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1. Introduction. In a series of three recent papers [Ar1]–[Ar3], W. Arveson studied

tuples of commuting operators T = (T1, . . . , Td) satisfying I − T1T
∗
1 − · · · − TdT ∗d ≥ 0.

Among other things, he established a kind of dilation theorem for such tuples, and in-

troduced a certain so-called “curvature invariant”, as well as Euler characteristic, Dirac

operator, etc. In this talk, we will discuss possible extensions of his theory to the more

general case of commuting tuples satisfying p(T, T ∗) ≥ 0, where p(x, y) is a polynomial

such that 1/p is positive definite and p(T, T ∗) := p(LT , RT∗)I, where LT is the tuple

of the left multiplications by Tj , and similarly RT∗ are the right multiplications by T ∗j .

Basically, it turns out that everything works fine as long as p satisfies certain additional

assumptions, namely, that 1/p is a complete NP-kernel; while, on the other hand, with-

out this assumption it may happen that even the most basic ingredient of Arveson’s

theory, the curvature invariant, either does not exist or exists but is no longer an integer.

Thus Arveson’s theory is seen to be something which is peculiar only to the complete

Nevanlinna-Pick kernels.

2. Arveson’s theory for the ball. Let us briefly recall what Arveson’s theory is about.

Let T = (T1, . . . , Td) be a commuting d-tuple of operators on an arbitrary separable

Hilbert space H satisfying ∑

j

TjT
∗
j ≤ I.
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Such tuples are called row contractions (since the condition is equivalent to the row

operator [T1, . . . , Td] being a contraction); following [Ar1]–[Ar3], we will call such tuples

simply contractive. In terms of the operator transform

φ(X) := T1XT
∗
1 + · · ·+ TdXT

∗
d ,

this may be rephrased as I ≥ φ(I). Tuples T satisfying in addition

φm(I)→ 0 (SOT) as m→∞
are called pure. (For d = 1, the tuple T = (T1) consists just of a single operator, its con-

tractivity is equivalent to the ordinary contractivity ‖T1‖ ≤ 1 of T1, and T is pure iff

T ∗n1 → 0 strongly.) Denoting further

∆ := (I −∑j TjT
∗
j )1/2,

we will say that the tuple T is of finite rank if rank ∆ <∞.

Throughout the rest of this section, let us thus consider a commuting tuple T which

is contractive, pure, and of finite rank.

An elementary argument (Schwarz inequality) then shows that ‖∑j zjTj‖ < 1, for

any z ∈ Bd. Hence the operator

1− 〈T, z〉 := 1−
∑

j

zjTj

is invertible, and so is its adjoint 1− 〈z, T 〉. We now define, in turn,

F (z) := ∆(1− 〈z, T 〉)−1(1− 〈T, z〉)−1∆,

κ(z) := (1− |z|2) trF (z),

κ(ζ) := lim
z→ζ nontangentially

κ(z),

κ :=

∫

∂Bd
κ(ζ) dσ(ζ).

The last quantity κ is called the curvature invariant.

The two main results of [Ar2] are the following. First of all, κ(ζ) and κ are well

defined (i.e. the limits and the integral exist). Second, κ is in fact an integer between 0

and rank(∆) (this was verified in [Ar2] only under certain additional hypotheses).

The fact that κ is an integer is somewhat surprising, and raises the question whether

this does not have some deeper reason—for instance, whether κ cannot be interpreted

as an index of some operator, or the dimension of some space, or some similar quantity

which can only be an integer.

It was therefore conjectured in [Ar2], and proved again under some additional hy-

potheses, that κ coincides with the so-called Euler characteristic of T , defined as follows.

The space H can be viewed as a module over the ring of polynomials C[z1, . . . , zd] by

defining

zj · f := Tjf.

By a theorem of Hilbert, there exists a finite free resolution of H, i.e. an exact sequence

of C[z1, . . . , zd]-modules

0→Mm →Mm−1 → · · · →M2 →M1 → H → 0
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where each Mj = ⊕βjC[z1, . . . , zd]. The alternating sum

χ(T ) :=
∑

j

(−1)jβj

is independent of the resolution. This is the Euler characteristic. There is also an equiv-

alent definition: for large n, the dimension

δ(n) := dim{ψ · h : degψ ≤ n, h ∈ Ran ∆}
can be shown to be a polynomial in n, called the Hilbert polynomial. Its leading term is
χ(T )
d! nd.

The “additional hypothesis”, alluded to above twice, is that the tuple T be graded,

meaning that there exists a continuous representation ε 7→ Uε of the circle group T :=

{ε ∈ C : |ε| = 1} in the unitary operators on H such that

U∗ε TUε = εT ∀ε ∈ T.

Similarly, in his later paper [Ar3], Arveson proves that (again under some additional

hypothesis) κ can be interpreted as the index of a certain (Fredholm) operator. Namely,

he considers a certain Koszul complex (essentially the same one as in the definition of

the familiar Taylor spectrum) and defines a Dirac operator D+ acting on it. (The exact

definition of D+ involves Clifford numbers and other technicalities, and therefore will not

be discussed here.) He then proves that if T is graded, then the kernels of both D+ and

D∗+ are finite dimensional, and κ = (−1)d(dim kerD+ − dim kerD∗+). (So if D+ has also

closed range, then D+ is Fredholm and κ = (−1)d indD+.)

In summary, Arveson’s results thus are:

(A1) the boundary values κ(ζ) and their integral κ exist, and 0 ≤ κ ≤ rank ∆;

(A2) κ is always an integer (for T graded);

(A3) κ = χ (for T graded);

(A4) κ = (−1)d(dim kerD+ − dim kerD∗+) (for T graded).

Subsequently, there has been a lot of effort to prove the above results in full generality,

i.e. without the gradedness hypothesis in (A2)–(A4). For (A2), this was done by Greene,

Richter and Sundberg [GRS]. For (A3), it turned out that the general assertion was

false (the counterexample was in fact furnished by Arveson himself, see Proposition 7.4

in [Ar2]). The item (A4) was resolved completely for the simplest case of d = 1, i.e. when

the tuple T consists of a single operator which is contractive (‖T‖ ≤ 1), satisfies T ∗n → 0

(SOT) and is such that I − TT ∗ has finite rank. Then it was shown by S. Parrott [Pa],

with a later simplification by R.N. Levy [Le], that in this case the definition of κ can be

rephrased as

κ = lim
n→∞

tr(TnT ∗n − Tn+1T ∗n+1)

(the existence of the trace being a consequence of the hypotheses on T ), and Arveson’s

result for the Dirac operator from the last paragraph translates into

κ = dim Ran(I − TT ∗)− dim Ran(I − T ∗T ) = − indT,

without any gradedness/closed range hypothesis. (And, again, the fact that T is Fredholm

—so that indT is well defined—is part of the assertion.)
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In the general case (d > 1), the problem (A4) remains unsolved.

All the theory just described hinges on another result of Arveson, which appeared

in [Ar1], the first of the three papers mentioned above, and which actually describes a

model for a general contractive tuple:

Consider the space H1(Bd), the Hilbert space of holomorphic functions on the unit

ball Ω = Bd whose reproducing kernel is K(x, y) = 1/(1 − 〈x, y〉). That is, H1 consists

of all holomorphic functions f(z) =
∑
α multiindex fαz

α on Bd such that

‖f‖2 :=
∑

α

α!

|α|! |fα|
2 <∞,

equipped with the norm ‖f‖ and the corresponding scalar product. (For d = 1, this

reduces just to the familiar Hardy space H2, and 〈f, g〉 can be expressed as the integral

of the boundary values of fg over the unit circle; in higher dimensions, however, no such

integral representation is possible—the best one can do is to interpret H1 as a certain

Besov-type space.)

Further, denote by Z = (Z1, . . . , Zd), where

Zj : f(z) 7→ zjf(z),

the commuting tuple of multiplications by the coordinate functions z1, . . . , zd on H1.

Then the following is true:

Theorem ([Ar1]). For any pure contractive tuple T there exists an auxiliary separable

Hilbert space E and an isometry V : H → H⊗ E such that

V T ∗ = (Z∗ ⊗ I)V.

(That is, T ∗ is unitarily equivalent to the restriction of Z∗⊗ I to an invariant subspace.)

In fact, one can take E = Ran ∆ (so if T is of finite rank, E can be taken finite

dimensional.)

In this talk, we investigate the possibility of extending the first two of Arveson’s

results—i.e. on the existence and the integrality of κ — to operator tuples satisfying,

instead of the row contractivity

I − T1T
∗
1 − · · · − TdT ∗d ≥ 0

a condition of a more general type, namely

p(T, T ∗) ≥ 0,

where p(x, y) is a polynomial in x and y, and p(T, T ∗) is obtained by substituting TαT ∗β

for xαyβ . Our main result is that all works fine under a suitable additional hypothesis

on p (which, however, seems to be satisfied not too often), while, on the other hand, there

are some very natural choices of p for which even (A1) or (A2) fail to hold.

3. Operator models. We begin by recalling the general analogue, proved in [AEM],

of the above model theorem for contractive tuples. Recall that a function K(x, y) of two

variables x, y ∈ Ω, where Ω is a domain in Cd, is called positive definite if for any integer
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n ≥ 0 and any points x1, . . . , xn ∈ Ω and numbers c1, . . . , cn ∈ C,
n∑

i,j=1

K(xi, xj)cicj ≥ 0.

It is a theorem of Aronszajn [An] that for any positive definite function there exists a

unique (up to isomorphism) Hilbert space HK of functions on Ω which has K(x, y) for

its reproducing kernel, i.e. Kx := K( · , x) ∈ HK ∀x ∈ Ω and

f(x) = 〈f,Kx〉 ∀f ∈ HK .
From now on, we assume that p(x, y) is a polynomial such that

(a) K(x, y) :=
1

p(x, y)
is positive definite;

(b) the Hilbert space HK contains the polynomials, and they are dense in it;

(c) the operator tuple Z = (Z1, . . . , Zd) of multiplications by the coordinate functions

maps HK (boundedly) into itself.

Owing to (b), there exists an orthonormal basis {ψj}∞j=0 of HK consisting of polyno-

mials (to see this, start with the monomials and apply the usual Gram-Schmidt process).

Fix such a basis from now on, and let

fm(x, y) := 1−
m−1∑

j=0

ψj(x)p(x, y)ψj(y).

Since this is a polynomial, we can, for any commuting tuple T = (T1, . . . , Td) of operators

on another Hilbert space H, form fm(T, T ∗) in the same way as p(T, T ∗), i.e. by writing

all T ’s to the left of all T ∗’s; in other words,

fm(T, T ∗) := fm(LT , RT∗)I,

where LT , RT∗ is the commuting 2d-tuple of operators on B(H) given by LTj : X 7→
TjX and RT∗j : X 7→ XT ∗j , j = 1, . . . , d. Then we have the following “model theorem”

from [AEM].

Theorem ([AEM]). For any commuting tuple T = (T1, . . . , Td) on H satisfying

p(T, T ∗) ≥ 0,(1)

fm(T, T ∗)→ 0 (SOT),(2)

there exists an auxiliary Hilbert space E and an isometry V : H → H⊗ E such that

V T ∗ = (Z∗ ⊗ I)V.

In fact, one can take E = Ran ∆, where

∆ := p(T, T ∗)1/2.

By analogy with Arveson’s terminology, we will call the tuples T satisfying (1) p-

contractive, those satisfying (2) (p-)pure, and those for which rank ∆ < ∞ of (p-)finite

rank.

Arveson’s original space H1(Bd) and his row contractions are obtained upon choosing

p(x, y) = 1− 〈x, y〉.
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The operator V above is explicitly given by

(3) V h =
∞∑

j=0

ψj ⊗∆ψj(T )∗h, h ∈ H

(the convergence of the sum is a consequence of (2); see [AEM]). Note that if we interpret

(as we may) the elements of H⊗E as E-valued functions on Ω, then (3) becomes simply

V h(z) = ∆K(z, T )h ∈ E .
The adjoint of V satisfies

(4) V ∗(f ⊗ h) = f(T )∆h,

for any polynomial f ∈ H and h ∈ E .

4. Arveson’s theory for p-contractive tuples. Let us now try to follow step by

step the arguments of Arveson, and see what obstacles occur. Thus let p(x, y) be a

polynomial satisfying the assumptions (a)–(c) from Section 3, H = HK the corresponding

reproducing kernel Hilbert space (K = 1/p), and T = (T1, . . . , Td) a commuting d-tuple

of operators on a Hilbert space H which is p-contractive and p-pure (i.e. (1) and (2)

hold), and let us see what we can do.

The first obstacle is encountered right at the beginning, when defining the functions

F (z) = ∆(1− 〈z, T 〉)−1(1− 〈T, z〉)−1∆, κ(z) := (1− |z|2) trF (z).

Plainly, their counterparts in the general case should be

F (z) = ∆p(z, T )−1p(T, z)−1∆, κ(z) := p(z, z) trF (z).

However, in general there seems to be no reason at all why the inverse p(T, z)−1—

that is, K(T, z)—should exist. Fortunately, there is a simple solution to this, provided by

our operator model constructed in the previous section. Recall that it asserts that there

is an isometry V : H → H⊗ E such that

V T ∗ = (Z∗ ⊗ I)V.

Using this (cf. (4)), the function F (z) above is seen to satisfy

〈F (z)h, h〉 = ‖K(T, z)∆h‖2 = ‖V ∗(Kz ⊗ h)‖2.
Thus

(5) κ(z) = p(z, z) trF (z) =
tr〈V V ∗(Kz ⊗ · ), (Kz ⊗ · )〉

K(z, z)
.

Remark. Observe that κ(z) is a kind of Berezin transform: indeed, omitting the tensor

products, we get
〈V V ∗Kz ,Kz〉
〈Kz,Kz〉

,

which is the usual definition of the Berezin transform of the operator V V ∗.

We can thus skip the definitions of K(T, z) and F (z) = ∆K(z, T ∗)K(T, z)∆ and

instead define κ(z) directly by the formula (5). Though this formula involves the isometry

V from the model theorem, it can be shown to be independent of the possible freedom in
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the choice of such V , and the function κ(z) is thus defined unambiguously and depends

only on T .

The second, and much more serious, obstacle is the existence of the boundary values

of κ(z). Let us recall how Arveson’s proof of this proceeds (in the language of the present

paper). Since V is an isometry, V V ∗ is the orthogonal projection onto its range RanV

in H ⊗ E . Hence P = I − V V ∗ is the projection onto the (Z ⊗ I)-invariant subspace

M := (RanV )⊥.

At this moment, Arveson proceeds by using the following remarkable fact: any such

P can be factored as P = ΦΦ∗, where Φ is a mapping from H⊗ E into H⊗ E , for some

auxiliary space E, satisfying

(6) Φ(Z ⊗ I) = (Z ⊗ I)Φ.

Alternatively, any such Φ may be viewed as a holomorphic operator-valued function

Φ : Ω→ B(E, E) satisfying

‖Φ(x)‖ ≤ 1 ∀x ∈ Ω.

Feeding this information back into the formula for κ(z), we obtain

κ(z) = tr[I − Φ(z)Φ(z)∗]

and the existence of boundary values follows in view of the boundedness of Φ and Fatou’s

theorem. Integrating, we also see that κ (exists and) is nonnegative and not greater

than rank(∆).

Returning to the general case of p-contractive tuples, we are thus lead to the question

whether, for any Hilbert space E and any (Z ⊗ I)-invariant subspace M of H ⊗ E , the

projection onto M can always be factored as

PM = ΦΦ∗

with some Φ : H⊗ E → H⊗ E satisfying (6).

There is a simple necessary condition for the existence of such factorization. Assume,

for simplicity, that K( · , 0) = 1 (this is the case in most cases of interest anyway), and

take E = C and M = {f : f(0) = 0} ⊂ H ' H⊗C. Then I − PM = 〈 · ,1〉1, so that

〈PMKy,Kx〉 = 〈(I − 〈 · ,1〉1)Ky,Kx〉 = K(x, y)− 1.

Hence PM = ΦΦ∗ implies

K(x, y)− 1 = 〈Φ∗Ky,Φ
∗Kx〉 = Φ(x)Φ(y)∗K(x, y),

or 1− 1/K(x, y) = Φ(x)Φ(y)∗. Consequently,

1− 1

K(x, y)
is a positive definite function.

Kernels K(x, y) with this property are called complete NP-kernels.

Surprisingly, this condition turns out to be sufficient as well:

Theorem (McCullough and Trent [MT]). If H has complete NP-kernel and M⊂ H⊗E
is a subspace invariant under (Z⊗ I), then the projection P onto M factors as P = ΦΦ∗

with Φ as in (6).

Consequently, Arveson’s curvature invariant κ exists in this case.
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We indicate the proof for the case E = C (soM⊂ H). From the condition that K be

a complete NP-kernel it follows that there exist holomorphic functions φj (j = 1, 2, . . . )

on Ω such that

1− 1/K(x, y) =
∑

j

φj(x)φj(y).

SinceM is Z-invariant, ZP = PZP and PZ∗ = PZ∗P ; hence also Pφ(Z)∗ = Pφ(Z)∗P .

(See e.g. Lemma 4.1 in [GRS].) Thus
〈(
P −

∑

j

φj(Z)Pφj(Z)∗
)
f, f

〉
= ‖Pf‖2 −

∑

j

‖Pφj(Z)∗f‖2

= ‖Pf‖2 −
∑

j

‖Pφj(Z)∗Pf‖2

≥ ‖Pf‖2 −
∑

j

‖φj(Z)∗Pf‖2

=
〈(
I −

∑

j

φj(Z)φj(Z)∗
)
Pf, Pf

〉

=

〈
1

K
(Z,Z∗)Pf, Pf

〉
= |〈Pf,1〉|2 ≥ 0,

since 1
K (Z,Z∗) = 〈·,1〉1. Thus X := P −∑j φj(Z)Pφj(Z)∗ is a nonnegative operator.

Set E := RanX1/2 and define Φ : H⊗ E → H by

Φ∗Kx := Kx ⊗X1/2Kx on span {Kx;x ∈ Ω}.

Then Φ∗ intertwines Z∗ and Z∗ ⊗ I (since it preserves their eigenvectors) and

〈Φ∗Ky,Φ
∗Kx〉 = K(x, y)〈XKy,Kx〉

= K(x, y)
(
〈PKy,Kx〉 −

∑

j

〈Pφj(Z)∗Ky, φj(Z)∗Kx〉
)

= K(x, y)〈PKy,Kx〉
(

1−
∑

j

φj(x)φj(y)
)

= K(x, y)〈PKy,Kx〉 · 1/K(x, y) = 〈PKy,Kx〉,

showing that ΦΦ∗ extends to a bounded operator equal to P .

Using the methods of [GRS], one can also prove under mild additional assumptions

that κ is an integer.

Thus, for complete NP-kernels, all goes well with Arveson’s theory. Unfortunately,

it turns out that not too many interesting spaces have complete NP-kernels. For instance,

for the weighted Bergman spaces Hν(Ω) on bounded symmetric domains, this happens

only if Ω = Bd and 0 < ν ≤ 1. Similarly, for the (unweighted) Bergman space on a

domain in C, 1 − 1
K fails to be positive definite unless the domain is simply connected,

because on multiply connected domains K is known to always have a zero!

So, what can be done for non-NP kernels?
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Unfortunately, results are lacking. In [En], it was shown that for kernels K(x, y) having

the form

(7)
1

K(x, y)
=
(
b−

∑

j

bj(x)bj(y)
)
−
(
c−

∑

j

cj(x)cj(y)
)
,

for suitable real constants b, c and holomorphic polynomials bj , cj (j = 1, 2, . . . ) such that

both K · (b −∑j bj(x)bj(y)) and K · (c −∑j cj(x)cj(y)) are positive definite, one can

at least show that any projection P onto a (Z ⊗ I)-invariant subspace in H ⊗ E can be

expressed as

P = Φ[I − ΓΓ∗]Φ∗,

where Γ,Φ are operator-valued holomorphic functions satisfying (6), and ‖Γ(x)‖ ≤ 1

and ‖Φ(x)‖ ≤ CK(x, x)1/2. (Note that complete NP-kernels are a special case of (7)

corresponding to cj = 0 for all j, c = 0 and b = 1. It was shown in [En] that both

the Szegö kernel and the standard weighted Bergman kernels on Bd, and even on any

bounded symmetric domain, have the form (7).) Unfortunately, as Φ is unbounded, hence

need not have boundary values, this is insufficient to deduce the existence of the boundary

values of κ(x).

We now show that this insufficiency is not a defect of the method, but lies at the

heart of the matter: namely, we exhibit a situation in which κ(z) either fails to have the

boundary values, or does have them but then κ is not an integer. In other words, either

(A1) or (A2) from Arveson’s results fail. Consequently, no general analogue of Arveson’s

theory has a chance to exist. Surprisingly, this is the case even for the very simple example

of the ordinary Bergman space on the unit disc.

Finally, we remark that one more way to possibly circumvent the existence of the

boundary values of κ would be to look directly at the limit

(8) κ∗ := lim
r↗1

∫

∂Bd
κ(rζ) dσ(ζ).

(This is for the case of the unit ball Ω = Bd; for general domains, one might con-

sider integrals over an appropriate family of surfaces tending to ∂Ω.) Indeed, as κ is

always bounded on Ω (by rank(∆)—this follows easily from (5)), it is immediate from

the Lebesgue Bounded Convergence Theorem that if (A1) holds, then κ∗ exists and

equals κ. Clearly, it could happen that κ∗ exists even if κ fails to have boundary values

on some piece of the boundary of positive measure.

Unfortunately, we will show that even this approach suffers from the same deficiency

as above: namely, it may again happen that κ∗ either fails to exist, or exists but is not

an integer. Let us now proceed to the details.

5. A counterexample. Let D be the unit disc in C and p(x, y) = (1 − xy)2. Then

K = 1/p is a positive definite function and the corresponding Hilbert space HK is just the

standard Bergman space L2
a(D) of square-integrable holomorphic functions on D. Let Z

be the operator of multiplication by z on L2
a(D), and let M be a Z-invariant subspace

of L2
a(D) and PM the projection onto M. By our model theorem from Section 3, Z∗ is
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a model for operators T ∗ satisfying

I − 2TT ∗ + T 2T ∗2 ≥ 0.

(This resembles the 2-contractivity condition of Agler [Ag].)

Let us compute the function κ(z) for the operator 1-tuple T on H, where H =M⊥
and T ∗ is the restriction of Z∗ to H. One checks easily that T is p-contractive, pure, and

has rank 1. Clearly, we can take for the isometry V the inclusion operator H ↪→ L2
a(D).

Thus V V ∗ = I − PM, and by (5), κ(z) is simply the Berezin transform of I − PM:

κ(z) =
〈V V ∗Kz,Kz〉

K(z, z)
= 1− 〈PMKz,Kz〉

K(z, z)
= 1− 〈PMkz , kz〉,

where kz := Kz/‖Kz‖ is the unit vector in the direction of Kz. Consequently, κ(z) has

(nontangential) boundary values if and only if the function

kM(z) := 〈PMkz , kz〉
has them; and, further (since always 0 ≤ kM(z) ≤ 1), if these boundary values kM(ζ)

exist then

κ = 1−
∫

T

kM(ζ) dσ(ζ)

is an integer if and only if these boundary values are either 1 a.e. or 0 a.e.

The function kM(z) was studied in detail by Aleman, Richter and Sundberg under

the name of majorization function in [ARS]. Recall that the extremal function of M is

the (unique) solution to the extremal problem

max{ReG(k)(0); G ∈M, ‖G‖ ≤ 1}
where k ≥ 0 be the smallest integer for which there exists f ∈ M with f (k)(0) 6=
0. An extremal function is inner (i.e. satisfies G⊥ZkG ∀k > 1); conversely, any inner

function G is the extremal function for the Z-invariant subspace [G] generated by it

(i.e. the closed linear span of ZkG, k = 0, 1, 2, . . . ). Also, a Z-invariant subspace M is

said to be of index one if dim(M	 ZM) = 1. It is known that ifM is of index one and

G is its extremal function, then M = [G].

The following remarkable result appears as Corollary 5.9 in [ARS].

Theorem. Let M = [G] be an index-one Z-invariant subspace of L2
a(D) with extremal

function G. Then there exist two measurable subsets N and P of T such that N ∩ P has

measure zero, N ∪ P has full measure in T, and

• on N , the nontangential limits of G exist, and the nontangential limits of kM exist

and are equal to 1;

• at any ζ ∈ P , the cluster set of G at ζ is the entire C, and the nontangential lim-inf

of kM at ζ is 0.

It is a conjecture that the second part can be completed by “. . . and the nontangential

lim-sup is 1”, i.e. that the nontangential limits of kM do not exist at any point of P .

If this is true, then it follows that (for index-one subspaces) the boundary values of kM(z)

exist a.e. on T if and only if the set P is empty, i.e. if and only if the extremal function

G has boundary values a.e. on T (and in that case, kM(ζ) = 1 a.e. on T, so that κ = 0).

However, it is known that there exist inner functions G which fail to have boundary values
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on a set of positive measure: it may even happen that G has nontangential boundary

values almost nowhere on T! Consequently, it would follow that there exist Z-invariant

subspacesM for which kM(z) fails to have boundary values at a.a. points of T, implying

that Arveson’s (A1) fails drastically.

Unfortunately, the above conjecture remains still only a conjecture as of this writing.

We therefore exhibit, at least, an example in which the nontangential boundary values

either do not exist, or if they do, then the curvature κ turns out to be a noninteger

(and, in fact, can assume any value between 0 and 1).

For a function f ∈ L2
a(D), its “zero-set” is defined to be the sequence of all the

zeroes of f in D, each zero being repeated according to its multiplicity. (So the zero-set

is not really a set, but rather a sequence; however, the terminology has already become

universally accepted.) Conversely, for any sequence Λ of points of D we denote by I(Λ)

the subspace of all functions in L2
a(D) that vanish at each λ ∈ Λ, counting multiplicities.

Then the space I(Λ) either reduces to the constant zero, or is an index-one Z-invariant

subspace of L2
a(D).

We now modify a construction from [ARS] in order to exhibit the promised counterex-

ample. For typographical reasons, let us write k[f ] instead of k[f ] for the majorization

function of the Z-invariant subspace generated by a function f ∈ L2
a(D).

For α ∈ D, let Bα be the Blaschke factor with simple zero at α. It is known that

(cf. Lemma 6.5 in [ARS])

k[Bmα ](z) =

∣∣∣∣
z − α
1− αz

∣∣∣∣
m(

1 +m
(1− |z|2)(1− |α|2)

|1− αz|2
)1/2

.

Applying this to α = (1− a
m )1/n, where a is a fixed positive number and n a fixed positive

integer, it follows that

lim
m→∞

k[Bmn√1−a/m](z) =

(
1 + 2

a

n

1− |z|2
|1− z|2

)1/2

e
− an

1−|z|2
|1−z|2 ,

uniformly on compact subsets of D \ {1}. Further, it was shown in the proof of Lemma

6.2(b) in [ARS] that the expression on the right-hand side is not greater than√
(1 + a/6)e−a/6 if z = (1 − 1/n)eiθ with |θ| ≤ π/n. Combining this together, and

using also rotation invariance, we see that to the given fixed a, n we can always find an

integer Ma,n such that ∀m ≥Ma,n,

(9) k[Bmn√1−a/meiθ0 ]

((
1− 1

n

)
ei(θ+θ0)

)
≤
√

1 + a/6

ea/6
∀|θ| ≤ π

n
, ∀θ0 ∈ R.

Choose now an arbitrary sequence ak of positive numbers tending to infinity (e.g. ak = k),

and denote

φδ(z) := exp

(
1

2δ

∫ δ

−δ

eit + z

eit − z dt
)
.

Then it was shown in [ARS], proof of Theorem 6.6, that there exist δk > 0, nk ∈ N,

and mk > Mak,nk such that the infinite product g(z) :=
∏∞
k=1 φ

ak
δk

(znk)Bmk1−ak/mk(znk)

converges and defines a (nonzero) function in L2
a(D). Let Λ be the zero-set of g,

Λ+ := Λ ∩ {z : Im z ≥ 0}



182 M. ENGLIŠ

the portion of Λ lying in the closed upper half-plane, and setM = I(Λ+). Since a subset

of an L2
a(D)-zero set is again an L2

a(D)-zero set,M is a nontrivial index-one Z-invariant

subspace of L2
a(D). By construction, Λ+ contains all the zeroes of Bmk1−ak/mk(znk) lying

in the upper halfplane (counting multiplicities), for each k; thus

M⊂ [Bmk
(1−ak/mk)1/nk exp(2πij/nk)

], ∀j = 0, 1, . . . ,

[
nk
2

]
.

Since M⊂ N clearly implies kM ≤ kN , we thus get from (9)

kM

((
1− 1

nk

)
ei(θ+2π/nk j)

)
≤
√

1 + ak/6

eak/6
, ∀|θ| ≤ π

nk
, ∀j = 0, . . . ,

[
nk
2

]
, ∀k.

In other words,

(10) kM

((
1− 1

nk

)
ζ

)
≤
√

1 + ak/6

eak/6
∀ζ ∈ T+, ∀k,

where we have denoted T+ := T ∩ {z : Im z ≥ 0}. As ak tend to infinity by choice,

it follows that the nontangential lim-inf of kM(z) is zero as each point of T+. (In fact,

we even have lim infr↗1 kM(rζ) = 0 uniformly on T+.)

On the other hand, if G is the extremal function for M, then by results of Carleson

and Akutowicz (see e.g. the beginning of Section 7 in [ARS]), G extends holomorphically

across T \Λ+, i.e. across T− := T \T+. By Proposition 5.1 in [ARS], it therefore follows

that the nontangential (even unrestricted) limit of kM(z) equals 1 at each point of T−.

Consequently, one of the following two possibilities must now take place.

(A) There exists a set E ⊂ T+ of positive measure on which the nontangential limits of

kM fail to exist.

Then, since κ = 1 − kM, the nontangential limits of κ do not exist on E, so Arveson’s

assertion (A1) fails.

(B) The nontangential boundary values of kM exist a.e. on T+.

But then, by (10), they must be equal to zero there. Hence kM|T = χT− , the characteristic

function of T−. It follows that

κ = 1− 1

2π

∫ 2π

0

χT−(eit) dt =
1

2
,

i.e. κ exists but is not an integer. Thus Arveson’s assertion (A2) fails.

Further, even the modified definition (8) of κ∗ suffers from the same problem: namely,

κ∗ = 1− lim
r↗1

∫

T

kM(rζ) dσ(ζ),

and from the existence of the boundary values, equal to 1, of kM on T− and the Bounded

Convergence Theorem it follows that

lim
r↗1

∫

T−

kM(rζ) dσ(ζ) =
1

2
,
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while from (10) we have

lim inf
r↗1

∫

T+

kM(rζ) dσ(ζ) = 0.

Thus κ∗ either does not exist, or exists but then must be equal to 1
2 .

Finally, we remark that if we instead of Λ+ consider the portion Λα of Λ lying in the

sector

Cα := {reiθ ∈ C : r ≥ 0, 0 ≤ θ ≤ α},
then we arrive at a Z-invariant subspace M for which kM has again the properties as

above, but with the half-circles T+ and T− replaced by the arcs Tα := T ∩ Cα and

T\Tα, respectively. Consequently, we obtain an example of a pure, p-contractive 1-tuple

of rank 1 for which κ (and κ∗) either do not exist, or exist but then are equal to α/2π,

i.e. to any given number between 0 and 1.
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