for µ-a.a. v,w ∈ J × U .

Moreover, let

(3.2) 0 ≤ A(u; v,w), 0 ≤ a(u,v) ≤ ca, for µ-a.a. u,v,w ∈ J × U ,

where cA and ca are positive constants.
Assume that the system is initially distributed according to the probability density

FN ∈ L(N)
1 , where L(N)

1 is the space

L
(N)
1 = L1(µN⊗) = L1(µ⊗ . . .⊗ µ︸ ︷︷ ︸

N times

)
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equipped with the norm

‖f‖
L

(N)
1

=
∫

(J×U)N
|f(u1, . . . ,uN )| dµ(u1) . . .dµ(uN ).

The time evolution is described by the probability density

(3.3) fN (t) = exp(tΛ∗N )FN .

It satisfies (in L
(N)
1 )

(3.4) ∂tf
N = Λ∗Nf

N ; fN |t=0 = FN ,

where

Λ∗Nf(u1,u2, . . . ,uN ) =
1
N

∑

1≤n,m≤N
n6=m

(∫

J×U
A
(
un; v,um

)
a(v,um)

×f
(
u1, . . . ,un−1,v,un+1, . . . ,uN

)
dµ(v)− a(un,um)f

(
u1, . . . ,uN

))
.

Under the assumptions (3.2) the operator Λ∗N is a bounded linear operator in the
space L(N)

1 . Therefore the Cauchy Problem (3.4) has a unique solution (3.3) in L
(N)
1 for

all t ≥ 0. Moreover, by the standard argument we see that the solution is nonnegative
for nonnegative initial data and the L(N)

1 -norm is conserved,

(3.5) ‖fN (t)‖
L

(N)
1

= ‖FN‖
L

(N)
1

= 1, for t > 0.

We assume that all functions are symmetric,

(3.6) fN (u1, . . . ,uN ) = fN (ur1 , . . . ,urN ),

for µ-a.a. u1, . . ., uN in J ×U and for any permutation {r1, . . . , rN} of the set {1, . . . , N}.
We introduce the s-individual marginal density (1 ≤ s < N)

fN,s(u1, . . . ,us) =
∫

(J×U)N−s
fN (u1, . . . ,uN ) dµ(us+1) . . . dµ(uN ),

and fN,N = fN .
The function fN satisfies Eq. (3.4) iff fN,s satisfy the following finite hierarchy of

equations

(3.7) ∂tf
N,s =

s

N
Λ∗sf

N,s +
N − s
N

Θs+1f
N,s+1,

for s = 1, 2, . . . , N , where

(Θs+1f)(u1, . . . ,us) =
s∑

n=1

(∫

(J×U)2
A
(
un; v,w

)
a(v,w)

× f(u1, . . . ,un−1,v,un+1, . . . ,us,w) dµ(v) dµ(w)

−
∫

J×U
a(un,v)f(u1, . . . ,us,v) dµ(v)

)
.

Taking N sufficiently large we may expect that the solution of the finite hierarchy (3.7)
approximates solution of the following infinite hierarchy of equations:

(3.8) ∂tf
s = Θs+1f

s+1, s = 1, 2, . . . .
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The integral versions of hierarchies (3.7) and (3.8) read
(3.9)

fN,s(t) = FN,s +
s

N

∫ t

0
ΛsfN,s(t1) dt1 +

N − s
N

∫ t

0
Θs+1f

N,s+1(t1) dt1, s = 1, . . . , N,

and

(3.10) fs(t) = F s +
∫ t

0
Θs+1f

s+1(t1) dt1, s = 1, 2, . . . ,

respectively.

Definition 3.1. An admissible hierarchy
{
fs
}
s=1,2,3,... is a sequence of functions f s

satisfying (for s = 1, 2, . . .)

(i) fs is a probability density on (J × U)s;
(ii) fs(u1, . . . ,us) = fs(ur1 , . . . ,urs) for µ-a.a. u1, . . . ,us in J × U and for any permu-

tation {r1, . . . , rs} of the set {1, . . . , s};
(iii) fs(u1, . . . ,us) =

∫
J×U f

s+1(u1, . . . ,us+1) dµ(us+1) for µ-a.a. u1, . . . ,us in J × U .

We have

Theorem 3.1. Let {F s}s=1,2,... be an admissible hierarchy. Then, for all t > 0, there
exists a unique hierarchy {f s(t)}s=1,2,... with fs(t) ∈ L(s)

1 (s = 1, 2, . . .) which is a solu-
tion of Eq. (3.10) with initial data f s(0) = F s (s = 1, 2, . . .). Moreover {f s(t)}s=1,2,...,
for all t > 0, is an admissible hierarchy.

Proof. By (3.1) and (3.2) we have

(3.11) ‖Θs+1f‖L(s)
1
≤ c1s‖f‖L(s+1)

1
,

and

(3.12)
∫

(J×U)s
(Θs+1f)(u1, . . . ,us) dµ(u1) . . . dµ(us) = 0,

for all f ∈ L(s+1)
1 and s = 1, 2, . . ., where c1 = 2ca is a constant. Moreover,

(3.13)
∫

J×U
(Θs+1f)(u1, . . . ,us) dµ(us) = (Θsf̂)(u1, . . . ,us−1),

for all f ∈ L(s+1)
1 and s = 1, 2, . . ., where

f̂(u1, . . . ,us) =
∫

J×U
f(u1, . . . ,us−1,us+1,us) dµ(us+1).

Iterating Eq. (3.10) we obtain the following “perturbation series”:

(3.14) fs(t) = F s +
∞∑

m=1

∫ t

0

∫ t1

0

∫ t2

0
. . .

∫ tm−1

0
Θs+1Θs+2 . . .Θs+mF

s+m dtm . . . dt1.

Existence of a solution, its uniqueness and representation in the form of (3.14) are
directly obtained on the time interval [0, t∗] on which the series, defined by the r.h.s. of
(3.14), is convergent.
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The L(s)
1 -norm of the mth-term of the series in the r.h.s. of (3.14) can be estimated

by
(
c1t
)m (s+m− 1)!

m!(s− 1)!
.

Consequently, by

(3.15)
s(s+ 1) . . . (s+m− 1)

m!
≤ 2s+m−1,

if t∗ = 1
4 c1

, then the series converges uniformly on [0, t∗].
The hierarchy {f s}s=1,2,... satisfies, for all t ∈]0, t∗] the property (ii), and by (3.13),

the property (iii) of Definition 3.1.
The nonnegativity of the solution can be proved on a time interval [0, t∗], where

0 < t∗ ≤ t∗, by standard arguments.
By (3.12) we have

(3.16) ‖fs(t)‖
L

(s)
1

= ‖F s‖
L

(s)
1
, for 0 ≤ t ≤ t∗, s = 1, 2, . . . .

It follows that {f s(t)}s=1,2,... is an admissible hierarchy for all t ∈ [0, t∗].
Assuming {fs(t∗)}s=1,2,... as initial datum, we can repeat the same arguments for

t ∈ [t∗, 2t∗] and so on. This completes the proof of the theorem.

We assume now that the Markov process starts with chaotic (i.e. factorized) proba-
bility density and we consider the hierarchy (3.10) with initial data

(3.17) F s = F ⊗ . . .⊗ F = (F )s⊗, s = 1, 2, . . .

i.e. s-fold outer product of a probability density F defined on J × U . We may see that
the propagation of chaos is held and the solution f s(t) to Eq. (3.10) is the s-product of
solution f(t) of Eq. (2.3). Therefore we have

Corollary 3.2. Let F be a probability density on J × U . Then, for each t0 > 0, there
exists an admissible hierarchy {f s}s=1,2,... such that

(i) it is a unique solution of Eq. (3.10) with chaotic initial data (3.17),
(ii) fs(t) is chaotic

(3.18) fs(t) = (f(t))s⊗,

for all 0 < t ≤ t0 and s = 1, 2, . . ., where f(t) is the unique solution in L
(1)
1 of Eq. (2.3)

with the initial datum F .

We may now formulate the main result, namely the theorem stating that the solution
of Eq. (2.3) is approximated by the solutions of Eq. (3.4) as N → ∞ (the proof follows
the line of [LP]).

Theorem 3.3. Let F be a probability density on J × U . Then, for each t0 > 0, there
exists N0 such that for N ≥ N0

(3.19) sup
[0,t0]
‖fN,1 − f‖

L
(1)
1
≤ c2
Nη

,
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where the nonnegative functions fN,s ∈ L(s)
1 (s = 1, . . . , N) form the unique solution of

Eq. (3.9) corresponding to the initial datum

(3.20) fN,s(0) = (F )s⊗, s = 1, . . . , N ;

f ∈ L
(1)
1 is the unique, nonnegative solution of Eq. (2.3) corresponding to the initial

datum F ; η and c2 are positive constants that depend on t0.

Proof. Let {fN,s}s=1,...,N and {fs}s=1,2,... be the solutions of Eq. (3.9) and Eq. (3.10),
respectively, corresponding to the initial data

(3.21) fN,s(0) = fs(0) = (F )s⊗.

If N < s we assume fN,s ≡ 0.
We consider the difference

(3.22) ∆N,s(t) = fN,s(t)− fs(t), t > 0.

It satisfies, for s = 1, . . . , N and 0 ≤ t1 < t ≤ t0, the following equation:

(3.23) ∆N,s(t) = GN,s(t, t1) +
∫ t

t1

Θs+1∆N,s+1(t2) dt2,

where

GN,s(t, t1) = ∆N,s(t1) +
s

N

∫ t

t1

(ΛsfN,s(t2)−Θs+1f
N,s+1(t2)) dt2.

Let τk = t∗k, where t∗ = 1
8c1

, c1 is defined in (3.11), and k = 1, 2, . . . ,
[
t0
t

]
+ 1. Set

(3.24) aN,sk = sup
[τk−1,τk]

‖∆N,s‖
L

(s)
1
.

We want to prove

(3.25) aN,sk ≤ αNk ,
for s such that

(3.26) 2s ≤ N
ηk
2 ,

where αNk = 25k 1
Nηk and ηk = 1

22k+2 . We have

(3.27) ‖GN,s(t, τk−1)‖
L

(s)
1
≤ ‖∆N,s(τk−1)‖

L
(s)
1

+ 2c1t∗
s2

N
,

and

(3.28) ‖∆N,s(t)‖
L

(s)
1
≤ ‖GN,s(t, τk−1)‖

L
(s)
1

+ c1 s

∫ t

τk−1

‖∆N,s+1(t2)‖
L

(s+1)
1

dt2,

for t ∈ [τk−1, τk]. If (3.24) is satisfied for k − 1 then by (3.27) we obtain

(3.29) ‖GN,s(t, τk−1)‖
L

(s)
1
≤ αNk−1 +

s2

N
.

If moreover N is sufficiently large then by (3.26)

(3.30) ‖GN,s(t, τk−1)‖
L

(s)
1
≤ 2αNk−1.

Using (3.30) we may iterate (3.28) up to the largest m for which

(3.31) 2s+m ≤ N
ηk−1

2 ,
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and assume that

(3.32) 2m ≥ 1
25k−1N

ηk−1−ηk
2 .

We have

‖∆N,s(t)‖
L

(s)
1
≤ 2αNk−1

(
1 +

m−1∑

l=1

s(s+ 1) . . . (s+ l − 1)
4l l!

)
(3.33)

+ 2
s(s+ 1) . . . (s+m− 1)

4mm!
,

for t ∈ [τk−1, τk], where the last term on the r.h.s. of (3.33) is obtained by using the
obvious estimate

‖∆N,s‖
L

(s)
1
≤ 2.

By (3.33) and (3.15) it follows that

(3.34) aN,sk ≤ 2s+1αNk−1 + 2s−m.

Now the proof of (3.25) follows by induction on k. We first show that (3.25) is satisfied
for k = 1 and then assume that it holds for k− 1 ≥ 1. Using (3.26), (3.32) and (3.34) we
obtain

(3.35) aN,sk ≤ 25k−4N
ηk
2 −ηk−1 + 25k−1Nηk−

ηk−1
2

and therefore (3.25) for every k follows.
Theorem 3.2 shows that the solution of the Boltzmann-like bilinear integro-differential

system of equations can be approximated by the solutions of linear equations describing
the stochastic system of individuals—provided that the parameters of the stochastic
system are suitably chosen.

The estimates are not optimized. One can hope that some of them can be improved
to make them uniform with respect to t0.
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Phys. Chem. 92 (1917), 129–168.

[Sz] A. S. Sznitman, Topics in propagation of chaos, in: Lecture Notes in Math. 1464,
Springer, Berlin, 1991, 165–251.

[Wa1] W. Wagner, A stochastic particle system associated with the spatially inhomogeneous
Boltzmann equation, Transport Theory Statist. Phys. 23 (1994), 455–478.

[Wa2] W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for
the Boltzmann equation, J. Statist. Phys. 66 (1992), 455–478.

[Wa3] W. Wagner, A functional law of large numbers for Boltzmann type stochastic particle
systems, Stochastic Anal. Appl. 14 (1996), 591–636.

[Wl] W. Waluś, Computational methods for the Boltzmann equation, in: Lecture Notes on
the Mathematical Theory of the Boltzmann equation, N. Bellomo (ed.), World Sci.,
Singapore, 1995, 179–223.


