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Departamento de Matemáticas, Universidad de Zaragoza

50009 Zaragoza, Spain

E-mail: gale@unizar.es

Dedicated to Professor W. Żelazko
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Abstract. We introduce a notion of analytic generator for groups of unbounded operators,

on Banach modules, arising from Esterle’s quasimultiplier theory. Characterizations of analytic

generators are given in terms of the existence of certain functional calculi. This extends recent

results about C0 groups of bounded operators. The theory is applicable to sectorial operators,

representations of H∞, and integrated groups.

1. Introduction. Groups of unbounded operators (on Banach spaces) are important

objects of research which require careful definition or treatment. They have been ap-

proached directly, see [Hu] for instance, or indirectly, in connection with well-behaved

families of bounded operators such as C-regularized groups, integrated groups, or distri-

bution groups [dL]. On the other hand, it is a usual method to associate a single object

or operator to families of (bounded or not) operators, in order to facilitate the study

of such families. This is the case for C0 groups of bounded operators, when one consid-

ers their infinitesimal generators, or alternatively their analytic generators [CZ]. Notions

of infinitesimal generators have been given, and studied in some extent, for groups of

unbounded operators (or for the aforementioned associated families) as well. Here, we

are interested in analytic generators, and deal with groups of regular quasimultipliers of

Banach algebras and Banach modules (see definitions below).

The theory of the analytic generator, say U , of a group of bounded operators on a
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Banach space X is well established, see [CZ], [M], [CK], [Mo] and references therein.

Recently, it has been observed that there always exists a functional calculus ΨU for such

an operator U which is unique, subject to certain assumptions. The operating functions

are analytic on sectors which are centered at the origin and contain the spectrum of

U . Moreover, these functions f(λ) are allowed to grow polynomially in λ as λ → ∞,

and polynomially in λ−1 as λ → 0, through the sectors, and therefore they include in

particular all H∞ functions. This functional calculus produces closed operators ΨU (f)

on X which are generally unbounded even if f is an H∞ function [U].

Groups of regular quasimultipliers, which we denote generically by (Tt)t∈R, have been

introduced in [GM]. Such a class of groups (of closed, unbounded operators) is quite

general. It includes C-regularized groups, integrated groups, distribution groups, and, in

particular, (formal) groups of the form (e−itL)t∈R arising from boundary values of holo-

morphic semigroups, or from solutions of ill-posed Cauchy problems [dL], [GM] (here, L
denotes a sub-Laplacian operator on a Lie group, for example). Some applications to the

above families are given in [GM], where the theory is presented in terms of certain canon-

ical morphisms called Weyl homomorphisms (see definition below). In the present paper,

it is shown that the usage of Weyl homomorphisms also enables us to define an explicit

notion of analytic generator, say H, for a group (Tt)t∈R, which neatly extends the original

concept for C0 groups of bounded operators. We focus on possible relationships between

analytic generators and functional calculi. In Theorem 2 below, a characterization of the

analytic generator H is given via the existence of a canonical functional calculus Ψ for

H, which is expressed as a certain representation between algebras of quasimultipliers.

The work done in [U] was motivated by the theory of sectorial operators and those

of them having bounded imaginary powers (BIP operators, for short). More precisely,

the calculus ΨU of [U] generalizes the functional calculus associated with BIP operators.

There has been recent interest in analyzing sectorial and/or BIP operators in connection

with H∞ calculus, and analytic generators [BC], [CDMY], [Mo], [U]. In Theorem 4 we

prove that all these concepts are essentially equivalent when they are placed in the wider

setting of the quasimultiplier theory.

Theorem 2 and Theorem 4 extend results of [U] and [CDMY]. In particular, ΨU can

be regarded as a particular case of representation in the well structured framework of

Esterle’s quasimultiplier theory. This view may be helpful to shed some light about the

character of the resulting operators, as well as to shed some light on the fact that H∞

functions yield operators which are unbounded in general.

The paper is divided into three sections besides this introduction. In Section 1, we

summarize basic features about the quasimultiplier theory, and about functional calculi

for sectorial operators and C0 groups of bounded operators. Section 3 contains Theo-

rem 2 and Theorem 4. In the final section we illustrate our theorems with some examples

including sectorial operators and integrated groups.

Some of the material in this paper is contained (although without much detail) in

[GM]. To be more precise, the study of groups of regular quasimultipliers carried out

in [GM] emphasizes aspects of their theory which mainly concern what we may call the

“infinitesimal generator” of the group. The spirit of the present paper concerns the notion

of analytic generator, whose definition as a quasimultiplier is given explicitly here.
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2. Preliminaries. 1) Quasimultipliers. Let A be a complex commutative Banach alge-

bra. A bounded linear operator T : A→ A is said to be a multiplier of A if T (ab) = aT (b)

for every a, b ∈ A. The set Mul(A) of all multipliers of A is a unital and commutative

Banach algebra with respect to the operator composition and norm, and it is usually

called the multiplier algebra of A. If La(x) := ax, for x, a ∈ A, the canonical inclu-

sion a 7→ La, A ⊂ Mul(A) is always continuous. Now assume that the above algebra

A is such that A⊥ = (0) and that ∆(A) 6= ∅, where A⊥ := {a ∈ A : aA = (0)} and

∆(A) := {a ∈ A : aA = A}. Given a ∈ A and b ∈ ∆(A), let Da,b = {x ∈ A : ax ∈ bA}.
Define the linear map Ta/b : Da,b → A by setting Ta/b(x) to be the unique element of

A such that ax = bTa/b(x). A mapping Ta/b of this form is called a quasimultiplier on

A. Clearly different choices of a and b can give rise to the same quasimultiplier. Every

quasimultiplier is densely defined and closed on A, but quasimultipliers are not neces-

sarily bounded. Let QM(A) denote the set of quasimultipliers on A. If A is unital then

QM(A) is isomorphic to A. In general QM(A) is isomorphic to the algebra of fractions

A/∆(A) and, in fact, it becomes a commutative convex bornological algebra with re-

spect to a natural family of bounded subsets of A, which are called pseudobounded sets.

A subset U of QM(A) is pseudobounded if there exists u ∈ (∩T∈UD(T )) ∩ ∆(A) for

which supT∈U ‖Tu‖ < ∞ (here D(T ) is Da,b if T = Ta/b, with a ∈ A, b ∈ ∆(A)). Then

T ∈ QM(A) is said to be a regular quasimultiplier provided that there exists λ > 0 such

that the subset {λnTn : n = 1, 2, . . .} is pseudobounded. The subalgebra of QM(A) of

all regular quasimultipliers on A will be denoted by QMr(A). It contains the multiplier

algebra Mul(A) in such a way that bounded subsets of Mul(A) are pseudobounded in

QMr(A).

The algebra QMr(A) admits a representation as an inductive limit of multiplier al-

gebras, which relies upon the concept of similarity. Two Banach algebras A and B are

called similar if there is another Banach algebra I with ∆(I) 6= ∅, which is continuously

included (via injective homomorphisms) as dense ideals in A and B. Similarity is an

equivalence relation in the class of commutative Banach algebras with dense principal

ideals, and two such Banach algebras A, B satisfying A⊥ = (0), B⊥ = (0) are similar

if and only if QM(A) and QM(B), and then QMr(A) and QMr(B), are bornologically

isomorphic (that is, there is an algebraic bijection between QM(A) and QM(B) which is

also a bijection between the collection of pseudobounded subsets of QM(A) and those of

QM(B)). Let S(A) denote the set of all algebras in QMr(A) which are similar to A. For

B1, B2 ∈ S(A) write B1 ≤ B2 if B1 ⊂ B2 and Mul(B1) ⊂Mul(B2) (with the respective

inclusion maps being norm-decreasing). The system {Mul(B)}B∈S(A) is inductive, and

we get that QMr(A) is isomorphic to lim indB∈S(A)Mul(B). This identification provides

a correspondence between pseudobounded subsets of QMr(A) and bounded subsets of

Mul(B), for B running over S(A). Namely, suppose that U is a pseudobounded subset

of QMr(A) stable under products. Then IU := {u ∈ ∩T∈UD(T ) : supT∈U ‖Tu‖ < ∞} is

a dense ideal in A which becomes a Banach algebra in its own right, when endowed with

the norm p(u) := max(supT∈U ‖Tu‖, ‖u‖), (u ∈ IU ). The norm p satisfies ‖u‖ ≤ p(u),
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p(au) ≤ ‖a‖p(u), p(Tu) ≤ p(u) for every u ∈ IU , a ∈ A, T ∈ U . We take BU as the

completion of A in the multiplier algebra Mul(IU ). Then U is contained in the closed

unit ball of Mul(BU ) and Mul(A) ↪→Mul(BU ).

An important tool in the treatment of quasimultipliers is given by the following fact.

Let A and B be two Banach algebras such that A⊥ = B⊥ = (0) and ∆(A),∆(B) 6= ∅,
and let ϕ : A → B a bounded algebra homomorphism such that either ϕ(A)B or ϕ(A)

is dense in B. Then the correspondence a′/a 7→ ϕ(a′)/ϕ(a), where a′ ∈ A, a ∈ ∆(A),

defines a pseudobounded (extension of ϕ) morphism from QM(A) into QM(B), and from

QMr(A) into QMr(B).

For the above, and other facts concerning the quasimultiplier theory, we refer the

reader to [E].

2) Groups of quasimultipliers. Let ω be a continuous weight on R and let L1(ω) be the

Beurling algebra corresponding to ω. We have that L1(ω)⊥ = (0) and ∆(L1(ω)) 6= ∅ and

so the algebras QMr(L
1(ω)) and QM(L1(ω)) exist. To see that ∆(L1(ω)) 6= ∅ note that

the set of functions gλ,z(r) := 1√
4πλ

exp[−(r+ iz)2/(4λ)] (r ∈ R, λ ∈ C+, z ∈ C), defines

a holomorphic biparameter semigroup gλ,z in L1(ω) such that gλ,z ∈ ∆(L1(ω)) for every

λ ∈ C+ and z ∈ C (C+ denotes here the right hand half-plane of complex numbers).

Note that gλ := gλ,0 is the Gaussian semigroup on R and that (gλ)0<λ<1 is a bounded

approximate identity for L1(ω).

In [GM], an ω-group in QMr(A) is defined as a family (Tt)t∈R of regular quasimulti-

pliers of A such that T0 is the identity operator Id and

(i) there exists u ∈ ⋂s,t∈RD(TsTt) ∩∆(A) such that

(a) the map t 7→ Ttu is continuous, and

(b) for all s, t ∈ R, Ts(Ttu) = Ts+t(u),

(ii) (ω(t)−1Tt)t∈R is pseudobounded in QMr(A).

Let U := {λTt ∈ QMr(A) : t ∈ R, λ ∈ C, |λ| ≤ ω(t)−1}. Then U is pseudobounded and

stable under products. The ideal I := IU defined by U as indicated above will be called

the ω-ideal of A associated to Tt. As shown before, there exists a Banach algebra B := BU
similar to A such that (Tt)t∈R is contained in the unit ball of Mul(B). In fact, (Tt)t∈R be-

comes a strongly continuous C0 group of multipliers of B satisfying ‖Tt‖Mul(B) = O(ω(t)),

as |t| → ∞. The algebra B is called the ω-algebra of A. The mapping Θ : L1(ω)→Mul(B)

defined by Θ(f)ξ =
∫∞
−∞ f(t)Ttξ dt (ξ ∈ B, f ∈ L1(ω)), is a bounded algebra homomor-

phism which extends to a pseudobounded homomorphism between the respective alge-

bras of quasimultipliers QM(L1(ω))
Θ−→ QM(A), QMr(L

1(ω))
Θ−→ QMr(A), given by

Θ(f/g) := Θ(f)u2/Θ(g)u2 where u ∈ I ∩∆(A) and f/g ∈ QM(L1(ω)). The mapping Θ

is called the Weyl homomorphism of (Tt)t∈R.

Under suitable conditions, the scope of the above constructions can be widened to

operators on Banach spaces. Let X be a Banach space and let A be a Banach algebra,

with ∆(A) 6= ∅, for which X is a left Banach A-module such that AX = X and X⊥A = (0),

where X⊥A := {a ∈ A : ax = 0 for all x ∈ X}. Note that AX = X and X⊥A = (0) imply

that A⊥ = (0). To transfer quasimultipliers of A into (unbounded) operators on X, put

D(TX) = {x ∈ X : (Ta)x ∈ aX} and define TX : D(TX) → X by TX(x) = y, if
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x ∈ D(TX), where y is the only element in X such that (Ta)x = ay (the uniqueness of y

follows from the fact that A⊥X = (0)). It is readily seen that D(T )X ⊂ D(TX), D(TX) is

dense in X, and TX is closed on X. Then we define QM(X;A) := {TX : T ∈ QM(A)}
and QMr(X;A) := {TX : T ∈ QMr(A)}.

For w-groups and the above observations we refer the reader to [GM].

3) Functional calculi. Let τ be such that 0 < τ < π and put Sτ = {λ ∈ C \ {0} :

| arg(λ)| < τ}, where arg(λ) is the principal branch of the argument taking values in

[−π, π). Let H∞(Sτ ) be the usual Banach algebra of bounded analytic functions on

Sτ . By Ab(Sτ ) we denote the Banach subalgebra of H∞(Sτ ) containing all functions in

H∞(Sτ ) which admit bounded, continuous extensions to Sτ \{0}. Set ψ(λ) := λ(1+λ)−2,

if λ ∈ Sτ . For δ ≥ 0, we define Aδ0(Sτ ) as the subalgebra of all functions f of Ab(Sτ )

for which f(λ)ψ−δ(λ) → 0 as |λ| → ∞ or |λ| → 0. Put DR(Sτ ) :=
⋃
δ>0Aδ0(Sτ ) and

F(Sτ ) :=
⋃
δ>0 ψ

−δH∞(Sτ ) ≡ ⋃δ>0 ψ
−δAb(Sτ ). Clearly, DR(Sτ ) ⊂ H∞(Sτ ) ⊂ F(Sτ ).

A closed operator H on a Banach space X is said to be sectorial if it is one-to-one,

with dense domain and range in X, with spectrum σ(H) contained in Sρ (for some ρ ≥ 0),

and such that, for every τ > ρ, ‖(z −H)−1‖ ≤ Cτ |z|−1 whenever z ∈ C \ Sτ . Take the

(positively oriented) path γ(t) := |t|e−sign(t).τ (t ∈ R). Then the Dunford-Riesz integral
1

2πi

∫
γ
(z − H)−1h(z)dz is well defined for every h ∈ DR(Sτ ), it does not depend on

τ > ρ and yields an algebra homomorphism Υ : DR(Sτ ) → B(X), where B(X) denotes

the usual Banach algebra of bounded operators on X. Moreover, if f ∈ F(Sτ ) then

fψk ∈ DR(Sτ ) for some integer k ≥ 0. So the operator Υ(f) := Υ(ψk)−1Υ(ψkf), which

does not depend on k, is a closed operator on X (note that Υ(ψk) is injective). The

mapping f 7→ Υ(f) defines a functional calculus for H whose properties are explained

in [CDMY]. For a sectorial operator H, the imaginary powers H is, s ∈ R, always exist

as closed operators on X. When H is is bounded, for every s ∈ R, H is said to be a BIP

operator [CDMY].

Suppose that (Ts)s∈R is a C0 group in B(X) with analytic generator U [CZ], [Mo].

Let M denote the Mellin transform defined by M(h)(s) = 1
2π

∫∞
0
h(λ)λis−1dλ, s ∈ R,

for every h ∈ DR(Sτ ). Using the residue theorem we get |M(h)(s)| ≤ Cδ,τ e−τ |s| (s ∈ R).

Hence, M(h) belongs to L1(ωρ), where σ < ρ < τ and ωρ(s) := exp(ρ|s|) (s ∈ R).

Put M̃(h)(s) := M(h)(−s), s ∈ R, h ∈ DR(Sτ ). Let Θ be the Weyl homomorphism

corresponding to (Ts)s∈R in this case, i. e., f 7→
∫∞
−∞ f(s)Tsds, L

1(ωρ) → B(X). Then

ΨU := Θ◦M̃ is a functional calculus on DR(Sτ ) which can be extended by approximation

to F(Sτ ). This extended calculus gives rise to closed, not necessarily bounded, operators

on X. The properties of ΨU have been studied in [U]. In the particular case where

Ts = His, s ∈ R, for a BIP operator H, we have that ΨU = Υ [U]. Thus the calculus ΨU

generalizes the calculus for sectorial operators.

3. Analytic generators of ω-groups and functional calculus. In all of this section,

X is assumed to be a Banach space and a Banach left module on a Banach algebra A as

at the end of Section 2. Let ω be a continuous weight on R and let (Tt)t∈R be an ω-group

of regular quasimultipliers of A with Weyl homomorphism Θ. Let I denote the ω-ideal

of A associated to Tt. If u is in ∆(A)∩ I then Θ(g1)u2 generates a dense ideal of A. For
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every z ∈ C, the quasimultiplier of A defined as
Θ(g1,z)u2

Θ(g1)u2
does not depend on u. We

will denote it by
Θ(g1,z)

Θ(g1)
.

Definition 1. Put Hz := Θ(g1,z)
Θ(g1) , z ∈ C. The family (Hz)z∈C of quasimultipliers of A is

called the complex quasimultiplier extension of (Tt)t∈R. We define the analytic generator

of (Tt)t∈R to be the quasimultiplier H1.

As in Section 2, we may extend these definitions to the case where (Tt)t∈R is an

ω-group of regular quasimultipliers on an A-module X.

Remark 1. The above definition is consistent with the classical one of the analytic

generator of a group of bounded operators. To see this, suppose for a moment that the

group (Tt)t∈R is a C0 group in B(X) (of growth ω at infinity). For z ∈ C such that <z 6= 0,

let Σz denote the strip {λ ∈ C : 0 < <λ/<z < 1}. Recall that the analytic continuation of

Tt is the family of (generally unbounded) closed operators (Uz, D(Uz))z∈C on X defined

as follows. If <z 6= 0, the domain D(Uz) of Uz is the subset of x ∈ X for which there is a

X-valued function Fx(λ), holomorphic in Σz and continuous in Σz , such that Fx(is) = Ts
if s ∈ R. Then Uz(x) := Fx(z) for every x ∈ D(Uz). If z = is, s ∈ R, then D(Uis) := X

and Uisx := Tsx for every x ∈ X. The Cioranescu-Zsido’s analytic generator, for (Tt)t∈R,

is defined to be the operator U := U1 [CZ], [Mo].

Now, let Θ be the Weyl homomorphism of Tt. The closed subalgebra A of B(X)

generated by Θ(L1(ω)) satisfies A⊥ = (0) and ∆(A) 6= ∅. For each z ∈ C, set Hz in

QM(A) as in Definition 1. Take x in D(Uz) and y ∈ X such that Uzx = y ∈ X. If Fx is the

holomorphic function on Σz as above, we have Θ(g1)Fx(is) = Θ(g1)Tsx = Θ(g1 ∗ δs)x =

Θ(g1,is)x for all s ∈ R. By the uniqueness principle, Θ(g1)Fx(λ) = Θ(g1,λ)x on Σz. In

particular, Θ(g1)y = Θ(g1)Fx(z) = Θ(g1,z)x and then it follows that x ∈ D(Hz) and

Hzx = y. Hence Uz ⊂ Hz . Conversely, take x in D(Hz) ⊂ X and let y be in X such that

Θ(g1,z)x = Θ(g1)y. For n ∈ N, put xn = Θ(g
1
n )x. Using again analyticity and the fact

that Θ(g
1
n ,is)x = Θ(δs)Θ(g

1
n )x = Tsxn (s ∈ R), we obtain that xn ∈ D(Uz) with Uzxn =

Θ(g
1
n ,z)x. Moreover, limn→∞ xn = x and Uzxn = Θ(g

1
n )Θ(g1,z)

Θ(g1) x = Θ(g
1
n )y →n→∞ y.

Since (Uz , D(Uz)) is closed, we have that x ∈ D(Uz) and Uzx = y. Thus we have seen

that Hz ⊂ Uz . In conclusion, Hz = Uz .

Remark 2. Let B be the ω-algebra of A corresponding to the ω-group Tt. Then (Tt)t∈R is

a C0 group in Mul(B) and we can apply Remark 1. So, if UB,z is the analytic continuation

of (Tt)t∈R on B, we have that UB,z = Θ(g1,z)
Θ(g1) , for z ∈ C. Hence H1 = UB,1 on B.

Remark 3. The family W (z) := Θ(g1,iz) is the entire C-group considered in [CK, p.

3589] for C = Θ(g1), see also [dL]. In this respect, the representation C−1W (−i) of the

analytic generator which is obtained in [CK, Theorem 2.6] corresponds formally to that

of H1 given in Definition 1. For relationships between groups of regular quasimultipliers

and C-groups, see [GM].

Next, we will give a theorem about functional calculus which is a generalization of

theorems in [U]. Let τ > 0 and δ ≥ 0. It is readily seen that the algebra Aδ0(Sτ ) defined in
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Section 1, part 3), is a Banach algebra, and a Banach Ab(Sτ )-module, when endowed with

the norm ‖f‖δ,∞ := ‖fψ−δ‖∞ (f ∈ Aδ0(Sτ )). Note that Aδ0(Sτ ) is an integral domain.

Put az(λ) := exp[−z(log λ)2], where log λ = log |λ| + i arg(λ), if λ ∈ Sτ and z ∈ C+.

Then (az)<z>0 is an analytic semigroup in Aδ0(Sτ ) such that azAδ0(Sτ ) = Aδ0(Sτ ) for

each z ∈ C+. From the above we get ∆(Aδ0(Sτ )) 6= ∅ and Aδ0(Sτ )⊥ = (0), and so the

algebras QMr(Aδ0(Sτ )) and QM(Aδ0(Sτ )) exist. Indeed, the algebras Aδ0(Sτ ) and Aδ′0 (Sτ )

are similar for every δ, δ′ ≥ 0, and it can be proved that QMr(Aδ0(Στ )) = Mul(Aδ0(Στ )) =

Ab(Sτ ), for every δ ≥ 0. Moreover, ψk ∈ Aδ0(Στ ) for every k ≥ δ. Also, ψ−ka1 is in Aδ0(Στ )

and so a1Aδ0(Στ ) ⊂ ψkAδ0(Στ ).

This implies that ψk ∈ ∆(Aδ0(Στ )). As every function f in F(Sτ ) can be expressed

by f = (fψk)/ψk for k > 0 big enough, we obtain that F(Sτ ) ⊂ QM(Aδ0(Στ )). For the

above results, see [GM].

If τ > 0 we put ωτ (s) := exp(τ |s|) (s ∈ R). For w ∈ C, let ζw denote the function

ζw(λ) = λw ≡ ew log λ, λ ∈ C \ (−∞, 0].

Theorem 2. Let A be a Banach algebra such that ∆(A) 6= ∅ and let X be a left Banach

A-module such that X⊥A = (0) and AX = X. Assume that H is a closed, densely defined

operator on X. Fix σ ∈ [0, π). The following assertions are equivalent.

(1) There exists a family (Tt)t∈R in QMr(A), which is an ωτ -group for every τ ∈ (σ, π),

whose analytic generator is H.

(2) There exists a unital, pseudobounded homomorphism

Ψ : QM(Aδ0(Sτ ))→ QM(A),

independent of δ > 0 and τ ∈ (σ, π), with Ψ(∆(Aδ0(Sτ )))∆(A) ∩ ∆(A) 6= ∅, such

that Ψ(ζ1) = H.

(3) There exists a unital, pseudobounded homomorphism

Ψ : Ab(Sτ )→ QMr(A),

independent of τ ∈ (σ, π), with Ψ(∆(Aδ0(Sτ )))∆(A) ∩ ∆(A) 6= ∅ for every δ > 0,

such that Ψ(ζ1a
1) = Ψ(a1)H in QMr(A).

Proof. (1) implies (2). The argument is partly taken from [GM, Section 6]. Take δ > 0

and τ ∈ (σ, π). LetM denote the Mellin transform. As in Section 1, part 3), M̃ is a well

defined, bounded algebra homomorphism from Aδ0(Sτ ) into L1(ωρ), whenever σ < ρ < τ .

It is straightforward to check that M̃(Aδ0(Sτ )) contains the ideal g1 ∗ Cc(R), whence

it follows that M̃ has dense range in L1(ωρ). Thus M̃ extends as a pseudobounded

homomorphism QM(Aδ0(Sτ ))
M̃−→ QM(L1(ωρ)). Let Θ be the Weyl homomorphism of

(Tt)t∈R, Θ : QMr(L
1(ωρ)) → QMr(A). Define Ψ := Θ ◦ M̃. Observe that M̃(ζ1a

1)(s)

agrees with the inverse Fourier transform of the function t 7→ e−t
2

e−t at s, that is, the

function g1,1(s), for every s ∈ R. Hence, Ψ(ζ1) = Ψ(ζ1a
1)/Ψ(a1) = Θ(g1,1)/Θ(g1) =

H1 =: H. In analogous manner, Ψ(1) = Id. Finally, note that Ψ(a1)u2 ≡ Θ(g1)u2

generates a dense ideal in A provided that u in ∆(A).

(2) implies (3). Since Ψ is pseudobounded, it sends regular quasimultipliers into reg-

ular quasimultipliers. Also, Ψ(ζ1a
1) = Ψ(ζ1)Ψ(a1) = Ψ(a1)H in QMr(A).
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(3) implies (1). Take τ ∈ (σ, π). Let Ω be the unit ball of Ab(Sτ ) and put U := Ψ(Ω).

Then U is a, stable under products, pseudobounded subset of QMr(A). Put B := BU
where BU is the Banach algebra, similar to A, obtained from U as in Section 1. Since U
is contained in the unit ball of Mul(B), Ψ goes continuously from Ab(Sτ ) into Mul(B).

Now, note that (ζis)s∈R is a C0 group of operators in Ab(Sτ ) (acting by multiplication

on Aδ0(Sτ ), where δ > 0) such that ‖ζis‖∞ ≤ Meτ |s| (s ∈ R). Define Ts := Ψ(ζis), if

s ∈ R. By the density condition assumed on Ψ and the density of A in B, it is readily

seen that Ts is a C0 group in Mul(B) satisfying ‖Ts‖ ≤M ′eτ |s| (s ∈ R). This means that

Ts is an ωτ -group in QMr(B) = QMr(A). Finally, let Θ be the Weyl homomorphism

associated with Ts and take ρ ∈ (τ, π). If h ∈ Aδ0(Sρ) then f := M̃(h) lies in L1(ωτ ). For

ϕ ∈ ∆(Aδ0(Sτ )) and u ∈ ∆(A) such that Ψ(ϕ)u ∈ ∆(A), we obtain

Θ(f)Ψ(ϕ)u =

∫ ∞

−∞
f(s)Ψ(ζisϕ)u ds = Ψ

(∫ ∞

−∞
f(s)ζisϕds

)
u = Ψ(hϕ)u = Ψ(h)Ψ(ϕ)u

in Mul(B), by the continuity of Ψ and the inversion of the Mellin transform. So Ψ =

Θ ◦M̃. In particular, Θ(g1,1)/Θ(g1) = ΘM̃(ζ1a
1)/ΘM̃(a1) = Ψ(ζ1a

1)/Ψ(a1) = H as we

wanted to show.

Remark. The above theorem gives us the canonical functional calculus for analytic

generators of ω-groups (of regular quasimultipliers). In the proof, we have obtained the

equalities Ψ = Θ ◦ M̃ and Ts = Ψ(ζis), s ∈ R, which readily induce a one-to-one

correspondence between groups (Ts)s∈R and calculi Ψ. Note also that part 3) of the

theorem is a result about H∞ representations (since H∞(Sρ) ⊂ Ab(Sτ ) if ρ > τ). In

the special case of C0 groups of bounded operators, the calculus Ψ is strongly related

to sectorial operators, bounded imaginary powers, H∞ representations [U], [CDMY].

There exist counterexamples which show that these concepts or properties do not coincide

generally [BC], [CDMY], [U], [Mo]. Nevertheless, we will next show that all such notions

are esentially equivalent in the quasimultiplier context.

The following is a feasible definition for sectorial quasimultipliers.

Definition 3. Let A be a Banach algebra such that A⊥ = (0) and ∆(A) 6= ∅. A closed

operator H on A is called a QMr-sectorial operator of angle σ ≥ 0 if

(i) H is one-to-one on A and has domain and range dense in A.

(ii) For every z 6∈ Sσ, there exists the inverse (z − H)−1 of z − H in QM(A) and, if

τ ∈ (σ, π) then there is Mτ > 0 such that the set {M−1
τ z(z − H)−1 : z 6∈ Sτ} is

contained in a pseudobounded, stable under products, subset of QMr(A).

Note that if Uτ is a pseudobounded subset, stable under products, of QMr(A) which

contains {M−1
τ z(z −H)−1 : z 6∈ Sτ}, then Uτ gives rise to a Banach algebra Bτ , similar

to A, such that {M−1
τ z(z−H)−1 : z 6∈ Sτ} becomes included in the unit ball of Mul(Bτ ).

Thus the inverse (z −H)−1 of z −H lies in Mul(Bτ ) ⊂ B(Bτ ), and so the spectrum of

H as (closed) operator on Bτ is contained in Sτ . Further, ‖(z − H)−1‖ ≤ Mτ |z|−1, for

every z 6∈ Sτ . In other words, H is sectorial on Bτ , of angle τ at least. In particular, the

imaginary powers H is, s ∈ R, exist as closed operators on Bτ [Mo, p. 165].
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Theorem 4. Let A be a Banach algebra such that ∆(A) 6= ∅ and let X be a left Banach

A-module such that X⊥A = (0) and AX = X. Assume that H is a closed, densely defined

operator on X. Fix σ ∈ [0, π). The following are equivalent.

(1) H is the analytic generator of a group in QMr(A) which is an ωτ -group for every

τ ∈ (σ, π).

(2) H is QMr-sectorial in A of angle σ.

(3) H is QMr-sectorial in A of angle σ and (H is)s∈R is an ωτ -group in QMr(A), for

every τ ∈ (σ, π).

(4) H is QMr-sectorial in A of angle σ, and there exists a unital, pseudobounded ho-

momorphism

Ψ : H∞(Sτ )→ QMr(A),

independent of τ ∈ (σ, π), with Ψ(∆(Aδ0(Sτ )))∆(A)∩∆(A) 6= ∅, such that Ψ(ζis) =

His in QMr(A), for every s ∈ R.

Proof. (1) implies (2). Suppose that H is the analytic generator of an ωτ -group Ts, that

is, H = Θ(g1,1)/Θ(g1) where Θ is the Weyl morphism of Ts. We know that H, being

a quasimultiplier, is densely defined on A. Let I, B be, respectively, the ω-ideal and ω-

algebra of A associated to Ts. Take u ∈ ∆(A) ∩ I. From the general theory of ω-groups,

we have that {Θ(gt)u2a : a ∈ A, t > 0} is dense in A and that Mul(B)I ⊂ I [GM]. Since

Θ(gt)u2 = HΘ(gt,−1)u2 and Θ(gt,−1)u2 ∈ Mul(B)I ⊂ I ⊂ A, it follows that the range

of H is dense in A. Now assume that Ha = 0 for some a ∈ A. Then Θ(g1,1)au2 = 0 and

so we obtain by density that ab = 0 for every b ∈ A, that is, a ∈ A⊥ = (0). It follows

that H is injective on its domain in A.

Finally, let ρ, τ be such that σ < ρ < τ < π, and take δ ≥ 0. For z 6∈ Sτ , put

rz(λ) := (z−λ)−1 (λ ∈ Sρ). Let Ψ be the calculus given in Theorem 2. Clearly, (z−ζ1)rz =

1 in QM(Aδ0(Sρ)) and so (z − H)Ψ(rz) = Ψ(rz)(z − H) = Id in QM(A). It follows

that Ψ(rz) is the inverse (z − H)−1 of z − H in QM(A). Moreover, rz ∈ Ab(Sρ) and

‖rz‖∞ ≤ C(τ − ρ)−1|z|−1 (where the sup- norm is taken on Sρ) for some constant C.

This means that, for some constant Mρ,τ , the subset {M−1
ρ,τ z rz : z 6∈ Sρ} is contained in

the unit ball Ω of Ab(Sρ) and therefore {M−1
ρ,τ z(z −H)−1 : z 6∈ Sρ} ⊂ Ψ(Ω), where Ψ(Ω)

is stable under products and pseudobounded in QMr(A).

Altogether, we have shown that H is QMr-sectorial (of angle σ).

(2) implies (3). Let ρ ∈ (σ, π). As we have seen prior to this theorem, H is sectorial on

the Banach space (algebra) Bρ (we maintain previous notations). Thus the the Dunford-

Riesz calculus Υ is defined from Aδ0(Sτ ) into Mul(Bρ), if τ ∈ (ρ, π) and δ > 0. Put

ψ(λ) = λ(1 + λ)−2, λ ∈ C \ {−1}, as in Section 1. For every s ∈ R, we define Υ(ζis) :=

Υ(ψ−k)Υ(ζisψ
k) where k is an integer bigger than δ. Then Υ(ζis) = His, s ∈ R, as closed

operators on Bρ [U, p. 352]. On the other hand, Υ(ψk) has dense range in Bρ [CDMY,

p. 55], and therefore Υ(Aδ0(Sτ ))Bρ is dense in Bρ. Then Υ extends to a pseudobounded

homomorphism Ψ : Ab(Sτ )→ QMr(Bρ) ≡ QMr(A) given by Ψ(f) = Υ(fψk)/Υ(ψk) for

each f ∈ Ab(Sτ ) (recall that ψk ∈ ∆(Aδ0(Sτ )), as noticed prior to Theorem 2) [GM]. In

particular we get Ψ(ζis) = Υ(ζisψ
k)/Υ(ψk) ≡ Υ(ζis) = His, if s ∈ R, and then we obtain

that (His)s∈R is an ωτ -group in QMr(A).
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(3) implies (4). Let Θ be the Weyl morphism associated with the ω- group H is, and

let Ψ be the homomorphism Ψ = Θ ◦ M̃ given in Theorem 2, part (3). Without loss

of generality, we can consider Ψ defined from H∞(Sτ ) into QMr(A). Further, Ψ(ζis) =

Ψ(ζisa
1)/Ψ(a1) with Ψ(ζisa

1) = Θ(g1 ∗ δs), whence Ψ(ζis) = Θ(δs) ≡ His, for all s ∈ R.

(4) implies (1). Take Ts := His, s ∈ R. From the assumptions Ts is an ωτ -group in

QMr(A), if τ ∈ (σ, π). Let B be a Banach algebra similar to A such that H is sectorial

on B and Ts is a C0 group in Mul(B). This means that H is BIP on B and therefore

H is the analytic generator of H is on B [Mo, p. 168]. In particular, if Θ is the Weyl

morphism of Ts, then H = Θ(g1,1)/Θ(g1) on B (Remark 2). Viewing H in this equality

as a quasimultiplier, it follows that H is the analytic generator of Ts in QM(A).

Besides the relations Ψ = Θ ◦ M̃ and Ts = Ψ(ζis), s ∈ R, obtained in Theorem 2, we

have found in Theorem 4 that Ψ|F(Sτ ) = Υ and Ts = His, s ∈ R. From the last equality

we get immediately the following corollary, which is to be compared with [U, p. Corollary

6.2] and [Mo, Proposition 3.14].

Corollary 5. Let (Ts)s∈R and (Vs)s∈R be two ω-groups in QMr(A) with the same an-

alytic generator H. Then Ts = Vs for every s ∈ R.

4. Some examples and applications

(i) C0-groups of bounded operators. Let (Tt)t∈R be a C0-group in B(X), with Weyl

homomorphism Θ : L1(ω)→ B(X). It has been observed in Remark 1 that the (classical)

analytic generator of Tt agrees with Θ(g1,1)/Θ(g1) in QM(A) where A is the Banach

algebra A = Θ(L1(ω)) in B(X). The functional calculus ΨU , for (Tt)t∈R, given in [U] can

be now regarded as the restriction, to F(Sτ ), of the homomorphism Ψ which appears in

Theorem 2 and Theorem 4 above. So in particular we see that the unbounded, closed

operators ΨU (f), f ∈ F(Sτ ), are quasimultipliers on X.

Let us remark that it is possible for A to have a unit. Using Θ(g1/n), n ∈ N, as a

bounded approximate identity in A, it is straightforward to check that A has a unit if

and only if Tt is norm-continuous at the origin or, equivalently, that t 7→ Tt is an entire

function from C into A.

(ii) Holomorphic semigroups of bounded operators. Let (az)z>0 be a holomorphic semi-

group in B(X), with azX = X (z ∈ C+), and such that ‖a1+it‖ = O(ω(t)) as |t| → ∞
where ω is a continuous weight on R. Put A := span{az : z ∈ C+} in B(X). It is readily

seen that A⊥ = (0). Also, az ∈ ∆(A) for every z ∈ C+. This is a consequence of the

fact that A = ∪r>0arA by definition, and that ∪r>0arA = azA, for every z ∈ C+, by

the uniqueness principle for holomorphic functions. So the algebras QMr(A) and QM(A)

exist. If we define the boundary values of az by Tt := a1+it/a1 (t ∈ R), then (Tt)t∈R is

an ω-group in QMr(A) [GM]. Using the residue theorem we find that Θ(g1,z) = Θ(g1)az

for every z ∈ C+, where Θ is the Weyl homomorphism of Tt. Hence a1 = Θ(g1,1)/Θ(g1)

in QM(A), in fact in A. This means that a1 is the analytic generator of Tt. Of course,

this applies to C0 groups on iR having analytic extension to the right hand half-plane.

Compare with [Mo, Corollary 3.6].
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(iii) Sectorial operators. Let H be a sectorial operator on a Banach space X of angle

σ, 0 ≤ σ < π. Take δ > 0 and τ ∈ (σ, π). Let Υδ denote the restriction of the Dunford-

Riesz calculus for H to the Banach algebra Aδ0(Sτ ). Put Aδ := Υδ(Aδ0(Sτ )) in B(X).

We know that {Υδ(f)y : f ∈ Aδ0(Sτ ), y ∈ X} is dense in X, so that cx = 0 for all

x ∈ X, if c ∈ A⊥δ . This implies that c = 0 in Aδ. Also, Aδ has dense principal ideals. By

density, as usually, we get the extensions Υδ : QM(Aδ0(Sτ )) → QM(Aδ) ≡ QM(X;Aδ)

and Υδ : Ab(Sτ ) → QMr(Aδ) of Υδ. As seen before, F(Sτ ) is (strictly) contained in

QM(Aδ0(Sτ )) and, also, Υδ equals both the representation Ψ and the functional calculus

Υ. In this way, the calculus for sectorial operators appears as a “sub-calculus” of the

quasimultiplier representation Ψ.

On the other hand, there are sectorial operators having bounded imaginary pow-

ers, that is, BIP operators, without H∞-calculus. In fact, the existence of H∞-calculus

has been characterized in several ways, see [BdL], [CDMY] for instance. According to

Theorem 2, Theorem 4, and the observation in the last paragraph, the action of H∞

functions, in the functional calculus for BIP operators, yield naturally regular quasimul-

tipliers, which in general are not bounded.

It may be worth noticing that the lack (in general) of the H∞-calculus Ψ : Ab(Sτ )→
B(X) is a question on (the lack of) bounded approximate identities: If δ = 0, it happens

that Ψ : Ab(Sτ ) → B(X) continuously if and only if Ψ : A0
0(Sτ ) → B(X) continuously,

because, (aλ)0<λ<1 being a bounded approximate identity in A0
0(Sτ ), the homomorphism

Ψ extends, from A0
0(Sτ ), to the algebra Ab(Sτ ) = Mul(A0

0(Sτ )) into B(X) [E, p. 96].

If δ > 0, we have that Ψ is continuous from Aδ0(Sτ ) into B(X) too, but the algebra

Aδ0(Sτ ) has no bounded approximate identities, and so the extension of Ψ to Ab(Sτ ) is

only possible via regular quasimultipliers.

Finally, note that it is possible for Aδ to have a unit. By applying part (i) of this

section to the group (H is)s∈R, we obtain that Aδ possesses a unit if and only if σ(H) is

compact and does not contain the origin.

(iv) Integrated groups. Integrated groups and semigroups have been introduced in re-

cent years, in connection with abstract Cauchy problems. They form currently an impor-

tant, widely developed, area of research. For definitions and basic properties, the reader

is referred to [ABHN], [H], [deL], [Mi]. Let α ≥ 0, and let (Tα(t))T∈R be an α-times in-

tegrated group in B(X) such that ‖Tα(t)‖ ≤ Cek|t| (t ∈ R), for some constants C, k > 0.

The generator L of Tα(t) is defined by (λ−L)−1x = λα
∫∞

0
e−λtTα(t)x dt (x ∈ X), where

λ > k. The operator L is closed and densely defined on X.

It has been shown in [Mi] that there exists a certain commutative, convolution Banach

algebra T (α) on R such that the mapping G : f 7→
∫∞
−∞Wα

0 f(t)Tα(t) dt, T (α) → B(X)

is a (well defined) bounded algebra homomorphism. (Here, W α
0 f denotes the bilateral

Weyl fractional derivative of order α, see [GM].) The algebra T (α) contains the space of

test functions on R and then G(δ′) can be defined in a natural way, by approximation,

as a closed, densely defined operator on X (here, δ′ is the differentiation operator, which

agrees with the operator defined by convolution with the distribution δ′ ≡ δ′0). In fact,

L = −G(δ′) with the same domains [Mi].
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Now, take Aα := G(T (α)(ϕ)) in B(X). Then A⊥α = (0) and ∆(Aα) 6= ∅, and G extends

to a pseudobounded homomorphism between the corresponding algebras of quasimulti-

pliers. Moreover, (δs)s∈R ⊂ QMr(T (α)) and therefore Ts := G(δs), s ∈ R, is an ω-group

in QMr(Aα) for every weight ω ≥ ϕ. Also, the Weyl homomorphism Θ of Ts factorizes

as Θ : QMr(L
1(ω)) ↪→ QMr(T (α))

G→ QMr(Aα) [GM].

Definition 6. We define the analytic generator of the α-times integrated group Tα(t)

to be the quasimultiplier H of Aα given by H = Θ(g1,1)/Θ(g1) ≡ G(g1,1)/G(g1).

If it were necessary, the domain of H in X could be limited to vectors x ∈ D(HX) for

which Θ(g1,z)
Θ(g1) x varies holomorphically in z.

The theory of the analytic generator of an integrated group may be developed along

similar lines as those of [CZ], [M] and related papers. We finish this paper by showing

that the natural relationship between generators H and L holds in QM(Aα). Suppose

that Tα(t) is an α-times integrated group such that ‖Tα(t)‖ ≤ Keρ|t|, (t ∈ R), for some

ρ ∈ [0, π). Take τ ∈ (ρ, π). The function f(λ) = log(λ) (λ ∈ Sτ ) can be written as

f = fa1/a1 and so it belongs to QM(Aδ0(Sτ )), for δ > 0. Applying the calculus Ψ

which is associated to the group Tt = G(δt) ≡ Θ(δt) we obtain Ψ(fa1) = Θ[M̃(fa1)] =

Θ[i(g1)′] = iΘ(δ′ ∗ g1) and Ψ(a1) = Θ(g1) whence Ψ(f) = iΘ(δ′) = −iL. In other words,

L = i logH as quasimultipliers.
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Math. J. 28 (1976), 327-362.

[CDMY] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach operators with a bounded

H∞ functional calculus, J. Austral. Math. Soc. 60 (1996), 51–89.

[dL] R. de Laubenfels, Existence Families, Functional Calculi and Evolution Equations,

Lecture Notes in Math. 1570, Springer, Berlin, 1994.

[E] J. Esterle, Quasimultipliers, representations of H∞, and the closed ideal problem for

commutative Banach algebras, in: Radical Banach Algebras and Automatic Conti-

nuity (Long Beach 1981), J. M. Bachar et al. (eds.), Lecture Notes in Math. 975,

Springer, Berlin, 1983, 66–162.
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