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Institute of Applied Mathematics and Mechanics

Faculty of Mathematics, Informatics & Mechanics

Warsaw University, Banacha 2, 02-097 Warszawa, Poland

E-mail: urszula@mimuw.edu.pl

MIKHAIL KOLEV

Institute of Applied Mathematics and Mechanics

Warsaw University, Banacha 2, 02-097 Warszawa, Poland

and

South-West University, Blagoevgrad, Bulgaria

E-mail: mkkolev@yahoo.com

Abstract. The role of time delays in solid avascular tumour growth is considered. The model

is formulated in terms of a reaction-diffusion equation and mass conservation law. Two main

processes are taken into account—proliferation and apoptosis. We introduce time delay first

in underlying apoptosis only and then in both processes. In the absence of necrosis the model

reduces to one ordinary differential equation with one discrete delay which describes the changes

of tumour radius.

Basic properties of the model depending on the magnitude of delay are studied. Nonnegativity

of solutions is investigated. Steady state and the Hopf bifurcation analysis are presented. The

results are illustrated by computer simulations.

1. Introduction. The aim of this paper is to present complementary analysis of the

model considered and studied in [3, 4, 5]. The model describes the evolution of avascular

multicellular spheroid (MCS) which may be also interpreted as the first stage of solid

avascular tumour’s growth. The basic idea of such models comes from [10]. Following
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the ideas presented in [5], analysis of the models with delay in proliferation process and

regulatory apoptosis was done in [3, 4] in the framework of delay differential equations. In

this paper (as in [3, 4]) we focus on the case of uniformly proliferating tumour, i.e. MCS

without a necrotic core inside. We introduce time delay in underlying apoptosis. This

delay was not considered in [3, 4, 5], but there are some suggestions that it may play

similar role as in the case of proliferation process. In [5] delay was connected with the

process of regulatory apoptosis which is caused by the presence of different inhibitory

or growth factors. It is known that the process of underlying apoptosis is also delayed

comparing to the trigger of this process and the modern studies (see e.g. [13]) show that

this delay may be large.

Next we introduce time delay into both processes, i.e. proliferation and apoptosis. We

study the case when these delays are equal. It is the first approximation to the analysis

of the model with two different delays. This last case may be more interesting but also

more difficult from the analytical point of view and therefore, we start our analysis from

the simplest case.

At the end of this paper we compare dynamics of the models studied in [3, 4] and in

this paper. We focus on the possibility of occurrence of oscillations which is one of the

most important consequences of delays pointed out in [5]. We would like to choose the

best way of introducing delays in the model of MCS growth.

At the beginning, we formulate the basic model (for details concerning this one and

many similar models see [1, 3, 4, 5, 6, 7, 10]). To simplify the model equations, we assume

that the growth of MCS is symmetric. We denote the space coordinate by r (the radius of

MCS). We focus on the changes of the outer MCS (tumour) radius R(t) in time t. These

changes depend on the nutrient concentration σ(r, t) at the radius r from the center of

MCS and time t. The changes of σ are described by the simple reaction-diffusion equation

of the form
1

r2

∂

∂r

(
r2 ∂σ

∂r

)
= a,(1)

where the left-hand side of Eq. (1) represents the Laplacian in spherical coordinates and

a denotes the constant rate of nutrient consumption by tumour cells.

The changes of MCS volume are governed by the mass conservation law

1

4π

d

dt

(
4

3
πR3

)
= S −Q,(2)

where S and Q denote the net rates of proliferation and apoptosis, respectively. In the

case without delay we assume that

S(t) =

∫ R(t)

0

sσ(r, t)r2dr, Q(t) =

∫ R(t)

0

scr2dr,(3)

where s, c > 0 are some constants. For simplicity, in the next sections we assume that

s = 1.

Eqs. (1), (2) and (3) are considered with the following boundary and initial conditions:

σ(R(t), t) = σe,
∂σ

∂r
(0, t) = 0, R(0) = R0,(4)
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where σe denotes the constant external nutrient concentration and it is reasonable to

assume that

σe > c.(5)

Calculating σ from Eq. (1) with conditions defined by Eq. (4) we obtain the formula

σ(r, t) = σe −
a

6
(R2(t)− r2),(6)

which combines the changes of our variables—the outer tumour radius and the nutrient

concentration. Let us note that the condition for positivity of σ(r, t) will be guaranteed

if the outer MCS radius R(t) is sufficiently small, namely if

R(t) ≤ Rc =

(
6σe
a

) 1
2

.(7)

The biological implication of this fact is that the model is not valid for R(t) > Rc, because

then the process of formation of necrotic core inside the MCS appears.

2. Presentation of the model with delay in underlying apoptosis. In this section

we study the model with delay in underlying apoptosis. Following the ideas presented

in [5] for proliferation, we assume that there is a delay (τ > 0, constant for simplicity)

between the time at which a signal for apoptosis is sent and the time at which apoptosis

occurs. Therefore, instead of the formula presented in Eq. (3) we consider the following:

Q(t) =

∫ R(t−τ)

0

cr2dr.(8)

On the basis of Eq. (8) we obtain

3R2 dR

dt
(t) = σeR

3(t)− aR5(t)

15
− cR3(t− τ).(9)

Let denote x(t) = R3(t). Using Eq. (9) we formulate the model

ẋ(t) = −cx(t− τ) + σex(t)− a

15
x

5
3 (t),(10)

which we study with a nonnegative initial function x0(t), for t ∈ [−τ, 0]. It is obvious that

for every continuous x0, there exits unique solution to Eq. (10), but it is not necessarily

nonnegative for nonnegative initial x0. Consider the initial function

x0(t) = −αt, α > 0, t ∈ [−τ, 0].(11)

For the above function we obtain the solution to Eq. (10) with the property

ẋ(0) = −cατ < 0, x(0) = 0,

which means that the solution becomes negative. Moreover, there are no clear conditions

guaranteeing nonnegativity of solutions in this case.

If we assume that the solution is nonnegative, then it is obviously defined for every

t > 0, because the inequality ẋ ≤ σex is satisfied in such a case. On the other hand, if the

solution becomes negative, then it is also bounded and therefore, it is defined for every

t > 0. Hence, we can study the asymptotic behaviour of solutions to Eq. (10).
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There are two stationary solutions to Eq. (10)—the trivial one and the positive non-

trivial x̄ =
( 15(σe−c)

a

) 3
2 .

Lemma 1. The trivial stationary solution to Eq. (10) is unstable for every τ ≥ 0. The

nontrivial solution x̄ is stable independently of the delay for 4c < σe. If 4c > σe, then

there exists a threshold value τc of the delay such that the solution is stable for τ < τc
and unstable otherwise. The Hopf bifurcation occurs at τc.

Proof. Linearizing (see e.g. [11]) Eq. (10) around the trivial solution one obtains

ẋ(t) = σex(t)− cx(t− τ).

Ineq. (5) implies that this solution is unstable for τ = 0 and therefore, it is unstable for

every positive delay (for details see [8, 9]).

For the second stationary solution we have the linearized equation of the form

ẋ(t) = Ax(t) +Bx(t− τ)

where A = 5c−2σe
3 and B = −c. We see that A+B < 0 and A−B = 8c−2σe

3 . Corollary 5

in [8] implies that if 4c < σe, then the solution is stable independently of the delay, but

if 4c > σe, then there exists the threshold value τc = 1√
B2−A2

arccos
(
− A
B

)
such that the

Hopf bifurcation occurs at this point.

3. Presentation of the model with delays in both processes. In this section

we consider the case when both processes, underlying apoptosis and proliferation, are

delayed. In this case Eq. (3) changes to

S(t) =

∫ R(t−τ1)

0

sσ(r, t− τ1)r2dr, Q(t) =

∫ R(t−τ2)

0

cr2dr.(12)

From the biological point of view, both delays play similar role in cellular processes and

therefore, their magnitudes are similar in most cases. Hence, we can consider the case

τ1 = τ2. The case τ1 6= τ2 is also interesting but more complicated from the analytical

point of view.

In this paper we study the case τ1 = τ2 = τ, which is the simpler one. Then our

equation takes the form

ẋ(t) = (σe − c)x(t− τ)− a

15
x

5
3 (t− τ).(13)

It is easy to see that for every initial continuous function x0(h), h ∈ [−τ, 0] there exists

unique solution to Eq. (13), because on every time interval of the form [nτ, (n+1)τ ], n ∈
N the solution can be calculated as

x(t) = x(nτ) +

∫ t

nτ

(
(σe − c)x(s− τ)− a

15
x

5
3 (s− τ)

)
ds.

This formula is called the step method (see e.g. [11]). As in the case studied in the

previous section we define a nonnegative initial function x0(t) for t ∈ [−τ, 0] and consider

nonnegativity of solutions to Eq. (13). Defining the auxiliary function f(z) = (σe− c)z−
a
15z

5
3 we see that f(z) ≥ 0 for z ∈

[
0,
(
15σe−ca

) 3
2
]

and f(z) < 0 for other values of

z > 0. It is easy to check that if x0(h) = −αhτ , then ẋ(0) = f(x0(−τ)) = f(α) < 0
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for α >
(
15σe−ca

) 3
2 . Therefore, the solution to Eq. (13) may be negative for nonnegative

initial function.

Assume now that x0(h) ∈ [0, x̄]. It is easy to see that maximal value of f is equal to

fm = 54
5

(σe−c)
5
2

a
3
2

for z̃ =
(

9
a (σe − c)

) 3
2 . Following the ideas presented in [2] we conclude

that for t ∈ [0, τ ],

x(t) ≤ x̄+

∫ t−τ

−τ
fmds ≤ x̄+ fmτ = xm.

Now, either x(t) ∈ [0, x̄] for every t ≥ 0 or there exists t > 0 such that x(t) > x̄. If

x(t) > x̄, then there exists a first point t̄ > 0 such that x(t̄) = x̄ and ẋ(t̄) ≥ 0. But

for every t ∈ [t̄ − τ, t̄] we have 0 ≤ x(t) ≤ x̄ and therefore, x(t) ≤ xm. This shows that

xm is the maximal possible value for the positive solution to Eq. (13). Using the same

argument we see that

x(t) ≥ x̄+

∫ t−τ

t0−τ
f(x̄+ τfm)ds

which means that if

x̄+ τ

(
(15/a)

3
2 (σe − c)

5
3 +

54

5

(σe − c)
7
2

a
3
2

τ − a

15

(
x̄+

54

5

(σe − c)
5
2

a
3
2

τ

) 5
3
)
> 0,(14)

then the solution is positive for every t ≥ 0. It is obvious that for τ = 0 this inequality is

satisfied and therefore, it is also satisfied for small τ.

Lemma 2. If the initial function satisfies x0(h) ∈ [0, x̄], for h ∈ [−τ, 0] and τ(σe−c) < 1,

then the solution to Eq. (13) is positive for every t > 0.

Proof. Let σe − c = b. Then Ineq. (14) takes the form

(15b/a)
3
2 + τ

((
15

a

) 3
2

b
5
3 +

54

5

b
7
2

a
3
2

τ − a

15

(
(15b/a)

3
2 +

54

5

b
5
2

a
3
2

τ

) 5
3
)
> 0.(15)

Dividing both sides of Ineq. (15) by
(
b
a

) 3
2 one obtains

15
3
2 + bτ

(
15

3
2 +

54

5
bτ − 1

15

(
15

3
2 +

54

5
bτ

) 5
3
)
> 0

which is equivalent to
(
15

3
2 + 54

5 bτ
) 5

3

15
− 15

3
2 − 54

5
bτ <

15
3
2

bτ
, for τ > 0.(16)

Define f1(x) =

(
15

3
2 + 54

5 x
) 5

3

15 − 15
3
2 − 54

5 x and f2(x) = 15
3
2

x . It is easy to see that f1(0) = 0

and limx→0+ f2(x) = +∞. The function f2 is decreasing for x > 0 and f1(x) is increasing

for x > 0. Therefore, there exists a threshold value x̄ such that f1(x) < f2(x) for x < x̄

and f1(x) > f2(x) for x > x̄. It is easy to calculate that x̄ > 1. Hence, Ineq. (16) is

satisfied for every 0 < x < 1. This completes the proof.

The result stated in Lemma 2 is similar to that obtained in [3]. The external source

of nutrient cannot be very rich to keep the solution positive.
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It is obvious that there exist the same stationary solutions to Eq. (13) as in the case

of Eq. (10). Studying stability of these solutions we obtain the following result

Lemma 3. The trivial stationary solution to Eq. (13) is unstable independently of the de-

lay. The nontrivial stationary solution x̄ is stable for τ < 3π
4(σe−c) and unstable otherwise.

The Hopf bifurcation occurs at τ = 3π
4(σe−c) .

Proof. We use the method of linearization (see e.g. [11]) and obtain the characteristic

equation of the form

λ+Be−λτ = 0,

where B = c − σe for the trivial solution and B = 2
3 (σe − c) for the nontrivial one. We

see that B < 0 in the case of trivial solution and therefore, this solution is unstable (see

[8] Corollary 5). In the second case we have B > 0 which implies that there exists a

threshold value of delay τ = π
2B . This completes the proof.

4. Numerical simulations. In this section we present the results of computer simula-

tions. Both cases studied in the paper are considered: the model with delay in underlying

apoptosis as well as the model with equal delays in both processes (underlying apoptosis

and proliferation).

In all presented simulations we use constant initial function x0(t) = 0.15 for t ∈ [−τ, 0]

and a = 30, c = 4, σe = 12. Our aim is to show the role of the magnitude of the delay in

the qualitative behaviour of tumour (temporary changes of its radius).

The need for consideration of different values of the delay follows from the biological

observations showing that for different organisms, tissues and types of tumour the speed

of the processes is different.

In Figs. 1, 2 and 3 changes of the behaviour of solutions to Eq. (10) with changing

delay are presented (along the horizontal axes the time is given versus the values of the

solutions along the vertical axes). For the chosen values of parameters we have 4c > σe
and by Lemma 1 there exists a threshold value τc of the delay (in this case τc ≈ 0.51
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Fig. 1. An example of solution to Eq. (10) for τ = 0.20
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Fig. 2. An example of solution to Eq. (10) for τ = 0.35
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Fig. 3. An example of solution to Eq. (10) for τ = 0.55

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

Fig. 4. An example of solution to Eq. (13) for τ = 0.10
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Fig. 5. An example of solution to Eq. (13) for τ = 0.20
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Fig. 6. An example of solution to Eq. (13) for τ = 0.40
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Fig. 7. An example of solution to Eq. (13) for τ = 0.60
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and for this value of the delay the Hopf bifurcation occurs). For small delays the solution

tends to the stationary state x̄ = 8 (see Fig. 1). As delay increases damping oscillations

arise (see Fig. 2). For values of the delay τ > τc undamping oscillations are observed (see

Fig. 3). For greater delays the amplitude of oscillations grows.

In Figs. 4, 5, 6 and 7 changes of the behaviour of solutions to Eq. (13) are presented.

Let us note that while for some values of parameters the nontrivial solution x̄ to Eq. (10)

is stable independently of the delay, in the case of Eq. (13) the nontrivial stationary

solution x̄ is stable only when τ < τc for every choice of the other parameter values

(compare Lemma 1 and Lemma 3). For the chosen values τc ≈ 0.295 and for τ = τc
the Hopf bifurcation occurs. The stability of the nontrivial stationary solution x̄ = 8 is

observed in examples presented in Figs. 4 and 5. In Figs. 6 and 7 undamping oscillations

are observed (there τ > τc). As can be seen, in some cases with undamping oscillations

the solution is nonnegative (see Fig. 6) while in some cases it becomes negative (see Fig.

7). In practice if there exists t̄ such that x(t̄) = 0 and x(t) < 0 for t > t̄, then the model

is not valid for t > t̄ and it could be assumed that x(t) = 0 for t ≥ t̄.

The mechanism of undamping oscillations may indirectly help to treat the tumour

(see [5] for details). The occurrence of positive undamping oscillations is also observed

in [5], while the simulations in [4] show in every case with undamping oscillations that

the solution becomes negative. We could make a conclusion that our model with delays

in both processes is more realistic in this sense in comparison with the model presented

in [4].

Both of our models are valid under the assumptions R(t) < Rc (see Eq. (7)) and

therefore,
( 15(σe−c)

a

) 3
2 < Rc, which is equivalent to

(
15(σe − c)

)3
< 6σea

2.

5. Discussion. In the paper we have studied the behaviour of solutions to the model

of uniformly proliferating tumour with delays in underlying apoptosis only and in both

cellular processes—proliferation and apoptosis. In [3, 4] similar analysis was done for the

cases with delay in proliferation process only and in regulatory apoptosis. The models

studied in [3, 4] have the following form:

ẋ(t) = −cx(t) + σex(t− τ)− a

15
x

5
3 (t− τ),(17)

for the case with delay in proliferation process;

ẋ(t) = (σe − c)x(t)− a

15
x

5
3 − θ(σe − σh)x(t− τ) + θ

a

15
x

5
3 (t− τ),(18)

for the case with delay in regulatory apoptosis.

It is easy to see that Eqs. (10), (13) and (17) differ from each other only in the place

where the delay occurs. In Eq. (18) there are two additional terms which describe the

process of regulatory apoptosis (θ reflects the importance of regulatory apoptosis and σh
measures the optimal proliferation rate of MCS).

In all papers (i.e. [3, 4] and this one) nonnegativity of solutions to the models was

investigated. The asymptotic behaviour of solutions was analysed and the possibility of

the Hopf bifurcation was checked. The only common property of all studied equations is

instability of the trivial stationary solution. It occurs that Eqs. (13) and (17) have similar

properties. Namely, for both equations we have
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1. there are some conditions guaranteeing nonnegativity of solutions for nonnegative

initial function and these conditions are connected with the difference between coefficients

σe and c (the external source of nutrient cannot be rich to keep the solution under control);

2. the nontrivial stationary solution is unstable independently of the delay;

3. the nontrivial stationary solution x̄ (the same stationary solution for Eqs. (10), (13)

and (17)) is stable for small delays;

4. the Hopf bifurcation is possible for some parameter values.

It is not surprising that Eq. (18) differs from the other ones due to its different form.

The most important difference is connected with the existence of nontrivial stationary

solutions. Whereas for Eqs. (10), (13) and (17) the solution x̄ > 0 always exists and it

is the same for these models, the existence of nontrivial stationary solution to Eq. (18)

depends on the magnitude of θ. Eqs. (10) and (18) have another common property—there

are no clear properties guaranteeing nonnegativity of solutions.

All the presented properties show that the behaviour of solutions strongly depends on

the place where the delay occurs. Similar analysis with similar conclusions was presented

e.g. in [12] for the logistic equation with delay. At this stage of knowledge we can say

that Eqs. (13) and (17) are better than the other two. We suppose that analysis of the

model with different delays for proliferation and apoptosis will show us the best way.
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