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Riemannian sums were used in a definition of a nonabsolutely convergent integration

on R almost fifty years ago and it was prooved that the new integration is equivalent

to Perron integration. Therefore it looked like there appeared just a new approach to

integration. But the Riemannian approach proved to be very flexible: (i) it is the basis

of numerous integrations of real functions of a real variable, (ii) it opens new ways in

integration of functions of several variables, (iii) it is well applicable to integration of

vector valued functions, (iv) it admits a great degree of abstraction. This paper is con-

centrated on (i) with a special accent on structures (convergence, topology) on the space

of integrable functions. Section 5 contains a brief information concerning (ii).

1. Preliminaries. Let I = [a, b] ⊂ R and let |E| denote the Lebesgue measure of E ⊂ I.

A set A ⊂ I is a figure if it is a finite union of compact intervals.

A partition in I is a set ∆ = {(t1, A1), . . . , (tk, Ak)} where ti ∈ I, Ai is a figure

and |Ai ∩ Aj | = 0 for i 6= j. If in addition
⋃
Ai = I then ∆ is a partition of I. Let

ξ : I → (0,∞). Then ∆ is called ξ-fine if Ai ⊂ (ti − ξ(ti), ti + ξ(ti)) for i = 1, 2, . . . , k.

If H : I → R, A = [c1, d1] ∪ · · · ∪ [ck, dk] where a ≤ c1 < d1 ≤ · · · ≤ ck < dk ≤ b, we

put

H(A) =

k∑

j=1

(H(dj)−H(cj)).

2. Y-integration. Let L be the set of partitions in I, and let HK be the set of partitions

θ= {(s1,J1), . . ., (sl,Jl)} in I such that sm ∈ Jm and Jm is an interval for m = 1, 2, . . . , l.

A set Y of partitions ∆ in I is called an integration base if HK ⊂ Y , if ∆ ∈ Y and Ψ ⊂ ∆

implies Ψ ∈ Y and if ∆ ∪ θ ∈ Y for ∆ ∈ Y , θ ∈ HK where |Ai ∩ Jm| = 0 for all i,m.
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2.1. Definition. Let f : I → R, w ∈ R. Then f is called Y-integrable on I and w is

called the Y-integral of f over I (w = (Y)
∫
I
f dt) if there exists δ : N× I → (0,∞) such

that ∣∣∣w −
∑

i

f(ti)|Ai|
∣∣∣ ≤ 2−j for j ∈ N,∆ ∈ Y ,

∆ being a δ(j, ·)-fine partition of I.

2.2. Note. Definition 2.1 with Y = HK was introduced in [Kur 57] and it was proved

that HK-integration is Perron integration (see also [He 61], [He 63]). The motivation

came from a convergence problem in the theory of ordinary differential equations (see

[Kur 57] or [Kur]). Riemannian approach to Lebesgue integration appeared in [Mc Sh 69],

other integrations were introduced in [Bo-Pf 92] and [Bo 96]. For a survey of results on

the Riemannian approach to integration see also [Bo 03].

2.3. Elementary properties

(2.1) w is unique since for every ξ : I → (0,∞) there exists a ξ-fine partition ∆ of

I,∆ ∈ HK.

(2.2) As a direct consequence of HK ⊂ Y we get: if f is Y-integrable over I, then f is

HK-integrable over I and (Y)
∫
I
f dt = (HK)

∫
I
f dt.

(2.3) If f is Y-integrable over I then it is Y-integrable over every subinterval of I.

(2.4) Let f be Y-integrable over I. Set F (a) = 0, F (s) = (Y)
∫

[a,s]
f dt for a < s ≤ b;

F is called the primitive of f .

F is continuous and differentiable a.e., Ḟ = f a.e.

PY is the set of primitives of functions which are Y-integrable over I.

(2.5) PL ⊂ PY ⊂ PHK (since HK ⊂ Y ⊂ L).

(2.6) PL is the set of absolutely continuous functions F : I → R, F (a) = 0 (cf.

[Mc Sh 69]).

PHK is the set of ACG∗-functions (since Perron integration is equivalent to Denjoy

integration in the restricted sense, cf. [Sa 37]).

The emphasis will be put on the concept of the primitive (in order to avoid classes of

equivalent functions).

2.4. Remark. A fundamentally different characterization of PHK was given in [B-P-S 95]:

Let F : I → R, F (a) = 0. Then F ∈ PHK if and only if F generates an absolutely

continuous variational measure. See also [Pf 99].

3. Convergence in PY . Let δ : N × I → (0,∞), ξ : I → (0,∞). By Q∗(Y , δ, ξ) denote

the set of F : I → R such that there exist f : I → R and N ⊂ I, |N | = 0 fulfilling

(3.1)
∑

i

|F (Ai)| ≤ 2−j +
∑

i

ξ(ti)|Ai|

for j ∈ N and every δ(j, ·)-fine ∆ = {(ti, Ai)} ∈ Y ,

(3.2)
∑

i

|F (Ai)− f(ti)|Ai|| ≤ 2−j
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for j ∈ N and every δ(j, ·)-fine ∆ = {(ti, Ai)} ∈ Y where ti ∈ I \N for all i. Then

(3.3) PY =
⋃

δ,ξ

Q∗(Y , δ, ξ),

(3.4) if Fp ∈ Q∗(Y , δ, ξ)f or p ∈ N and if F : I → R is bounded, ‖Fp − F‖sup → 0 for

p→∞ then F ∈ PY and fp → f in measure for p→∞, where Fp and F are the

primitives of fp, f .

The definition of Q∗(Y , δ, ξ) differs only slightly from the definition of QY(δ) in

[Kur 02], Definition 2.6. The proofs of (3.3) and (3.4) are analogous to the proofs in

[Kur 02], Theorems 2.9 and 2.10. (3.3) may be interpreted as an equivalent definition of

PY and (3.4) implies that Q∗(Y , δ, ξ) is closed in the space of continuous functions; in

fact, it is compact.

3.1. Definition. Let Fp ∈ PY for p ∈ N, F ∈ PY . The sequence Fp is called Q∗y-

convergent to F , Fp
Q∗y−→ F , if there exist δ and ξ such that

(3.5) Fp ∈ Q∗(Y , δ, ξ) for p ∈ N
and

(3.6) ‖Fp − F‖sup → 0 for p→∞.
Q∗y-convergence resembles the two-norm convergence (cf. [Al 50], [W 61]).

3.2. Remark. Convergence on PY can be introduced in another way. Call the sequence

Fp Ey-convergent to F , Fp
Ey−→ F , if there exist fp, f : I → R such that

(3.7) there exists δ : N× I → (0,∞) such that∣∣∣Fp(I)−
∑

i

fp(ti)|Ai|
∣∣∣ ≤ 2−j

for p, j ∈ N, ∆ = {(ti, Ai)} ∈ Y , ∆ being a δ(j, ·)-fine partition of I;

(3.8) fp(t)→ f(t) for p→∞, t ∈ I.

3.3. Remark. Fp
Ey−→ F implies that Fp

Q∗y−→ F ; on the other hand if Fp
Q∗y−→ F then

there exists a subsequence q(p) such that Fq(p)
Ey−→ F .

3.4. Remark. F : I → R is an ACG∗-function if there exists a sequence of sets Ei ⊂ I

such that F in relation to each Ei has a property which resembles absolute continuity. In

this way a descriptive characterization of functions from PHK is obtained. The concept

of controlled convergence has the same roots (cf. [D 51], [Ch-D 78], [L 89]). In general it

can be said that controlled convergence is equivalent to EHK-convergence. For a general

approach see [Bo-Pi 91]. There is treated a more general case of integration of f with

respect to a function G : I → R, the most important results being valid if G ∈ PHK. See

also [G 91] and [G 92].

4. Topologization of PY . Let T (Y) be the set of locally convex topologies τ on PY
such that

Fp
Q∗y−→ F implies Fp → F in (PY , τ).
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Since T (Y) 6= ∅ there exists a unique locally convex topology ULC(Q∗y) ∈ T (Y) which is

finer than any topology τ ∈ T (Y). If ULC(Ey) has an analogous meaning then ULC(Ey) =

ULC(Q∗y), cf. Remark 3.3.

4.1. Theorem. ULC(EL) is the topology induced on PL by the norm ‖ · ‖var where

‖F‖var = varF (cf. [Kur 02], Theorems 5.2 and 5.3).

4.2. Theorem. ULC(EHK) is the topology induced on PHK by the norm ‖ · ‖sup (cf.

[Kur 02], Theorem 8.2 and Note 8.1 (ii)).

Observe that (PL,ULC(EL)) is complete and (PHK,ULC(EHK)) is not complete.

It is desirable to get sufficient conditions for the completeness or noncompleteness of

(PY ,ULC(Ey)). A theoretical approach to this problem was obtained in [Kur 02], Chap-

ters 4 and 7 for a rather wide class of integration bases Y but only some concrete results

will be described here.

4.3. Notation. Let Λ be the set of λ : [0,∞) → [0,∞) nondecreasing, λ(σ) > 0 for

σ > 0. Denote by dist(t, E) the distance of t from E where t ∈ I, E ⊂ I.

For λ ∈ Λ let S(λ) be the set of partitions ∆ = {(ti, Ai)} ∈ L such that

(4.1) if (ti, Ai) ∈ ∆ then Ai is an interval,

(4.2)
∑

i

λ(dist(ti, Ai)) ≤ 1.

4.4. Theorem. Let λ ∈ Λ. Then (PS(λ),ULC(ES(λ)) is not complete (cf. Remark 3.2 and

[Kur 02], Theorem 8.11).

4.5. Remark. Put λ(i, σ) = 2−iσ for σ ≥ 0, i ∈ N. In [Bo 96], ∗-integration was defined.

It is a direct consequence of the definition that F is the primitive of a ∗-integrable f if

and only if

(4.3) F ∈
⋂

i

PS(λ(i,·)).

Moreover, F is the primitive of a ∗-integrable f if and only if there exist an everywhere

differentiable G and an absolutely continuous H such that

(4.4) F = G+H

(cf. [B-P-P 00]).

Let λ, η ∈ Λ, λ(σ)/η(σ)→ 0 for σ → 0. Then

(4.5) PS(η) ⊂ PS(λ), PS(λ) \ PS(η) 6= ∅ and ULC(ES(η)) is finer than the restriction

ULC(ES(λ))|PS(η)

(cf. [Kur 02], Theorem 8.11). It can also be proved that

(4.6)
⋂

λ∈Λ

PS(λ) = PL.

Therefore PS(λ) seems to be rather close to PL if λ → 0 rapidly but the results on

completeness are different.
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4.6. Notation. The regularity of a couple (t, A) where t ∈ I and A is a figure is defined

by

(4.7) reg(t, A) =
|A|

#∂A. diam({t} ∪A)

where #∂A is the number of boundary points of A and diamE is the diameter of E. (We

have 0 < reg(t, A) ≤ 1
2 for every couple (t, A).)

Let Ω be the set of nondecreasing functions ω : (0,∞) → (0, 1
2 ]. For ω ∈ Ω let R(ω)

be the set of partitions ∆ ∈ L such that

(4.8) reg(t, A) ≥ ω(diam({t} ∪A)) for (t, A) ∈ ∆

and let R(ω, 1) be the set of partitions ∆ ∈ R(ω) such that

(4.9) t ∈ A for (t, A) ∈ ∆.

4.7. Theorem. Neither (PR(ω),ULC(ER(ω))) nor (PR(ω,1),ULC(ER(ω,1))) is complete

(cf. [Kur 02], Theorem 9.2, Lemma 9.4, Note 9.5).

4.8. Remark. (PHK,ULC(EHK)) is not complete. On the other hand there exists a

topology τ on PHK such that

(PHK, τ) is a complete topological vector space,(4.10)

if Fp
EHK−→ F then Fp → F in (PHK, τ)(4.11)

(cf. (2.6) and [Kur 00], Theorem 8.1).

4.9. Remark. Let P∆ be the set of primitives with respect to the integration on one-

dimensional intervals which was introduced in [Bo-Pf 92]. We have

(4.12) P∆ =
⋂

j

PR(ωj ,1)

where ωj(σ) = 2−j for j ∈ N, σ > 0.

Let Fp, F ∈ P∆ for p ∈ N. The sequence Fp is called E∆-convergent to F , Fp
E∆

−→ F ,

if Fp
ER(ωj,1)−−−→ F for every j ∈ N. The ULC(E∆) is defined in the same way as ULC(Ey) in

Theorem 3.1. It can be proved by methods from [Kur 02], Ch. 10 that (P∆, ULC(E∆))

is not complete (this result may differ from Theorem 10.6, Remark 1 [Kur 02] since the

topologies ULC(E∆) and Uχ(R∗(1)) from the theorem mentioned above need not coincide).

Theorems 4.4 and 4.7 evoke the following question: Does there exist an integration

base Y such that PY 6= PL and (PY ,ULC(Q∗y)) is complete?

The answer is affirmative.

Let M({a}) be the set of partitions ∆ = {(ti, Ai)} ∈ L such that

(4.13) if ti = a then Ai = [a, s], a < s ≤ b.
4.10. Theorem. PM({a}) is the set of F : I → R, F (a) = 0 such that F is continuous and

the restriction F |[s,b] is absolutely continuous for s ∈ (a, b). The topology ULC(EM{(a}))
is induced by the set of seminorms {‖ · ‖sup, ‖ · ‖∗s; s ∈ (a, b)} where ‖F‖∗s is the variation

of F on [s, b]. Moreover, (PM({a}),ULC(EM({a}))) is complete.



152 J. KURZWEIL

4.11. Remark. Let S ⊂ I be countable and closed.M(S) can be defined analogously to

M({a}) and the above result can be extended to the integration baseM(S) (cf. [Kur 00],

Chapter 6).

4.12. Remark. Nonabsolute integration was approached by the method of truncation

(cf. [Ti 29], [O 54], [U 56], [A-A 65]). For the concept of a ranked space and its application

to nonabsolute integration see [Kun 54], [Kun 56], [N 78,79], [N 90] and for numerous

results which include the completion of st with respect to a quasinorm and the ranked

completion of st see [N 01]. Here st is the set of step functions.

5. A short excursion to integration in Rk. HK-integration in R1 has the following

two properties:

(5.1) If F is differentiable at every t ∈ I then

(HK)

∫

I

Ḟ dt = F (b)− F (a).

(5.2) The classical transformation formula is valid for diffeomorphisms.

Thus HK-integration on intervals of dimension 1 can be transferred to integration on

curves.

Let now k > 1,

(5.3) I = [a1, b1]× · · · × [ak, bk], J = [c1, d1]× · · · × [ck, dk]

where ai ≤ ci < di ≤ bi, i = 1, 2, . . . k),

(5.4) reg J =
min{di − ci; i = 1, 2, . . . , k}
max{di − ci; i = 1, 2, . . . , k} .

(A) If in the definition of the HK-integral I and J are interpreted as in (5.3) then

the resulting integration is equivalent to Perron integration (cf. e.g. [Kur 80]). An

analogue of the Fubini theorem is valid but neither (5.1) or (5.2) extend to this

integration.

(B) If 0 < α < 1 and if the assumption

(5.5) reg J ≥ α (for all J which are used in the partitions of I)

is added then the analogue of the Fubini theorem gets lost (cf. [J-K-S 83]) but on

the other hand we have

(5.6) If F : I → Rk is a vector field which is differentiable at every t ∈ I then
∫

I

div F dλk exists and

∫

I

div F dλk =

∫

∂I

F.n dλk−1

where λk is the Lebesgue measure on Rk and λk−1 is the Lebesgue measure on (k−1)

dimensional hyperplanes, n is the exterior normal to ∂I and F.n denotes the scalar

product (cf. [Ma 81]). (5.6) is an obvious extension of (5.1) and the formula in (5.6)

is a strange version of the Stokes formula since divF is general but the domain of

integration is very special.
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(C) A satisfactory solution in this situation is due to B. Bongiorno and W. Pfeffer (cf.

[Bo-Pf 92]). Without going into details one can say that the role of the intervals is

played by BV -sets (which are closed sets A in Rk such that the (m− 1)-dimensional

Hausdorff outer measure of the essential boundary of A is finite). In this interpre-

tation of I the formula from (5.6) is valid and (5.2) also extends (cf. also [Pf 93],

Ch. 13).

6. S-integration; local systems. S-integration is defined for some maps S from R to

the set of subsets of R. A very brief information on S-integration is given in this section.

Assume that for every x ∈ R
S(x) is a filter on R,(6.1)

{x} /∈ S(x),(6.2)

if s ∈ S(x) then x ∈ s,(6.3)

if s ∈ S(x) and σ > 0 then s ∩ (x− σ, x+ σ) ∈ S(x).(6.4)

In the terminology of [Bo-Pi-Sk 2002] S is called a filtering local system.

Let I = [a, b] ⊂ R. A function γ : I → 2R with γ(x) ∈ S(x) is called an S-choice.

With each choice γ we associate the family

(6.5) βγ = {(x, [u, v]);x = u, v ∈ γ(x) or x = v, u ∈ γ(x) where x ∈ I}.
A partition ∆ = {(x,A} of I is called a βγ-partition of I if ∆ ⊂ βγ .

Assume in addition that

(6.6) S is bilateral (i.e. every s ∈ S(x) contains points on either side of x),

(6.7) S satisfies the intersection condition (i.e. for every choice γ there exists a positive

function δ such that 0 < y−x < min{δ(x), δ(y)} implies γ(x)∩γ(y)∩ [x, y] 6= ∅).
Then

(6.8) for any choice γ there exists a βγ-partition of I.

6.1. Definition. Let f : I → R, w ∈ R. If for every ε > 0 there exists an S-choice γ

such that ∣∣∣w −
∑

∆

f(x)|J |
∣∣∣ ≤ ε

for every βγ-partition ∆ = {(x, J)} of I then f is S-integrable with the integral w, w =

(S)
∫
I
f dt.

The S-integral has some of the usual elementary properties: (i) If f is S-integrable

on I then f is S-integrable on any subinterval of I; F defined by F (s) = (S)
∫

[a,s]
f dt is

called the S-primitive of f . (ii) F is S-continuous and the S-derivative of F exists and is

equal to f a.e.

S-primitives were examined in connection with a new concept of ACG-functions (these

functions need not be continuous), S-derivatives, approximate derivatives, S ACG func-

tions, variational measures (see [B-P-S 02], [E 95]). Further results were obtained in the

case that S is generated by a path system or if S is a weak path system or if S is a p-adic
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path system or a dyadic path system (see [Th 90], [Th 82/83a, Th 82/83b], [B-P-S 02],

[B-P-S 03]).

7. N-integration. HK-integration can be applied to
∫
I
f dh where f, h : I → R in an

obvious way. If h is continuous then N-integration and HK-integration are equivalent.

For some discontinuous h the N-integration is a true extension of the HK-integration.

Discontinuous processes are caused by friction, hysteresis, plasticity, action of regula-

tors etc. In terms of mathematics discontinuities appear if we have to do with variational

inequalities, the play operator and limit cases of differential equations with a small param-

eter at derivatives. There is an increasing interest of mathematicians in these problems

(cf. [Kr-L 02], [Br-Kr 03]). The concept of regulated functions is a useful tool in this

direction.

g : [a, b]→ R is called a regulated function on [a, b] if the following limits exist:

g(t+) = lim
s→t+

g(s) for a ≤ t < b,(7.1)

g(t−) = lim
s→t−

g(s) for a < t ≤ b;(7.2)

G(a, b) is the space of regulated functions on [a, b].

G(a, b) is usually endowed with the supremum norm. For results on linear functionals,

operators and integral equations see e.g. [Ho 75], [Sch 92a, Sch 92b], [Tv 96], [Tv 98].

Let f, g : I → R,

g(t) = 0 for t ∈ I \M, M countable.

It is well known that the Young integral (Y )
∫
I
f dg exists for any f : I → R and,

moreover,

(7.3) (Y )

∫

[a,b]

f dg = f(b)g(b)− f(a)g(a).

However, (HK)
∫
I
f dg need not exist even if f is continuous. An example of such f and

g was based on the bad properties of integral sums

(7.4)
k∑

i=1

f(ti)[g(xi)− g(xi−1)]

where a = x0 < x1 < · · · < xk = b, ti ∈ [xi−1, xi] for i = 1, 2, . . . , k and xi ∈ M for a

large number of i’s (cf. [Kr-Kur 02]).

This situation gave an impulse to an extension of the concept of (HK)
∫
I
f dg (by

avoiding the possibility that xi ∈M for any i = 1, 2, . . . , k − 1).

Let N be a system of subsets of I fulfilling

(7.5) cl(I \ E) = I for E ∈ N,

(7.6) if E,C ∈ N then E ∪ C ∈ N.

7.1. Definition. Let N fulfil (7.6) and (7.7), ξ : I → (0,∞), E ∈ N. Let ∆ =

{(ti, [xi−1, xi]); i = 1, 2, . . . , k} ∈ HK, a = x0 < x1 < · · · < xk = b.
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∆ is called (ξ, E)-fine if

(7.7) ∆ is ξ-fine,

(7.8) xi ∈ I \ E for i = 1, 2, . . . , k − 1,

(7.9) ti ∈ (xi−1, xi) for i = 2, 3, . . . , k − 1.

7.2. Definition. Let N fulfil (7.5) and (7.6), f, g : I → R, w ∈ R. w is called the

N-integral over I of f with respect to g, w = (N)
∫
I
f dg, if for every ε > 0 there exist

ξ : I → (0,∞) and E ∈ N such that

(7.10)
∣∣∣w −

∑

i

f(ti)(g(xi)− g(xi−1))
∣∣∣ ≤ ε

for every (ξ, E)-fine partition

∆ = {(ti, [xi−1, xi]); i = 1, 2, . . . , k}
of I. (w is unique since for every (ξ, E)) there exists a (ξ, E)-fine partition ∆ of I.)

7.3. Theorem. Let N fulfil (7.5) and (7.6). Let f, g : I → R, g continuous. If (N)∫
I
f dg exists, then (HK)

∫
I
f dg exists and both integrals are equal (cf. [Kr 03]; Krejč́ı

writes KN -integration and (KN)
∫
I
f dg instead of N-integration and (N)

∫
I
f dg).

7.4. Theorem. Let N be the system of countable subsets of I, f : I → R, g ∈ G(a, b). If

(Y )
∫
I
f dg exists then (N)

∫
I
f dg exists and both integrals are equal.

7.5. Remark. Let Iv be the set of nonempty compact subintervals of I = [a, b]. A general

scheme for Riemannian integration scheme was formulated in [Th 82/83b].

Let B = {β} be a filter base on I × Iv which has the partitioning property (i.e. for

every β ∈ B and every K ∈ Iv there exists a partition ∆ = {(t, J)} of K such that

∆ ⊂ β.)

Let f : I → R, G : I → R, w ∈ R. f is called B-integrable on I with respect to G and

w is the B-integral, w = (B)
∫
I
f dg, if for every ε > 0 there exists β ∈ B such that
∣∣∣w −

∑

∆

f(t)G(J)
∣∣∣ ≤ ε

for every partition ∆ of I,∆ ⊂ β.

In order to interpret the N-integral as a B-integral put

βξ,E = {(t, [c, d]); t− ξ(t) < c < t < d < t+ ξ(t) with c, d ∈ I \ E}(7.11)

∪ {(t, [a, d]); t− ξ(t) < a ≤ t < d < t+ ξ(t) with d ∈ I \ E}
∪ {(t, [c, b]); t− ξ(t) < c < t ≤ d < t+ ξ(t) with c ∈ I \ E},

B = {βξ,E ; ξ : I → (0,∞), E ∈ N}.
Then the set of partitions ∆ = {(t, [xi−1, xi])} of I which are (ξ, E)-fine is just the

set of partitions ∆ of I which fulfil ∆ ⊂ β and B-integration is N-integration. (If S

fulfils (6.1)-(6.4), (6.6), (6.7) and if B = {βγ ; γ is an S-choice} then S-integration is

B-integration.)
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