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Abstract. The notes consist of a study of special Lagrangian linear subspaces. We will give a
condition for the graph of a linear symplectomorphism f : (R2n, σ =

∑n

i=1
dxi ∧dyi)→ (R2n, σ)

to be a special Lagrangian linear subspace in (R2n × R2n, ω = π∗2σ − π∗1σ). This way a special
symplectic subset in the symplectic group is introduced. A stratification of special Lagrangian
Grassmannian SΛ2n ' SU(2n)/SO(2n) is defined.

1. Introduction. Symplectic manifold (X,α) is a 2n-dimensional manifold equipped
with a closed differential form α such that (α)n never vanish. A k-dimensional subman-
ifold Y ⊂ X is said to be isotropic if α restricted to every tangent plane TxY , x ∈ Y ,
vanish. In the case k = n = dimX/2 an isotropic submanifold is called Lagrangian.
A diffeomorphism f : (X,α) → (X,α) is a symplectomorphism if f ∗α = α. Recall that
the graph of a symplectomorphism is a Lagrangian submanifold in the product X ×X
with the standard symplectic structure π∗2α− π∗1α, where π1, π2 are projections on arbi-
trary factors of X ×X. Kähler manifolds are distinguished class of symplectic manifolds.
A manifold (X,α,J , g) is said to be Kähler if (X,α) is a symplectic manifold, J a com-
plex structure, g a Hermitian metric on X and α(u,J v) is equal to the imaginary part
of g. Let us assume that there exists a holomorphic (n, 0)-form Ω on X, in local coor-
dinates z1, . . . , zn ∈ X the complex volume form and the symplectic form are equal to
Ω = dz1 ∧ . . . ∧ dzn and α = i

2

∑n
k=1 dzk ∧ dz̄k ([MS], [Wei]).

Definition 1.1. An oriented Lagrangian submanifold L ⊂ (X,α,J ,Ω) is called spe-
cial if Im Ω|L = 0.

In fact there is a more general definition involving a phase θ ∈ [0, 2π]. Let Λn be the
Lagrangian Grassmannian, i.e. a manifold consisting of all linear Lagrangian subspaces in
2n-dimensional linear symplectic space. Recall that Λn ' U(n)/O(n), where U(n) is the
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unitary group and O(n) the orthogonal group ([MS]). Let det : Λn → S1 be a mapping
which sends a matrix A representing a Lagrangian linear subspace Y to its determinant,
i.e. det(A) = exp(iθ). The number θ is called the phase of Y ([HL], [Joy]). The mapping
to S1 can be defined globally if a global complex volume form Ω exists.

Definition 1.2. An oriented Lagrangian submanifold is said to be special if every
its tangent space has the phase zero.

In a more general case special Lagrangian submanifolds with the fixed phase θ ∈ [0, 2π]

are considered.

Examples.

1) In (R2, α = dx ∧ dy) the subspace L = {y = 0} is a linear special Lagrangian
subspace with the phase 0.

2) Recall that every Lagrangian submanifold can be locally described as the graph
of a function differential. In Cm the condition for graph df (f : Rm → R) to be a special
Lagrangian submanifold is Im det(I + iHess f) = 0, where I is the identity matrix and
Hess f the Hessian of f . In general, the above condition is very difficult, this is a nonlinear
second-order elliptic partial differential equation. Form = 2 it gives the harmonic formula,
i.e. ∆f = 0. For m = 3 it has the form ∆f = det(Hess f) and this is the equation of
Monge-Ampère type and its linearization at any solution is always elliptic ([HL]).

3) In C2 with the standard complex structure I: z0 = x0 + ix1, z1 = x2 + ix3, every
special Lagrangian submanifold is a J -holomorphic curve with respect to the following
structure J : w0 = x0 + ix2, w1 = x1 − ix3. J is R-linear and antiholomorphic, i.e.
J (Iz) = −I(J z), z ∈ C2 ([Joy]).

The definition of a submanifold for which all tangent spaces have the common phase
seems to be very restrictive. Special Lagrangian submanifolds can be defined only in sym-
plectic manifolds (X,α,J ) for which the holomorphic volume form is globally defined.
Calabi-Yau manifolds, i.e. Kähler manifolds with the trivial canonical bundle (with global
holomorphic volume form), have natural Lagrangian submanifolds which are special. Note
that every special Lagrangian submanifold is a minimal submanifold, it minimizes the
volume in its homology class. The special Lagrangian Grassmannian SΛn (i.e. the fam-
ily of all oriented n-dimensional vector subspaces in 2n-dimensional symplectic vector
space V ) can be identified with the quotient SU(n)/SO(n) ([HL]), where SU(n) is the
special unitary group and SO(n) the special orthogonal group. If we consider the special
linear Lagrangian subspace L0 in V spanned by the canonical basis {e1, . . . , en} over real
numbers, then every Lagrangian vector space in V can be obtained by a unitary trans-
formation of vectors e1, . . . , en and every special Lagrangian vector space in V can be
produced by a special unitary transformation of e1, . . . , en. Special Lagrangian submani-
folds are expected to play a role in the eventual explanation of Mirror Symmetry between
Calabi-Yau manifolds (3-dimensional). Thus they are important in String Theory.

The paper is organized as follows. In the first part we give a condition for the graph
of a linear symplectomorphism to be a special Lagrangian linear subspace. A special sym-
plectic subset in the symplectic group is introduced. This subset consists of matrices rep-
resenting linear symplectomorphisms whose graphs are special Lagrangian subspaces. We
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show some features of the special symplectic subset. In Section 3 we recall the stratifica-
tion of the Lagrangian Grassmannian Λ2n ' U(2n)/O(2n) constructed in the product of
two symplectic spaces. The stratification is associated with a question when a Lagrangian
subspace is or is not the graph of a linear symplectomorphism. It was defined by Janeczko
([Jan]). We introduce an analog of this partition in the special Lagrangian case. In the
last part of the paper we show a partition of the special Lagrangian Grassmannian SΛ2.

2. Special Lagrangian subspaces as graphs of linear symplectomorphisms.
We will consider the special Lagrangian geometry only in the linear case. Let (R2n '
Cn, σ,J , g) be a linear symplectic space with a symplectic form σ, a Hermitian metric g,
a complex structure J , and σ(u,J v) be equal to the imaginary part of g. Let us endow the
product (Cn×Cn, ω,−J ×J ) with the standard symplectic product structure ω = π∗2σ−
π∗1σ, the complex structure −J ×J compatible with ω. We have the holomorphic volume
form Ω = dz̄1∧. . .∧dz̄n∧dzn+1∧. . .∧dz2n in local coordinates (z1, . . . , zn, zn+1, . . . , z2n).

We shall find a condition for a linear symplectomorphism to have the graph being a
special Lagrangian linear subspace in (C2n, ω).

Lemma 2.1. If Id : (Cn, σ)→ (Cn, σ) is the identity symplectomorphism, then

phase(graph Id) = n
π

2
(mod 2π).

Proof. Let (e1, e2, . . . , en,−ie1,−ie2, . . . ,−ien) be the standard orthogonal basis of
the domain (Cn ' R2n, σ,J ) over R, then (e1, . . . , en, ie1, . . . , ien) is the image of the
basis. Thus L = graph Id is a real linear subspace spanned (over R) by the columns of

the matrix
(
I −iI
I iI

)
, where the block I is the identity matrix of dimension n × n. We

calculate: phase(graph Id) = arg(det graph Id) = arg((2i)n) = nπ2 (mod 2π).

The above result permits us to fix the phase θ = nπ2 (mod 2π) for special Lagrangian
subspaces and submanifolds.

Proposition 2.2. Let Φ : (Cn, σ)→ (Cn, σ) be a linear real symplectomorphism and

let the symplectic matrix Φ ∈ Sp(n) have the block form Φ =

(
A B

C D

)
, where every block

is a submatrix of dimension n× n. Then graph Φ is a special Lagrangian linear subspace
in (Cn × Cn, ω) if and only if

arg det
(
(A+D) + i(C −B)

)
= 0.

Proof. We consider the orthogonal basis (e1, . . . , en,−ie1, . . . ,−ien) as in the above
lemma, then the matrix representing graph Φ as a real linear subspace in Cn × Cn is

graph Φ =

(
I −iI

A+ iC B + iD

)

We calculate det(graph Φ) = det
(
(B − C) + i(A + D)

)
= det(iI) det

(
(A + D) +

i(C − B)
)

= (i)n det((A + D) + i(C − B)), thus arg
(
det(graph Φ)

)
= nπ2 (mod 2π) if

and only if det
(
(A+D) + i(C −B)

)
∈ R+.

A special Lagrangian subspace should have fixed orientation. If we consider graph Φ

with the opposite orientation we deduce that graph Φ is a special Lagrangian subspace if
and only if det

(
(A+D) + i(C −B)

)
∈ R−.
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Remark 2.3. The graph of a linear symplectomorphism is a special Lagrangian lin-
ear subspace if after choosing an arbitrary orientation the determinant of the matrix(
(A+D) + i(C −B)

)
is a real number.

We can express the conditions in terms of complex structure J . Define

Φ + JΦJ−1 = Φ + (ΦT )−1 =

(
A+D B − C
C −B A+D

)
'
(
(A+D) + i(C −B)

)
,

where Φ =

(
A B

C D

)
∈ Sp(n). We have used the identification between matrices over R

and over C, i.e. (X + iY ) '
(
X −Y
Y X

)
, det(X + iY ) =

∣∣∣∣det

(
X −Y
Y X

)∣∣∣∣
2

.

Definition 2.4. A special symplectic subset is the subset in the symplectic group
Sp(n) consisting of the matrices whose graph is a special Lagrangian subspace, we denote
it by SSp(n).

Obviously SSp(n) is not a subgroup in Sp(n).

Example 2.5. We consider the symplectic group in C ' R2, i.e. Sp(1) ' SL(2,R)

(SL(2,R)—special linear group). The special symplectic subset in Sp(1) consists of sym-

metric and positive definite matrices: SSp(1) =
{

Φ =

(
a b

b d

)
: a + d > 0, Φ ∈ Sp(1)

}
.

We see that SSp(1) is not a subgroup in Sp(1).

Example 2.6. We will show that the matrix Φ =

(
2 1

1 1

)
∈ SSp(1) represents the lin-

ear symplectomorphism f : (C, σ)→ (C, σ) whose graph is the special Lagrangian vector
subspace in

(
C×C, ω = π∗2σ− π∗1σ,−i× i,Ω = dz̄1 ∧ dz2

)
, i.e. the phase of graph f is π

2 .
Let e1 = (1, 0) ' 1, e2 = (0, 1) ' i be the canonical basis of C ' R2. We calculate

that f(e1) = Φe1 = (2, 1) ' 2 + i and f(e2) = Φe2 = (1, 1) ' 1 + i. Thus graph Φ is a
Lagrangian vector subspace in C× C represented by the matrix

graph Φ =




1 0

0 1

2 1

1 1


 '

(
1 −i

2 + i 1 + i

)
.

We calculate that ω
(
[1, 0, 2, 1], [0, 1, 1, 1]

)
= σ

(
[2, 1], [1, 1]

)
− σ

(
[1, 0], [0, 1]

)
= −1 + 1 = 0

and Ω
(
[1, 0, 2, 1], [0, 1, 1, 1]

)
= det

(
1 −i

2 + i 1 + i

)
= 3i. Thus phase(graph f) = π

2 .

We will show some properties of SSp(n).

Remark 2.7.
1) Every special symplectic matrix Φ ∈ SSp(n) can be decomposed as Φ = PQ, where

P is symmetric, symplectic and positive definite, and Q ∈ SU(n). The subgroup SU(n)

is a maximal compact subset in SSp(n), like U(n) in Sp(n).

2) phase(graph Φ)− nπ2 = −
(
phase(graph Φ−1)− nπ2

)
.

3) phase(graph ΦT ) = phase(graph Φ−1).
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4) ΦSU(n) ⊂ SSp(n) and SU(n)Φ ⊂ SSp(n) for Φ ∈ SSp(n) (ΦSU(n) and SU(n)Φ

can be treated as „cosets” of SU(n) in SSp(n)).

Proof. We know that Φ ∈ SSp(n) like every symplectic matrix is a product of two
matrices, where the first is symmetric, symplectic and positive definite and the second is a
unitary matrix ([MS]); det(Φ+JΦJ −1) = det(P+JPJ−1) detQ. Analyzing eigenvalues
of P and JPJ−1, we see that det(P + JPJ −1) ∈ R+ thus detQ = 1.

3. Stratification of the special Lagrangian Grassmannian. We will explore the
Lagrangian Grassmannian in the Cartesian product of two copies of a linear symplectic
space. We recall very natural stratification of Λ2n introduced in [Jan]. The partition
is associated to a question when a Lagrangian subspace is or is not the graph of a
linear symplectomorphism. Next we introduce an analogous stratification in the special
Lagrangian Grassmannian SΛ2n.

A very easy and useful observation leads us to the stratification of Λ2n ([Jan]).

Remark 3.1. If L ⊂ (Cn × Cn, ω = π∗2σ − π∗1σ,−J × J ) is a linear Lagrangian
subspace, then there are two possibilities:

1) L is transversal to Cn × {0} and to {0} × Cn simultaneously
or

2) L is transversal neither to Cn × {0} nor to {0} × Cn

and always codimπ1(L) = codimπ2(L).

This condition divides Grassmannian Λ2n into two parts: the regular part consisting
of the graphs of linear symplectomorphisms and the critical stratum which contains the
graphs of linear symplectic correspondences.

In fact the stratification is Λ2n = RΛ2n +
∑n
k=1CkΛ2n, where

– RΛ2n is the regular stratum, if L ∈ RΛ2n then codimπ1(L) = codimπ2(L) = 0,

– Σnk=1CkΛ2n is the critical set; if L ∈ CkΛ2n then codimπ1(L) = codimπ2(L) = k.

Proposition 3.2. In the case of special Lagrangian Grassmannian we have an anal-
ogous partition, only the deepest stratum is different :

SΛ2n = RSΛ2n +

n−1∑

k=1

CkSΛ2n + CnSΛ2n.

1) The regular stratum RSΛ2n consists of the graphs of special linear symplectomor-
phisms Cn → Cn, therefore it can be identified with two copies of the special symplectic
subset (two orientations are possible)

RSΛ2n ' SSp+(n) t SSp−(n).

2) Every stratum CkSΛ2n, k = 1, . . . , n− 1, is fibered in the following way :

SSp+(n− k) t SSp−(n− k) ↪→ CkSΛ2n

↓
I2n
k × I2n

k

where I2n
k denotes the isotropic Grassmannian, i.e. the set of all k-dimensional isotropic

linear subspaces in Cn ' R2n. Recall that I2n
k ' U(n)/(O(k)⊕ U(n− k)), where U(n)
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and U(n− k) are the unitary groups and O(k) the orthogonal group ([MS]). In the above
bundle we have the projection on symplectic polars and fibers consist of linear symplecto-
morphisms between reduced symplectic spaces π1(L)/π1(L)⊥ → π2(L)/π2(L)⊥.

3) Supercritical stratum CnSΛ2n is a subset of Λn × Λn. If L ∈ CnSΛ2n then L =

L1 × L2, Li ∈ Λn, i = 1, 2, and phase(L1 × L2) = nπ2 (mod 2π) or phase(L1 × L2) =

nπ2 + π (mod 2π) if an orientation of the subspace L1 or L2 is changed.

Proof. Items 1), 2) are obvious ([Jan]). In 3) phase(L1 × L2) = arg(detL1 detL2) =

arg(exp(−iθ1) exp iθ2) = phaseL2 − phaseL1 = θ2 − θ1 = nπ2 (mod 2π).

4. Example. We will explore the stratification of the special Lagrangian Grassman-
nian SΛ2n in the smallest interesting dimension, 2n = 2. Recall that SΛ2 is the family of
special real Lagrangian subspaces in (C2,J , ω), dimSΛ2 = 2 and SΛ2 ' SU(2)/SO(2) '
S3/S1 ' S2.

The Grassmannian SΛ2 can be divided into two strata:
1) the regular stratum RSΛ2 which consists of the graphs of linear symplectomor-

phisms Φ : C→ C,

2) the critical stratum C1SΛ2 which is included in the Cartesian product Λ1 × Λ1,
where Λ1 ' U(1)/O(1) ' S1 denotes the Lagrangian Grassmannian in R2 ' C.

Using our results from Proposition 3.2 we see that the open stratum consists of two
copies of special symplectic subset SSp(1) (see Example 2.5), i.e. RSΛ2 ' SSp+(1) t
SSp−(1). If L ∈ C1SΛ2 then L = L1 × L2, phase(L1 × L2) = π/2, thus the matrix
Φ ∈ U(1)× U(1) representing L is

Φ =

(
exp(−iθ1) 0

0 exp(iθ2)

)
, θ2 − θ1 =

π

2
.

The stratum C1SΛ2 can be identified with the circle S1 on the torus Λ1 × Λ1 '
S1 × S1 ' T 2. How are the strata located on the sphere S2 ' SΛ2 ? The stratum
C1SΛ2 ' S1 is the equator and RSΛ2 two hemispheres. If we use coordinates s, δ, b
which describe the set SSp(1) in Example 2.5 (s = a+d

2 , a = s − δ, d = s + δ) and we
parametrize SSp(1) by t and γ: s = cosh t, δ = sinh t cos γ, b = sinh t sin γ, we can show
that if t → ∞ then graph Φ(t, γ) → (−γ, γ + π

2 ). It means that the deepest stratum is
attached to a bigger one.
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