
GEOMETRIC SINGULARITY THEORY
BANACH CENTER PUBLICATIONS, VOLUME 65

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2004

ON ASYMPTOTIC CRITICAL VALUES
AND THE RABIER THEOREM

ZBIGNIEW JELONEK

Institute of Mathematics, Polish Academy of Sciences
Św. Tomasza 30, 31-027 Kraków, Poland

E-mail: najelone@cyf-kr.edu.pl

Abstract. LetX ⊂ kn be a smooth affine variety of dimension n−r and let f = (f1, . . . , fm) :

X → km be a polynomial dominant mapping. It is well-known that the mapping f is a locally
trivial fibration outside a small closed set B(f). It can be proved (using a general Fibration
Theorem of Rabier) that the set B(f) is contained in the set K(f) of generalized critical values
of f . In this note we study the Rabier function. We give a few equivalent expressions for this
function, in particular we compare this function with the Kuo function and with the (generalized)
Gaffney function. As a consequence we give a direct short proof of the fact that f is a locally
trivial fibration outside the set K(f) (i.e., that B(f) ⊂ K(f)). This generalizes the previous
results of the author for X = kr (see [2]).

1. Introduction. Let X be a smooth affine variety over k = R or k = C of dimension
n − r and let f : X → km be a polynomial dominant mapping. It is well-known that
the mapping f is a locally trivial fibration outside a bifurcation set B(f), which has a
measure 0.

Let us recall that in general the set B(f) is bigger than K0(f)—the set of critical
values of f . It contains also the set B∞(f) of bifurcations points at infinity. Briefly
speaking, the set B∞(f) consists of points at which f is not a locally trivial fibration
at infinity (i.e., outside a compact set). To control the set B∞(f) one can use the set of
asymptotic critical values at infinity of f (see [6]):

K∞(f) = {y ∈ km : there is a sequence xl →∞ such that f(xl)→ y

and ‖xl‖ν(resTxlX df(xl))→ 0},
where we consider the induced Euclidean metric on X and ν is the function defined by
Rabier (see Definition 2.1 below). If y 6∈ K∞(f) we say also that y is Malgrange regular.
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If m = 1 and X = kn, then there is a wide literature devoted to different regularity
conditions and their comparison (e.g., [8], [9], [10]). It has been proved for instance that
the Malgrange regularity is equivalent to another regularity called t-regularity, by Siersma
and Tibăr (see [7]). The case m > 1 and X = kn was studied in [1], [2] and [4]. In this
paper (and in [3]) we study the case when X is a smooth affine variety (or even a Stein
submanifold of Cm) and m ≤ dimX.

Let K(f) = K0(f) ∪K∞(f) be the set of generalized critical values of f . It can be
proved that the set K(f) is a proper algebraic subset of Cm—or proper semi-algebraic
in the real case (see [3]). Moreover, we have (e.g., by a general Fibration Theorem of
Rabier [6], see also [1]) B(f) ⊂ K(f). These two facts together allow us to construct
effectively a Zariski open dense subset U ⊂ km over which the mapping f is a locally
trivial fibration.

In this note we study the Rabier function. As a consequence we give a direct proof
of the fact that B(f) ⊂ K(f) in the case when X ⊂ kn is a smooth submanifold and
f : X → km is a smooth mapping (moreover, some of these results are used in [3] to
study the properties of the set K(f)).

The fact that B(f) ⊂ K(f) follows from a very general Theorem of Rabier (see [6]),
but it is so important (e.g., in the study of polynomial mappings) that (as I believe) it is
worth to have a simple direct proof of it in a special case of submanifolds of a Euclidean
space.

Acknowledgments. This paper was written during the author’s stay at the Max-
Planck-Institut für Mathematik in Bonn. The author thanks MPI for the invitation and
the kind hospitality.

2. On the Rabier function ν. Here we give several equivalent expressions for ν.
Let X ∼= kn, Y ∼= km be finite-dimensional vector spaces (over k). Let us denote by

L(X,Y ) the set of linear mappings from X to Y and by Σ(X,Y ) ⊂ L(X,Y ) the set of
non-surjective mappings. Let us recall the following ([6]):

Definition 2.1. Let A ∈ L(X,Y ). Set

ν(A) = inf
||φ||=1

||A∗(φ)||,

where A∗ : L(Y ∗, X∗) is the adjoint operator and φ ∈ Y ∗.
In [4] the following characterization of ν is given: ν(A) = dist(A,Σ) = infB∈Σ ||A−B||.

Moreover, we have the following useful characterization ([6] and [4]):

Proposition 2.1. Let A ∈ L(X,Y ). Then

a) ν(A) = sup
{
r > 0 : B(0, r) ⊂ A(B(0, 1))

}
, where B(0, r) = {x ∈ X : ||x|| ≤ r}.

b) if A ∈ GL(X,Y ) then ν(A) = ||A−1||−1.

Proposition 2.2. Let A = (A1, . . . , Am) ∈ L(X,Y ) and let Ai = gradAi. Let

κ(A) = min
1≤i≤m

dist
(
Ai,
〈
(Aj)j 6=i

〉)
,

be the Kuo number of A. Then ν(A) ≤ κ(A) ≤ √mν(A).



ASYMPTOTIC CRITICAL VALUES AND RABIER THEOREM 127

We say that ν(A) and κ(A) are equivalent and write ν(A) ∼ κ(A). The symbol X ∼ Y
means that there are positive constants C1, C2 such that C1X ≤ Y ≤ C2X.

Definition 2.2. Let A ∈ L(X,Y ) and let H ⊂ X be a linear subspace. We set

ν(A,H) = ν(resH A), κ(A,H) = κ(resH A),

where resH A denotes the restriction of A to H.

From Proposition 2.2 we get immediately:

Corollary 2.1. Let A ∈ L(X,Y ) and let H ⊂ X be a linear subspace. Then

ν(A,H) ∼ κ(A,H).

Proposition 2.3. Let A = (A1, . . . , Am) ∈ L(X,Y ) and let H ⊂ X be a linear
subspace. Assume that H is given by a system of linear equations Bj = 0, j = 1, . . . , r.
Then

κ(A,H) = min
1≤i≤m

dist
(
Ai,
〈
(Aj)j 6=i; (Bj)j=1,...,r

〉)
,

where Ai = gradAi and Bj = gradBj.

Proof. Indeed, every vector Ai can be written as ai + bi, where ai is orthogonal to the
subspace B =

〈
(Bj)j=1,...,r

〉
(which means that ai ∈ H) and bi ∈ B. Hence

dist(Ai,
〈
(Aj)j 6=i; (Bj)j=1,...,r

〉
) = dist(ai, 〈(aj)j 6=i〉)

and since grad(resH Ai) = ai, the proof is finished.

We need also:

Definition 2.3. Let A ∈ L(X,Y ) (where n ≥ m + r) and let H ⊂ X be a linear
subspace given by a system of independent linear equations Bi =

∑
bijxj , i = 1, . . . , r.

Let a = [aij ] be the matrix of A. Let c = [ckl] be a ((m + r) × n) matrix given by the
rows A1, . . . , Am;B1, . . . , Br (we identify Ai =

∑
aijxj with the vector (ai1, . . . , ain),

similarly for Bj). Let MI , where I = (i1, . . . , im+r), denote a ((m+ r)× (m+ r)) minor
of c given by columns indexed by I and let |MI | denote the determinant of MI . Further,
let MJ (j) denote a ((m+ r− 1)× (m+ r− 1)) minor given by columns indexed by J and
by deleting the j-th row, where 1 ≤ j ≤ m. Then by the generalized Gaffney function
of A with respect to a linear subspace H, we mean the number

g(A,H) =

(∑
I |MI |2

)1/2
(∑

J, 1≤j≤m |MJ (j)|2
)1/2 .

(If this number is not defined we put g(A,H) = 0.)

Remark 2.1. It is easy to see that g(A,H) depends on A and H only. A particular
case of this definition (for H = X) has been considered by Gaffney—see [1].

Proposition 2.4. Let A ∈ L(X,Y ) (where n ≥ m) and let H ⊂ X be a linear
subspace. Then g(A,H) ∼ κ(A,H) ∼ ν(A,H).
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Proof. By basic properties of the Gram determinant (see e.g., [5]) we have

dist
(
Ai,
〈
(Aj)j 6=i; (Bj)j∈{1,...,r}

〉)
=
G
(
(Aj)j∈{1,...,m}, (Bj)j∈{1,...,r}

)1/2

G
(
(Aj)j 6=i, (Bj)j∈{1,...,r}

)1/2

=

(∑
I |MI |2

)1/2
(∑

J |MJ (i)|2
)1/2 .

Thus g(A,H) ≤ κ(A,H). On the other hand there is a number i0 such that the sum(∑
J |MJ (i0)|2

)1/2
is maximal. Since

(∑

J, j

|MJ (j)|2
)1/2

=
(∑

r

(∑

J

|MJ(r)|2
))1/2

≤ √m
(∑

J

|MJ (i0)|2
)1/2

,

we have

g(A,H) ≥ C
(∑

I |MI |2
)1/2

(∑
J |MJ (i0)|2

)1/2 = C dist
(
Ai0 ,

〈
(Aj)j 6=i0 ; (Bj)j∈{1,...,r}

〉)
≥ Cκ(A,H),

where C = 1/
√
m.

Definition 2.4. Let us apply the notation from Definition 2.3. Put

q(A,H) =
maxI |MI |

maxI, J⊂I, j |MJ (j)| ,

(where we consider only numbers with MJ(j) 6= 0, if all numbers MJ (j) are zero, we put
q(A,H) = 0).

Proposition 2.4 can also be formulated in the following way:

Corollary 2.2. We have q(A,H) ∼ ν(A,H).

Proof. Let A denote the number of all possible matrices of type MI (for all I) and let
B denote the number of all possible matrices of type MJ (j) (for all possible I, J ⊂ I and

all 1 ≤ j ≤ m). Since the norms ||x|| =
(∑ |xi|2

)1/2
and ||x||′ =

∑ |xi| are equivalent,
we have

g(A,H) ∼
∑

I |MI |∑
I, J⊂I, j |MJ (j)| .

On the other hand

(1/B)
maxI |MI |

maxI, J⊂I, j |MJ (j)| ≤
∑
I |MI |∑

I, J⊂I, j |MJ (j)| ≤ A
maxI |MI |

maxI, J⊂I, j |MJ (j)|
and consequently g(A,H) ∼ q(A,H). Now we finish the proof by Proposition 2.4.

At the end of this section we introduce another important function (the notation is
as in Definition 2.3):

Definition 2.5. We define the function

g′(A,H) = max
I

{
min

J⊂I, 1≤j≤m
|MI |
|MJ (j)|

}
,

(where we consider only numbers with MJ(j) 6= 0, if all numbers MJ (j) are zero, we put
g′(A,H) = 0).



ASYMPTOTIC CRITICAL VALUES AND RABIER THEOREM 129

Proposition 2.5. We have g′(A,H) ∼ g(A,H).

Proof. First we prove that there is a constant C > 0 such that g′(A,H) ≤ Cg(A,H).
Let us fix an index I = (i1, . . . , im+r) such that |MI | 6= 0 and consider the numbers
|MI |/|MJ (s)|, where J ⊂ I and 1 ≤ s ≤ m. For simplicity we can assume that I =

(1, . . . ,m+ r). Let the subspace H be given by a system of independent linear equations
Bi =

∑
bijxj , i = 1, . . . , r, and let a = [aij ] be the matrix of A.

Consider the system of linear equations:
n∑

j=1

a1jxj = y1,

. . . . . .
n∑

j=1

amjxj = ym,

n∑

j=1

b1jxj = 0,

. . . . . .
n∑

j=1

brjxj = 0,

xm+r+1 = 0,

. . . . . .

xn = 0.

We can solve this system using the Cramer rules. Let Mki := MJ (i) for J = I \ {k}. We
have

x1 =
m∑

k=1

(−1)1+kykM1k/MI ,

. . . . . . . . .

xm+r =
m∑

k=1

(−1)m+r+kykM(m+r)k/MI ,

xm+r+1 = 0,

. . . . . .

xn = 0.

In particular we have ||x|| ≤
(
max |MJ (i)|/|MI |

)
||y||. Consequently we see that the

image of a unit ball in the subspace H ′ = {x ∈ H : xm+r+1 = 0, . . . , xn = 0} by the map-
ping A contains a ball of radius minJ⊂I, 1≤j≤m |MI |/|MJ (j)|. Now by Proposition 2.1a),
we see that minJ⊂I, 1≤j≤m |MI |/|MJ (j)| ≤ ν(A,H ′) ≤ ν(A,H). Finally we get

ν(A,H) ≥ max
I

{
min

J⊂I, 1≤j≤m
|MI |
|MJ (j)|

}
= g′(A,H).

In particular there is a constant C such that Cg(A,H) ≥ g′(A,H).
On the other hand, there exists I0 such that the minor MI0 has a maximal norm.
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Since

g(A,H) =

(∑
I |MI |2

)1/2
(∑

J,j |MJ (j)|2
)1/2 ≤

(
n

m+ r

)1/2 |MI0 |(∑
J, j |MJ (j)|2

)1/2

≤
(

n

m+ r

)1/2

min
J⊂I0, 1≤j≤m

|MI0 |
|MJ (j)| ≤

(
n

m+ r

)1/2

g′(A,H),

we deduce that there is a constant C ′ > 0 such that g(A,H) ≤ C ′g′(A,H).

Corollary 2.3. We have g′(A,H) ∼ ν(A,H).

3. Main result. In this section we give a short direct proof of the fact B(f) ⊂ K(f)

for a smooth mapping f : X → km, where X is a smooth submanifold of km. Let us
recall the following basic definition:

Definition 3.1. Let k = C or k = R and let X be a smooth submanifold of kn. Let
f : X → km be a k-smooth mapping. Then we define the set of generalized critical values
K(f) = K0(f) ∪K∞(f), where K0(f) is the set of critical values of f and

K∞(f) =
{
y ∈ km : there is a sequence xl →∞ such that f(xl)→ y

and ‖xl‖ν(df(xl), TxlX)→ 0
}

is the set of critical values at infinity.

Remark 3.1. Note that by virtue of results of Section 2, in place of the function ν

above we can put also κ, g, q or g′.

We have the following simple observation (see [2], [6]):

Proposition 3.1. Let k = C or k = R and let X be a smooth affine variety over k.
Let f : X → km be a k-smooth mapping. Then the set K(f) = K0(f)∪K∞(f) is closed.

We need also the following lemma (see [2]):

Lemma 3.1. Let U ⊂ kn be an open set and V : U → kn be a smooth mapping. Let
y ∈ U and let

x′(t) = V (x), with x(0) = y,

be a differential equation. Let x(y, t), t ∈ [0, t0), be a solution of this equation. Assume
that for ||x(y, t)|| large enough, we have ||V (x(y, t))|| < M ||x(y, t)||. Then this trajectory
is bounded. In particular this trajectory either is defined for every t > 0 or intersects the
boundary ∂U of U .

Now we give a short direct proof of the fact that B(f) ⊂ K(f), which is a particular
version of a very general result of Rabier [6] (see also [1]).

Theorem 3.1. Let k = C or k = R and let X ⊂ kn be a smooth submanifold (i.e.,
X is smooth for k = R or Stein for k = C). Let f : X → km be a k-smooth mapping
(i.e., f is smooth for k = R or holomorphic for k = C). Then

B(f) ⊂ K(f) = K0(f) ∪K∞(f),

i.e., the mapping f is a locally trivial fibration outside the set K(f).
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Proof. It is well-known that we can assume that f can be extended to a k-smooth
mapping f on the whole kn (in real case it is an easy exercise, in complex it follows from
the theory of Stein manifolds).

First assume that X is a global complete intersection, i.e. X = {b1 = 0, . . . , br = 0}
and rank{dxb1, . . . , dxbr} = r for every x ∈ X.

Let a 6∈ K(f). Without loss of generality we can assume that a = 0. We have
a 6∈ K0(f) and a 6∈ K∞(f). This implies that there are R > 0, ε > 0, η > 0, such
that for every x ∈ X with ||x|| ≥ R and ||f(x)|| < η, we have

max
I

{
min

J⊂I, 1≤j≤m
||x|| |MI |
|MJ (j)|

}
> ε.(1)

Moreover, there is ω > 0 such that for every x ∈ X with ||x|| ≤ R and ||f(x)|| < η, we
have maxI |MI(x)| ≥ ω.

Let U = {y ∈ km : ||y|| < η} and let Γ = f−1(0). We show that f−1(U) ∼= Γ× U and
f is a projection Γ× U 3 (γ, u) 7→ u ∈ U . Indeed, let us define a set

UI =
{
x ∈ f−1(U) : if ||x|| ≥ R then min

J⊂I, 1≤j≤m
||x|| |MI |
|MJ (j)| ≥ ε,

if ||x|| ≤ R then |MI(x)| ≥ ω
}
.

Further, let

VI =
{
x ∈ f−1(U) : if ||x|| ≥ R then min

J⊂I, 1≤j≤m
||x|| |MI |
|MJ (j)| ≤ ε/2,

if ||x|| ≤ R then |MI(x)| ≤ ω/2
}
.

The sets VI and UI are disjoint. Consequently there is a C∞ function δI : kn → [0, 1],
which is equal to 1 on UI and to 0 on VI . It is easy to see that the sets HI = {x : δI(x) > 0}
cover the set f−1(U). Now take δ :=

∑
I δI and let ∆I = δI/δ.

Take y = (y1, . . . , yn) ∈ U . Take the index I = (1, . . . ,m+ r) and consider a (formal)
system of differential equations:

n∑

j=1

∂f1

∂xj
(x(t))xj(t)

′ = y1,

. . . . . . . . .
n∑

j=1

∂fm
∂xj

(x(t))xj(t)
′ = ym,

n∑

j=1

∂b1
∂xj

(x(t))xj(t)
′ = 0,

. . . . . . . . .
n∑

j=1

∂br
∂xj

(x(t))xj(t)
′ = 0,

xm+r+1(t)′ = 0,

. . . . . .

xn(t)′ = 0.
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We can solve this system using the Cramer rules (at least in UI). Let Mki := MJ (i) for
J = I \ {k}. We have

x1(t)′ =
m∑

k=1

(−1)1+kykM1k/MI ,

. . . . . . . . .

xm+r(t)
′ =

m∑

k=1

(−1)m+r+kykM(m+r)k/MI ,

xm+r+1(t)′ = 0,

. . . . . .

xn(t)′ = 0.

We can write this system shortly as

x(t)′ = VI(y, x(t)).

By the Cramer rules, we have df(VI(y, x)) = y and db(VI(y, x)) = 0. In an analogous way
we can define VI for an arbitrary index I = (i1, . . . , im).

Now consider a vector field V (y, x) =
∑
I ∆IVI(y, x) in a domain f−1(U). By the

construction, we have ||V (x)|| ≤ 2mη/ε||x|| for ||x|| ≥ R and x ∈ X. Let us consider the
differential equation

x(t)′ = V (y, x(t)), x(0) = γ,(2)

where γ ∈ Γ. Let us note that

df(V (y, x)) = df
(∑

I

∆IVI(y, x)
)

=
∑

I

df(∆IVI(y, x))

=
∑

I

∆Idf(VI(y, x)) =
(∑

I

∆I

)
y = y.

Similarly db(V (x, y)) = 0. Consequently, if x(t, y, γ) is a solution of system (2), then
the trajectory is contained in X and yt = f(x(t), y, γ) = f(x(t), y, γ). Since y ∈ U , we
see that the trajectory x(t, y, γ), t ∈ [0, t0) does not cross the border ∂f−1(U) for every
0 ≤ t0 ≤ 1 + δ, for some δ > 0. Consequently by Lemma 3.1 the trajectory x(t, y, γ)

is defined on the whole [0, 1] and is contained in X. Since f
(
x(t, y, γ)

)
= yt, the phase

flow x(t, y, γ), t ∈ [0, 1], transforms f−1(0) = Γ into f−1(y) (in fact, by the symmetry, it
transforms Γ onto f−1(y)). Let

Φ : Γ× U 3 (γ, y) 7→ x(1, y, γ) ∈ f−1(U).

It is easy to see that Φ is a diffeomorphism. Thus 0 6∈ B(f).
In the general case we can choose a locally finite cover {Ui} of kn such that in each Ui

the manifold X ∩ Xi is a complete intersection. Now we can construct vector fields Vi
on Ui (construction is as above) and then glue them to one field V by a partition of unity
subordinate to the cover {Ui}. The rest of the proof is the same as above.

At the end of this note we give two simple examples.

Example 3.1. Let us consider a Stein curve Γ = {(x, y) ∈ C2 : exp(xy) = 2}. Let us
consider the projection f : Γ 3 (x, y) 7→ y ∈ C. Using the generalized Gaffney function
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we see that

K0(f) = f
(
{(x, y) ∈ Γ : y exp(xy) = 0}

)
= ∅

and

K∞(f) =
{

lim f(xn, yn) = yn; where (|xn|+ |yn|)→∞ and |yn| → 0
}

= {0}.
Hence finally K(f) = {0} and indeed we can check directly that in this case B(f) =

K(f) = {0} (in fact f is a topological covering outside 0). Note that the mapping f has
no usual critical values.

Example 3.2. Let us consider a smooth mapping

f : C3 3 (x, y, z) 7→ (x exp(z), y exp(z)) ∈ C2.

Using the function g′ we can easily compute that K(f) = {0}. But the function f is a
global fibration of C3—in fact it gives a fibration

C2 × C 3 ((x, y), z) 7→
(
x exp(−z), y exp(−z), z

)
∈ C3.

Thus in general B(f) 6= K(f).
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