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Abstract. Suppose {G1(t)}t≥0 and {G2(t)}t≥0 are two families of semigroups on a Banach

space X (not necessarily of class C0) such that for some initial datum u0, G1(t)u0 tends to-

wards an undesirable state u∗. After remedying by means of an operator ρ we continue the

evolution of the state by applying G2(t) and after time 2t we retrieve a prosperous state u given

by u = G2(t)ρG1(t)u0. Here we are concerned with various properties of the semigroup G(t) :

ρ → G2(t)ρG1(t). We define R(X) to be the space of remedial operators for G1(t) and G2(t),

when the above map is well defined for all ρ ∈ R(X) and satisfies the properties of a uniformly

bounded semigroup on R(X). In this paper we study some properties of the space R(X) and we

prove that when Ai generate a regularized semigroup for i = 1, 2, then the operator ∆ defined on

L(X) by ∆ρ = A2ρ+ρA1 generates a tensor product regularized semigroup. Finally, we give two

examples of remedial operators in radiotherapy and chemotherapy in proliferation of cancer cells.

1. Introduction. The theory of remediability describes mathematical models of bio-

logical states, which are represented by a dynamical system such that the solutions of

the models stemming from such states tend inexorably towards undesirable states. We

suppose that an undesirable state is remediable whether in the past or in the future.

Think of the extinction of species or environmental degradation in ecology or a cohort of

carcinogenic cells in the theory of proliferation of cell population, etc.

First let us suppose that such a phenomenon can be described by a linear or nonlinear

dynamical system

(DS)

{
d
dtu(t) = Au(t), t ∈ R,
u(0) = u0 ∈ X,

which has a global solution given by a group of operators {G(t)}t∈R.
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Suppose that at time t = t0 we have at our disposal the initial datum u0 and the

trajectory coming from u0 tends towards a disastrous state u∗ which is to be avoided.

A utopian strategy to alleviate the situation is to go back in time to instant t0 − t < 0,

when a remedy is plausible. After remedying by means of an operator ρ we go back to

t0 and we retrieve a prosperous state u given by

(1) u = G(t− t0)ρG(t0 − t)u0.

We are concerned more precisely with the properties of the map

L(X) 3 ρ→ G(t)ρG(−t) ∈ L(X).

If {G(t)}t∈R is a C0-group on X, then this map defines a group G(t) on L(X) in the

following sense:

(1) G(0)ρ = ρ,

(2) G(t)G(s)ρ = G(t)[G(s)ρG(−s)] = G(t)G(s)ρG(−s)G(−t) = G(t + s)ρG(−t − s) =

G(t+ s)ρ,

(3) G(t)ρ converges strongly to ρ, for any ρ ∈ L(X).

In general the convergence is not in the sense of uniform topology of L(X) unless X

is a finite dimensional space or G(t) acts on the subalgebra Lc(X), the ideal of compact

operators on X.

In quantum mechanics we can find such a formalism in which G(t) is called a quantum

dynamical semigroup in the theory of open systems (see [7]). In this theory G(t) appears

as a unitary group generated by a skew-adjoint operator−iH, whereH is the Hamiltonian

of the system. In this formalism the dynamical semigroup G(t) acts on the state space V ,

which is the trace class operators on a Hilbert space H and for the trace norm topology

we have limt→0 ‖G(t)ρ − ρ‖tr = 0. However, the use of such theory presents several

difficulties.

First, in the practical cases the evolution dynamics is in general irreversible in time.

For example in population dynamics the individuals cannot become less mature in time.

This irreversibility forces us to redefine the generalized dynamical semigroup G(t) and

to replace G(t)ρG(−t) by G(t)ρG(t) or more generally by G2(t)ρG1(t). This type of

semigroup have been also studied in the literature (see [1], [5], [8], [12], [13], [14] and

[15]). It is formally clear that if the C0-semigroups G1(t) and G2(t) are generated by

the operators A1 and A2 on the Banach spaces X, then the semigroup G(t) has ∆ as its

infinitesimal generator where

(2) ∆ρ = A2ρ+ ρA1.

This is strictly true when the generators A1 and A2 are bounded. That is why this

semigroup intervenes for studying the operator equation A2ρ+ρA1 = Q in the scattering

theory (see [9] and [10]).

By applying G(t) = G2(t) ⊗ G1(t)∗ to operators of rank one, u ⊗ v∗ = 〈., v∗〉u (u ∈
X, v∗ ∈ X∗), it turns out that

[G2(t)⊗G∗1(t)] (u⊗ v∗) = G2(t)u⊗G∗1(t)v∗ = 〈·, G∗1(t)v∗〉G2(t)u

= G2(t)(u⊗ v∗)G1(t).
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Hence, G(t) is an extension to L(X) of the tensor product G2(t)⊗G1(t)∗ acting on the

space of operators of finite rank, X⊗X∗. Therefore G(t) is referred to as a tensor product

semigroup. In the following proposition we gather the essential properties of a tensor

product semigroup G(t).

Proposition 1 (see [8]).

(1) If G1(t) and G2(t) are two C0-semigroups on a Banach space X, then for any ρ ∈
L(X), G(t)ρ = G2(t)ρG1(t) is continuous in t ∈ [0,∞) relative to the strong operator

topology;

(2) Let D(∆) := {ρ ∈ L(X) such that ρD(A1) ⊂ D(A2) and the operator ∆ρ has a

bounded extension on X defined by (2)}. Then ∆ is closed for weak operator topology

and

∆ρ = s− lim
t→0

G(t)ρ− ρ
t

.

Furthermore, if G1(t) and G2(t) are defined on two different Banach spaces X and

Y , then we can also define the family {G(t) : t ≥ 0} on the Banach algebra L(Y,X)

(see [12]).

The second difficulty is related to the ill-posedness of the dynamics G1(t). Even in the

linear case, if we assume that X is the space of prosperious states and if for some initial

datum u0 ∈ X, G1(t)u0 tends towards an undesirable state u∗ /∈ X, such a semigroup

cannot be strongly continuous and needs to be regularized or to be extended in a larger

space. This situation requires the theory of C-regularized semigroups and C-existence

families which is extensively studied in [6].

Definition 1. For a bounded injective operator C, the strongly continuous family

{W (t)}t≥0 in L(X) is a C-regularized semigroup if

(1) W (0) = C;

(2) W (t)W (s) = CW (t+ s) for all s, t ≥ 0.

An operator A is the generator of the semigroup {W (t)}t≥0 if

Ax = C−1

[
lim
t→0

1

t
(W (t)x− Cx)

]

with

D(A) := {x | the limit exists and is in Im(C)}.
Note that when C = I, {W (t)}t≥0 is a C0-semigroup generated by A. When A gen-

erates a C-regularized semigroup {W (t)}t≥0, then we can define the semigroup {etA}t≥0

of (possibly unbounded) operators by

(3) etA := C−1W (t), t ≥ 0

with domain

D(etA) := {x ∈ X |W (t)x ∈ Im(C)}.
If the operator C does not satisfy the commutation relation CG1(t) = G1(t)C, then

one can even so use the theory of C-existence family in such a manner thatW (t) = CG1(t)

becomes a linear bounded operator.
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In the next section we will define the space of remedial operators ρ for which G(t)ρ :=

G2(t)ρG1(t) is well defined and we will indicate some properties of this space. In the

third section we suppose that the operator A1 and A2 are the generators of C1 and

C2-regularized semigroups. We show that ∆ is also the generator of some regularized

semigroup. A similar result is already proved in [5], when Ai generates exponentially

bounded n-times integrated semigroups, for i = 1, 2. In the last section we give two

examples of remedial operators in radiotherapy and chemotherapy in proliferation of

cancer cells.

2. Space of remedial operators

Definition 2. Let {G1(t)}t≥0 and {G2(t)}t≥0 be two families of semigroups in L(X)

(not necessarily of class C0). We say that R(X) ⊂ L(X) is the set of remedial operators

for G1(t) and G2(t) if G(t)ρ := G2(t)ρG1(t) is well defined for all ρ ∈ R(X) and we have

(i) G(0)ρ = ρ for all ρ ∈ R(X);

(ii) G(t)G(s)ρ = G(t+ s)ρ for all ρ ∈ R(X) and all t, s ≥ 0;

(iii) G(t)ρ converges strongly to ρ, for any ρ ∈ R(X), as t→ 0;

(iv) For any ρ ∈ R(X), there exists M > 0 such that supt≥0 ‖G(t)ρ‖ ≤M .

It is clear that R(X) is a subspace of L(X) and the condition (iv) implies that R(X)

can be endowed with the norm

|||ρ||| := sup
t≥0
‖G(t)ρ‖.

Let us denote once more by R(X) the completion of R(X) for this norm.

Theorem 2. On the Banach space R(X), G(t) is a family of contractions in L(L(X)).

Proof. It is not hard to verify that all the conditions of Definition 2 are true (by passing

to limits of Cauchy sequences) for all ρ ∈ R(X). Hence G(t) defines a generalized tensor

product semigroup on R(X) and we have

|||G(s)ρ||| = sup
t≥0
‖G(t+ s)ρ‖ ≤ |||ρ|||.

This implies that

|||G(t)|||L(L(X)) := sup{|||G(t)ρ||| : |||ρ||| ≤ 1} ≤ 1.

Since, in general, G1(t) and G2(t) are not continuous in the norm operator topology

G(t) is not strongly continuous on R(X). However, in the next section we construct a

C-regularized semigroup which is generated by an extension of some restriction of the

generator ∆ defined by ∆ρ = A2ρ+ ρA1.

3. Tensor product regularized semigroup. For i = 1, 2, let Ai generate a Ci-

regularized semigroup Wi(t) and let A1 be densely defined. Let D(∆) be domain of ∆

defined as in Proposition 1(2), with ∆ρ = A2ρ + ρA1. We suppose that ρ(Ai) is the

resolvent set of Ai and ρ(A1) ∩ ρ(A2) is not empty. For r ∈ ρ(A1) ∩ ρ(A2), we define Λr
by Λrρ := (r −A2)−1ρ(r −A1)−1 on L(X).
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Lemma 1. Under the above assumptions ∆ is a closed operator on L(X) and if we denote

by ∆̃ the restriction of ∆ to

LA2,A1
(X) := {ρ ∈ L(X) ; ρ(X) ⊂ D(A2) and A2ρA1 is bounded on D(A1)},

then we have

Im(Λr) = D(∆̃) := D(∆) ∩ LA2,A1
(X).

Proof. Let ρn be a sequence in D(∆) which converges to ρ and ∆ρn to B in L(X). Hence

for any x ∈ D(A1), ρnx converges to ρx and ρnA1x converges to ρA1x. This implies that

A2ρnx converges also to Bx−ρA1x. Now, since any generator of a regularized semigroup

is closed (see [6, Theorem 3.4]), thus A2 is closed and consequently ρx ∈ D(A2) and

A2ρx = Bx− ρA1x, which implies the closedness of ∆.

If ρ ∈ Im(Λr), then there exists σ ∈ L(X) such that ρ = (r − A2)−1σ(r − A1)−1.

Hence on D(A1) we have

∆ρ = (r(r −A2)−1 − I)σ(r −A1)−1 + (r −A2)−1σ(r(r −A1)−1 − I),

which has a bounded extension

B = −[σ(r −A1)−1 + (r −A2)−1σ] + 2rρ

that implies Im(Λr) ⊂ D(∆). Furthermore, for any x ∈ X,ρx ∈ D(A2) and for σ =

(r−A2)ρ(r−A1) on D(A1), σ− r2ρ+ rB is a bounded extension of A2ρA1 from D(A1).

This implies also that Im(Λr) ⊂ LA2,A1
(X).

Conversely if ρ ∈ D(∆̃), then there exists a bounded operator B such that for any

x ∈ D(A1), (A2ρ+ ρA1)x = Bx. With the bounded operator σ = rρ− rB + A2ρA1 we

retrieve ρ = (r −A2)−1σ(r −A1)−1 and D(∆̃) ⊂ Im(Λr).

Let us denote by Γ the operator Γρ = C2ρC1 on L(X).

Theorem 3. Under the above assumptions, suppose there exists a real r such that for any

t ≥ 0, Wi(t) commutes with (r − Ai)−1, for i = 1, 2. Then an extension of ∆̃ generates

a ΛrΓ-regularized semigroup W(t), which is continuous in the uniform operator topology

of L(L(X)), that leaves D(∆̃) invariant.

Proof. Define W(t) on L(X) by

W(t)ρ := (r −A2)−1W2(t)ρW1(t)(r −A1)−1.

For any x ∈ X and i = 1, 2,

d

dτ
Wi(τ)(r −Ai)−1x = Wi(τ)Ai(r −Ai)−1x.

Since Wi(t) is a strongly continuous family in L(X), Wi(τ)Ai(r − Ai)−1x is uniformly

bounded on [s, t] by the mean value theorem in the Banach spaceX, there exists τ0 ∈ [s, t],

such that (
Wi(t)−Wi(s)

)
(r −Ai)−1x = (t− s)Wi(τ0)Ai(r −Ai)−1x

and by the uniform boundedness principle ‖Wi(τ)Ai(r − Ai)−1‖ is bounded in a closed

neighborhood of τ0. Thus, Wi(t)(r − Ai)−1 is continuous in the operator norm topology
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of L(X). Since

‖W(t)ρ− ΛrΓρ‖ = ‖(r −A2)−1(W2(t)− C2)ρW1(t)(r −A1)−1

+ (r −A2)−1C2ρ(W1(t)− C1)(r −A1)−1‖
≤ (‖(r −A2)−1W2(t)− (r −A2)−1C2‖.‖W1(t)(r −A1)−1‖

+ ‖(r −A2)−1C2‖.‖(W1(t)(r −A1)−1 − C1(r −A1)−1‖)‖ρ‖
and since Wi(t)(r − Ai)−1 = (r − Ai)−1Wi(t) converges uniformly to Ci(r − Ai)−1 =

(r − Ai)
−1Ci, as t → 0, this implies the continuity of W(t) in the uniform operator

topology of L(L(X)).

It is clear that W(0) equals ΛrΓ and

W(t)W(s)ρ = (r −A2)−1W2(t)(r −A2)−1W2(s)ρW1(s)(r −A1)−1W1(t)(r −A1)−1

= (r −A2)−2C2W2(t+ s)ρW1(t+ s)C1(r −A1)−2

= ΛrΓW(t+ s)ρ.

Hence, W(t) is a ΛrΓ-regularized semigroup.

Now, by taking ρ ∈ D(∆̃) = Im(Λr), we can write W(t) as

W(t)ρ = (r −A2)−2W2(t)(Λ−1
r ρ)W1(t)(r − A1)−2.

Again using the mean value theorem, one may show that (r − Ai)−2Wi(t) is a differen-

tiable function of t, in the operator norm topology of L(X), for i = 1, 2. Thus W(t)ρ is

differentiable, with

d

dt
W(t)ρ =

[
d

dt
(r −A2)−2W2(t)

]
(Λ−1

r ρ)W1(t)(r −A1)−2

+ (r −A2)−2W2(t)(Λ−1
r ρ)

[
d

dt
(r −A1)−2W1(t)

]

= (r −A2)−1W2(t)A2(r −A2)−1(Λ−1
r ρ)(r −A1)−1W1(t)(r −A1)−1

+ (r −A2)−1W2(t)(r −A2)−1(Λ−1
r ρ)(r −A1)−1A1W1(t)(r −A1)−1

= (r −A2)−1W2(t)(A2ρ)W1(t)(r −A1)−1

+ (r −A2)−1W2(t)(ρA1)W1(t)(r −A1)−1

=W(t)∆ρ.

This implies that an extension of ∆̃ generates W(t). Since W(t) commutes with Λr,

W(t) leaves D(∆̃) = Im(Λr) invariant.

The following definition is a natural consequence of the preceding theorem.

Definition 3. Whenever A1 and A2 generate two regularized semigroups, then the reg-

ularized semigroup generated by an extension of the operator ∆̃ on L(X) is called a

tensor product regularized semigroup.

Corollary 1. Let W1(t) be an exponentially bounded C-regularized semigroup of the

type ω generated by A1 and let G2(t) be a C0-semigroup of the type −ω generated by A2.

Then all the elements of

IC := {ρ ∈ L(X) ; ρ = BC with B ∈ L(X)},
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the right ideal generated by C, are remedial operators for etA1 = C−1W1(t) and G2(t).

Proof. Since G2(t)BCetA1 = G2(t)BW1(t) all the properties of Definition 2 are readily

satisfied for ρ ∈ IC .

In the following section we give an application of the above Corollary.

4. Application to transport theory for growing cell populations. One of the

most appealing applications of this theory can be found in the modelling of a carcinogenic

cell population. Since this kind of cells has a high proliferating rate, we can associate

with them an abnormally large maturation velocity. In 1983, Rotenberg [11] presented a

model for growing cell populations. In his model cells are distinguished by their degree

of maturity µ ∈ I = (0, 1) and their maturation velocity v(= dµ
dt ) which is considered as

an independent variable within J = (a, b) (0 ≤ a < b ≤ ∞). The positivity of velocities

comes from the fact that a cell cannot become less mature with time and adds to the

irreversible character of the problem. The density of the population f = f(µ, v, t) is

described by the following partial differential equation of transport type:

(4)
∂f

∂t
= −v ∂f

∂µ
− σ(µ, v)f +

∫ b

a

r(µ, v, v′)f(µ, v′, t)dv′ = Tf,

where σ(µ, v) =
∫ b
a
s(µ, v′, v)dv′ and s(µ, v′, v) is the sinking rate at which cells drop out

of the cohort characterized by v to join those of v′. The kernel r(µ, v, v′) is the transition

rate at which cells change their velocities from v′ to v. The reproduction rule are given

by the following boundary condition, so called Lebowitz–Rubinow boundary condition:

(5) vf(0, v, t) = p

∫ b

a

k(v, v′)v′f(1, v′, t)dv′

where p ≥ 0 is the average number of viable daughters per mitosis. This rule allows a

choice in the degree of positive correlation k between velocities of mother and daughter

cells.

For a mathematical study of this problem, let us denote Ω = (0, 1)× (a, b) = I × J ,

L1(Ω) the Lebesgue’s space with its natural norm ‖·‖1 and the partial Sobolev space

W 1(Ω) = {ϕ ∈ L1(Ω) | v ∂ϕ∂µ ∈ L1(Ω)} endowed with the norm ‖ϕ‖W 1(Ω) = ‖ϕ‖1 +

‖v ∂ϕ∂µ‖1. In [3], we studied the well-posedness of this model under the condition that the

maturation velocity v belongs to J = (a, b) with 0 < a < b <∞ and we proved that the

operator A2 with domain D(T ) := {f ∈ W 1(Ω) | (5) holds} generates a C0-semigroup.

We have also showed the positivity, irreducibility of the generated semigroup which con-

verges asymptotically to a projection of rank one. In [4], in contrast with [3], we allow

that the maturation velocity for any cell can become null. This implies that the cell

population never leaves completely its initial distribution, because at every time we can

find some cells of the initial cell population that are not divided. In this case, in spite of

the fact that we lose the weak compact character of the generated semigroup, we have

calculated explicitly its essential type and we have showed the asymptotic convergence

of the generated semigroup to a projection of rank one. Finally, the case 0 ≤ a < b =∞
is a pathological case. In fact, M. Boulanouar in [2] showed that even with a simplest

reproduction rule, which is called by M. Rotenberg [11] a perfect memory reproduction
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rule, if b =∞ and p > 1 then the problem (4) is ill-posed and he introduced a regularized

operator C with which A2 generates a C-regularized semigroup in the sense of deLauben-

fels [6]. This perfect memory kind of reproduction rule is one in which the maturation

velocity of a parent cell at mitosis is transmitted to the daughter cells. This gives the

following boundary condition:

(6) f(0, v, t) = pf(1, v, t).

This identity asserts that the last velocity the parent happened to have just before mitosis

would be the initial velocity assumed by the daughters. Hence, this kind of reproduction

rule produces a population at the maximum rate and can be simulated as a cohort of the

cancer cells. If we take σ = r = 0 in (4), then A2 with boundary condition (6) generates

a semigroup T (t) which has an explicit form

(7) T (t)ϕ(µ, v) = p[tv−µ]ϕ(µ+ [tv − µ]− tv, v).

where [tv − µ] = n+ 1 if n < tv − µ ≤ n+ 1. This semigroup is not strongly continuous

for p > 1. In fact

‖T (t)f‖ =

∫ ∞

0

∫ 1

0

|T (t)f(µ, v)|dµdv

=
∑

n≥0

∫ n+1
t

n
t

[ ∫ tv−n

0

pn+1|f(µ+ n+ 1− tv, v)|dµ

+

∫ 1

tv−n
pn|f(µ+ n− tv, v)|dµ

]
dv.

Hence, the series diverges for p > 1 and for some f ∈ L1((0, 1) × (a,∞)). This implies

that T (t) is an unbounded semigroup and consequently, is not strongly continuous.

Here, we are going to give two concrete examples of remedial operators in this situa-

tion.

A remedial operator in radiotherapy. Current radiotherapy techniques fire radia-

tion beams into the body to kill cancer cells. This treatment reduces spontaneously the

amount of cancer cell population and can be modelled by a multiplicative operator. In [2],

Boulanouar has taken ρf(µ, v) := p−v
2

f(µ, v) for regularizing the ill-posed semigroup.

In spite of the fact that this operator reduces considerably those cells which have large

maturation velocities, but the resulting ρ-regularized semigroup W (t) = ρT (t) has a

behavior as p
t2

4 +1 (see [2, Lemme 2.3]). So it seems hard to find a C0-semigroup S(t)

such that S(t)ρT (t) remains bounded for all t > 0, unless taking S(t) as a superstable

semigroup, that become zero after finite time. This choice of semigroup would be another

strategy of remedying, which consists of shifting the emphasis from the remedial operator

ρ to the semigroup S(t). This sort of strategy is far from our primary objective.

Thus, such a remedial operator does not belong to any space R(X) for any C0-

semigroup S(t). Experimentally one knows that after radiotherapy remediation the resid-

ual cells can generate an amount of cancer cells of exponential growth.

A remedial operator in chemotherapy. During chemotherapy treatment a hostile

biophysical environment is created in order to stop the proliferation of the cancer cells.
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This treatment reduces the population distribution by a kind of two compartmental

actions; annihilation of the cohort with the large maturation velocities, while maintaining

the colony with small maturation velocities, for a long period to render them inoffensive.

This can be done be introducing a time dependent integral operator [ρ(t)f ](µ, v) =∫∞
0
r(v, v′, t)f(µ, v′)dv′, with a bounded positive kernel r(v, v′, t) such that the support

of r is in [0, α] × [0, β] × [0,∞) with α and β relatively small. Such integral operator

annihilates the cells which have a large maturation velocity and also any function in

its image has a small maturation velocities. For simplicity we take a time independent

kernel r(v, v′), with sup(v,v′)∈[0,α]×[0,β] |r(v, v′)| ≤ M . From (7) it follows that for any

f ∈ L1(Ω), if N − 1 < tβ ≤ N , the ρ-regularized semigroup W (t) = ρT (t) can be

estimated by

‖W (t)f‖ =

∫ ∞

0

∫ 1

0

∫ ∞

0

r(v, v′)|T (t)f(µ, v′)|dv′dµdv

≤Mα

∫ β

0

∫ 1

0

|T (t)f(µ, v)|dµdv

≤Mα
∑

0≤n≤N

∫ n+1
t

n
t

[ ∫ tv−n

0

pn+1|f(µ+ n+ 1− tv, v)|dµ

+

∫ 1

tv−n
pn|f(µ+ n− tv, v)|dµ

]
dv

= Mα
∑

0≤n≤N

∫ n+1
t

n
t

[∫ n+1−tv

0

pn+1|f(µ, v)|dµ+

∫ n+1−tv

0

pn|f(µ, v)|dµ
]
dv

≤Mαptβ+1‖f‖.
Thus, by taking a C0-semigroup S(t) of type ω = −β ln p, ‖S(t)ρT (t)‖ would be bounded

and ρ is a remedial operator in the sense of Definition 2.
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