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Abstract. It is shown that every commutative sequentially bornologically complete Hausdorff

algebra A with bounded elements is representable in the form of an (algebraic) inductive limit

of an inductive system of locally bounded Fréchet algebras with continuous monomorphisms if

the von Neumann bornology of A is pseudoconvex. Several classes of topological algebras A for

which rA(a) ≤ βA(a) or rA(a) = βA(a) for each a ∈ A are described.

1. Introduction

1.1. Let K be one of the fields R of real numbers or C of complex numbers and A a

topological algebra over K with separately continuous multiplication (in short topological

algebra). If the underlying linear topological space of A is locally pseudoconvex, then

A is called a locally pseudoconvex algebra (in [14] a semiconvex algebra). In this case A

has a base U = {Uλ : λ ∈ Λ} of neighbourhoods of zero consisting of balanced (that is,

µUλ ⊂ Uλ whenever |µ| ≤ 1) and pseudoconvex (that is, Uλ + Uλ ⊂ µUλ for some µ ≥ 2)

sets. This base defines a set of numbers {kλ : λ ∈ Λ} in (0, 1] such that Uλ+Uλ ⊂ 2
1
kλ Uλ

and Γkλ(Uλ) ⊂ 2
1
kλ Uλ for each λ ∈ Λ (see [13], p. 115, or [20], p. 4 - 5). Here Γk(U)

denotes the absolutely k-convex hull of U in A, that is, the set of elements

n∑

v=1

αvuv,
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where n ∈ N, u1, . . . , un ∈ U and α1, . . . , αn ∈ K are such that
n∑

v=1

|αv|k ≤ 1.

In particular, A is called a locally k-convex algebra if kλ = k for each λ ∈ Λ; a lo-

cally convex algebra if kλ = 1 for each λ ∈ Λ; a locally m-pseudoconvex algebra if every

U ∈ U is idempotent that is, UU ⊂ U ; a locally m-(k-convex) algebra if A is a locally

m-pseudoconvex algebra for which kλ = k for each λ ∈ Λ and a locally bounded algebra if

the topology of A contains a bounded neighbourhood of zero.

It is well known (see [20], p. 6) that the topology of every locally pseudoconvex algebra

A can be given by means of a family P = {pλ : λ ∈ Λ} of kλ-homogeneous seminorms,

where kλ ∈ (0, 1] for each λ ∈ Λ and

pλ(a) = inf{|µ|kλ : a ∈ µΓkλ(Uλ)}
for each a ∈ A and λ ∈ Λ. Herewith, the topology of locally m-pseudoconvex algebra can

be given by a family P = {pλ : λ ∈ Λ} of kλ-homogeneous submultiplicative (that is,

pλ(ab) ≤ pλ(a)pλ(b) for each a, b ∈ A) seminorms, and the topology of locally bounded

Hausdorff algebra by a k-homogeneous norm with k ∈ (0, 1]. Therefore a locally bounded

Hausdorff algebra is called a k-normed algebra and a complete locally bounded Hausdorff

algebra a k-Banach algebra. Moreover, a locally k-convex algebra A is locally uniformly

absorbing if for each a ∈ A there is a number N(a) > 0 (which does not depend on λ)

such that pλ(ab) ≤ N(a)pλ(b) for each b ∈ A and each λ ∈ Λ. Hence, a locally k-convex

algebra A is locally uniformly absorbing if supλ∈Λ pλ(a) is finite for each a ∈ A.

1.2. A topological algebra A is a Q-algebra if the set QinvA of all quasi-invertible elements

(that is, of elements a ∈ A such that1 a ◦ b = b ◦ a = θA for an element b ∈ A) is open

in A. It is easy to see that a unital algebra A is a Q-algebra if and only if the set InvA

(of all invertible elements in A) is open in A. Furthermore, A is a Mackey Q-algebra if

QinvA− a is a bornivore (that is, QinvA− a absorbs all bounded subsets of A) for each

a ∈ QinvA. It is easy to see that every Q-algebra is a Mackey Q-algebra, but there is a

Mackey Q-algebra which is not a Q-algebra (see [8], Example 3.9).

1.3. A net (aλ)λ∈Λ in a topological algebra A is said to be advertibly convergent in A

if there exists an element a ∈ A such that (a ◦ aλ)λ∈Λ and (aλ ◦ a)λ∈Λ converge to θA
in the topology of A. A topological algebra A is advertibly complete if every advertibly

convergent Cauchy net is convergent in A. It is known (see [16], p. 45) that all complete

algebras and all Q-algebras are advertibly complete algebras. In particular, when only

advertibly convergent Cauchy sequences are convergent in A, then we call A a sequentially

advertibly complete algebra (in short sa-complete algebra).

1.4. Let X be a linear topological space over K. A net (xλ)λ∈Λ in X is said to converge

bornologically to x0 if there exists a bounded subset B of X and for each ε > 0 an index

λε ∈ Λ such that xλ − x0 ∈ εB whenever λ > λε. Since every neighbourhood of zero

absorbs all bounded sets, every bornologically convergent net is topologically convergent.

1Here, and later on, θA denotes the zero element of A and a◦ b = a+ b−ab for each a, b ∈ A.
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The converse is false in general (see [12], p. 122), but it is true in the case of metrizable

linear topological space (see [12], p. 27). Sometimes (see, for example, [12]) instead of

bornological convergence of sequences we talk about Mackey convergence of sequences

because G. W. Mackey was the first who studied this notion of convergence.

A net (xλ)λ∈Λ in X is said to be a Mackey-Cauchy net if there exist a bounded subset

B of X and for each ε > 0 an index λε ∈ Λ such that xλ−xµ ∈ εB whenever λ > µ > λε.

Herewith, a linear topological space X is called a bornologically complete space if every

Mackey-Cauchy net in X is convergent. It is easy to see that every complete linear

topological space is bornologically complete. In particular, when only Mackey-Cauchy

sequences in X are convergent, we will speak about a sb-complete space X.

1.5. Let X be a linear topological space over K and B the von Neumann bornology on

X, that is, the set of all bounded subsets in X. The bornology B on X is called k-convex

(see [11] or [15]) if Γk(B) is bounded in X for each bounded subset B of X (in this case B
has a basis consisting of bounded absolutely k-convex sets) and B is called pseudoconvex

if for each B ∈ B there is a number k = k(B) ∈ [0, 1] such that Γk(B) is bounded

in X. It is known (see [15], Theorems 1 and 2, [17] and [11], p. 102-103) that the von

Neumann bornology B on a locally pseudoconvex space X is pseudoconvex if B has a

countable basis, and every metrizable linear topological space X is locally k-convex for

some k ∈ (0, 1] if B is pseudoconvex.

1.6. Let A be a topological algebra over K and

S(a, µ) =

{(
a

µ

)n
: n ∈ N

}

for each a ∈ A and µ ∈ K \{0}.
An element a ∈ A is bounded if there is a number µ ∈ K \{0} such that S(a, µ) is

bounded in A. We will say that an element a ∈ A is pseudoconvexly bounded if there are

numbers µ ∈ K \{0} and k ∈ (0, 1] such that Γk(S(a, µ)) is bounded in A.

It is easy to see that every pseudoconvexly bounded element is bounded in A and

every bounded element is pseudoconvexly bounded in A if the von Neumann bornology

of A is pseudoconvex or A is a locally k-convex algebra for some k ∈ (0, 1]. If all elements

in A are bounded (pseudoconvexly bounded), then we will say that A is a topological

algebra with bounded (respectively pseudoconvexly bounded) elements.

1.7. Let A be a topological algebra over C, spA(a) the spectrum of a ∈ A, rA(a) the

spectral radius of a ∈ A and βA(a) the radius of boundedness of a ∈ A. If A is an algebra

with the unit element eA, then

spA(a) = {λ ∈ C : a− λeA 6∈ InvA}

otherwise

spA(a) = {λ ∈ C \ {0} : a/λ 6∈ QinvA} ∪ {0},
rA(a) = sup{|λ| : λ ∈ spA(a)}
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and
βA(a) = inf{λ ∈ C \ {0} : S(a, λ) is bounded in A}

= inf

{
λ ∈ C \ {0} :

(
a

λ

)n
vanishes in A

}
.

We put rA(a) = 0 if spA(a) is empty and βA(a) = +∞ if there does not exist any µ such

that the set S(a, µ) is bounded in A.

1.8. In the present paper it is shown that every commutative sb-complete Hausdorff alge-

bra A with bounded elements is representable in the form of an (algebraic) inductive limit

of an inductive system of commutative locally bounded Fréchet algebras with continuous

monomorphisms if the von Neumann bornology of A is pseudoconvex. It is shown that

rA(a) = βA(a) if A is a sb-complete Hausdorff algebra over C with bounded elements and

pseudoconvex von Neumann bornology and rA(a) ≤ βA(a) if A is a topological algebra

in which QinvA is a bornivore or A is a sa-complete algebra for which from βA(a) < 1 it

follows that (
∑n
k=0 a

k) is a Cauchy sequence.

2. Preliminary results. Let A be a topological algebra and Bpc the set of all closed,

idempotent, bounded and absolutely pseudoconvex2 subsets of A. For each k ∈ (0, 1] let

Bk be the set of all closed, idempotent, bounded and absolutely k-convex subsets of A.

Proposition 2.1. Let A be a topological algebra and B an absolutely pseudoconvex subset

of A. Then the linear span AB generated by B is expressible in the form

AB = ∪{λB : λ ∈ K}.

Proof. Let b ∈ AB . Then there is n ∈ N, b1, . . . , bn ∈ B and λ1, . . . , λn ∈ K such that

b =

n∑

v=1

λvbv

and a number k ∈ (0, 1] such that B = Γk(B). Now

b = (nµ)
1
k

n∑

v=1

λv

(nµ)
1
k

bv,

where µ = max{|λ1|k, . . . , |λn|k} and

n∑

v=1

∣∣∣∣
λv

(nµ)
1
k

∣∣∣∣
k

=
1

n

n∑

v=1

|λv|k
µ
≤ 1.

Hence AB ⊂ (nµ)
1
kB ⊂ ∪{λB : λ ∈ K}. The converse inclusion is evident.

It is well known (see, for example, [3] and [4]) that every closed, idempotent, bounded

and absolutely convex subset B in a locally convex Hausdorff algebra A defines a submul-

tiplicative norm on AB. The following result describes these subsets B of a topological

algebra A which define nonhomogeneous submultiplicative norms on AB .

2That is, absolutely k-convex subsets for some k ∈ (0, 1].
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Proposition 2.2. Let k ∈ (0, 1], A be a Hausdorff algebra and B ∈ Bk. Then

a) AB is a k-normed algebra with respect to the k-homogeneous submultiplicative norm

pB defined for each a ∈ AB by

pB(a) = inf{|µ|k : a ∈ µB}; (1)

b) if A is sb-complete, then AB is a k-Banach algebra;

c) the topology on AB defined by pB is not weaker than the subset topology on AB.

Proof. a) Let B ∈ Bk. In the same way as in [20], p. 4, it is easy to show (by Proposition

2.1) that pB is a k-homogeneous submultiplicative seminorm on AB . As AB is a Hausdorff

algebra, for each non-zero a ∈ AB there is a neighbourhood of zero V in A such that

a 6∈ V ∩AB . By assumption B is bounded. Therefore there is a number λ > 0 such that

B ⊂ λV . Hence, from λa 6∈ B (if λa ∈ B, then a ∈ V ) it follows that pB(a) > 1/|λ|k > 0.

Consequently, pB is a k-homogeneous submultiplicative norm on AB .

b) Let B ∈ Bk, ε > 0 and δ ∈ (0,min{ε, ε 1
k }). If (an) is a Cauchy sequence in AB in the

topology defined by pB , then there exists a number nε ∈ N such that pB(an − am) < δk

or an − am ∈ δB ⊂ εB whenever n > m > nε. Hence (an) is a Mackey-Cauchy sequence

in A. Since A is sb-complete, (an) converges in A.

Let now a0 ∈ A be the limit of (an), m0 > nε be fixed, am0
= α0b0 (here α0 ∈ K and

b0 ∈ B), ρ = max{ε, α0} and φ = ρ2
1
k . Then

an = (an − am0
) + am0

∈ εB + α0B ⊂ ρ(B +B) ⊂ φB
for each n > m0. Since B is closed, φB is also closed in A. Hence, a0 ∈ φB ⊂ AB .

Fix now m and let n → ∞. Then (an − am) converges to (a0 − am) in the topology

of A. Since δB is a closed in A, we have am − a0 ∈ δB or pB(am − a0) ≤ δk < ε for each

m > nε. Thus, (an) converges in AB. Consequently, AB is a k-Banach algebra.

c) Let B ∈ Bk and O be a neighbourhood of zero in AB in the subspace topology.

Then there exists a neighbourhood U of zero in A such that O = U ∩ AB . Since B is

bounded, there is a positive number µ such that B ⊂ µU . Now

O′ = {a ∈ AB : pB(a) < µ−k}
is a neighborhood of zero in AB in the topology defined by the norm pB , and O′ ⊂
µ−1B ⊂ U ∩ AB = O. Therefore the topology defined on AB by the norm pB is not

weaker than the subspace topology.

Let Ab denote the set of all bounded elements of A and Apb the set of all pseudocon-

vexly bounded elements in A. The following result describes the set Apb.

Proposition 2.3. Let A be a Hausdorff algebra. Then

Apb = ∪{AB : B ∈ Bpc}.
Proof. Let a ∈ Apb. Then there exist µ ∈ K \{0} and k ∈ (0, 1] such that

S(a, µ) ⊂ B = clA(Γk(S(a, µ)).

Since B ∈ Bpc, we have a ∈ ∪{AB : B ∈ Bpc}.
Let now a ∈ ∪{AB : B ∈ Bpc}. Then a ∈ AB for some B ∈ Bpc. Therefore there is a

number k ∈ (0, 1] such that B ∈ Bk. Now pB is a k-homogeneous submultiplicative norm
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on AB by Proposition 2.2 a). Hence

pB

((
a

λ

)n)
≤
(
pB

(
a

λ

))n
=

(
pB(a)

|λ|k
)n

< 1

for each n ∈ N whenever |λ| > pB(a)
1
k . Since

S(a, λ) ⊂ {a ∈ A : pB(a) < 1} ⊂ B,
we have Γk(S(a, λ)) ⊂ Γk(B) = B. This means that a ∈ Apb.

For each a ∈ A let I(a) = {B ∈ Bpc : a ∈ AB}. Then we have

Corollary 2.4. Let A be a Hausdorff algebra. If the von Neumann bornology of A is

pseudoconvex,

βA(a) = inf{βAB (a) : B ∈ I(a)} (2)

for each a ∈ Apb.
Proof. Let a ∈ Apb and B ∈ I(a). Since AB ⊂ A, we have βA(a) ≤ βAB (a). Hence,

βA(a) ≤ inf{βAB (a) : B ∈ I(a)}.
Let now λ and µ be positive numbers such that βA(a) < λ and βA(a) < µ < λ. Because

the von Neumann bornology on A is pseudoconvex, there is a number k ∈ (0, 1] such that

B = clA(Γk(S(a, µ))) ∈ Bk. Hence,

pB

((
a

µ

)n)
≤ 1

for each n ∈ N. Thus, S(a, µ) is bounded in AB . Consequently, from βAB (a) ≤ µ < λ it

follows that (2) holds.

Proposition 2.5. Let k ∈ (0, 1] and A be a unital locally uniformly absorbingly

k-convex algebra with jointly continuous multiplication. Then Apb = Ab = A.

Proof. Let {pλ : λ ∈ Λ} be a family of k-homogeneous seminorms which defines the

topology of A, a ∈ A, N(a) > 0 be the number such that pλ(ab) ≤ N(a)pλ(b) for each

b ∈ A and λ ∈ Λ, µ > N(a)
1
κ and

B =
⋂

λ∈Λ

{b ∈ A : pλ(b) ≤ 1}.

Since B ∈ Bk and3

pλ

((
a

µ

)n)
≤
(
N(a)

µk

)n
< 1

for each n ∈ N and λ ∈ Λ, we have Γk(S(a, µ)) ⊂ Γk(B) = B. Hence, a ∈ Apb.
Proposition 2.6. Let A be a sb-complete Hausdorff algebra, B a bounded subset of

A and C ∈ Bpc. Then BC is bounded in A. In particular, when A is a commutative

sb-complete Haustorff algebra, B a bounded and idempotent subset of A and the von

Neumann bornology of A is pseudoconvex, then there exists a set D ∈ Bpc such that

B ∪ C ⊂ D.

3We can assume (see [23]) that pλ(eA) = 1 for each λ ∈ Λ.
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Proof. Let B be a bounded subset of A, b ∈ B, C ∈ Bpc, Lb a map from AC into A

defined by Lb(a) = ba for each a ∈ AC and L = {Lb : b ∈ B}. Then there is a number

k ∈ (0, 1] such that C ∈ Bk. Let L(AC , A) be the space of all linear continuous maps from

AC into A endowed with the topology of simple convergence4 and O a neighbourhood of

zero in L(AC , A). Then there exist n ∈ N, S = {a1, . . . , an} ⊂ AC and neighbourhoods U

and V of zero in A such that T (S,U) ⊂ O and V av ⊂ U for each v. Since B is bounded,

there exists a positive number µ such that B ⊂ µV . Hence, from

1

µ
Lb(av) =

1

µ
bav ∈ V av ⊂ U

for each b ∈ B and each v it follows that L ⊂ T (S, µU) = µT (S,U) ⊂ µO. This

means that L is a bounded subset of L(AC , A). As A is a sb-complete Hausdorff algebra,

AC is a k-Banach algebra by Proposition 2.2 b). Hence, AC is a Baire space (see [13],

p. 87, Theorem 1). Therefore (see [19], Theorem 4.2, p. 83), L is an equicontinuous

subset of L(AC , A). This means that for each neighbourhood U of zero in A there is a

neighbourhood V of zero in AC such that BV ⊂ U . Since C is bounded in AC , there

exists a positive number ν such that C ⊂ νV . Thus, BC ⊂ νBV ⊂ νU . Consequently,

BC is a bounded subset of A.

Let now A be a commutative sb-complete Hausdorff algebra, B a bounded and idem-

potent subset of A, C ∈ Bpc and let the von Neumann bornology on A be pseudocon-

vex. Then E = B ∪ C ∪ BC is a bounded and idempotent subset of A and there is

a number k ∈ (0, 1] such that Γk(E) is a bounded and idempotent set in A. Hence

D = clA(Γk(E)) ∈ Bk and B ∪ C ⊂ D.

Corollary 2.7. Let A be a commutative sb-complete Hausdorff algebra with bounded

elements. If the von Neumann bornology on A is pseudoconvex, then Apb is a subalgebra

of A.

Proof. Let a, b ∈ Apb. Then there are µ1, µ2 ∈ K \{0} and k1, k2 ∈ (0, 1] such that

B1 = clA(Γk1
(S(a, µ1))) ∈ Bk1

and B2 = clA(Γk2
(S(a, µ2))) ∈ Bk2

. As B1B2 is bounded

in A by Proposition 2.6 and the von Neumann bornology on A is pseudoconvex, then

there is a number k ∈ (0, 1] such that D = clA(Γk(B1 ∪B2 ∪B1B2)) ∈ Bk. Now from
(

ab

µiµ2

)n
=

(
a

µi

)n(
b

µ2

)n
∈ B1B2 ⊂ D

for each n ∈ N it follows that Γk(S(ab, µ1µ2)) ⊂ Γk(D) = D. Hence, ab ∈ Apb.
Since a = µ1b1 and b = µ2b2 for some b1 ∈ B1 and b2 ∈ B1, we have

a+ b ∈ µ1B1 + µ2B2 ⊂ µ(D +D) ⊂ µ2
1
kD ⊂ AD,

where µ = max{µ1, µ2}. Hence, a + b ∈ Apb. It is easy to see that µa ∈ Apb for each

µ ∈ K and a ∈ Apb. Consequently, Apb is a subalgebra of A.

4A base of neighbourhoods of zero in the topology of simple convergence consists of sets

T (S,U) = {L ∈ L(AC , A) : L(S) ⊂ U}, where S is a finite subset ofAC and U is a neighbourhood

of zero of A.
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Proposition 2.8. Let A be a commutative sb-complete Hausdorff algebra over C with

bounded elements. If the von Neumann bornology on A is pseudoconvex, then5 for each

a ∈ A
(a) spA(a) =

⋂{spAB (a) : B ∈ I(a)};
(b) rA(a) = inf{rAB (a) : B ∈ I(a)};
(c) spA(a) is a closed subset of C.

Proof. Let a ∈ A. Since AB ⊂ A for each B ∈ Bpc, we have

spA(a) ⊂
⋂
{spAB (a) : B ∈ I(a)}. (3)

To prove the converse inclusion, let first A be a unital algebra and λ 6∈ spA(a). Then

(a − λeA)−1 exists in A. Since A = ∪{AB : B ∈ Bpc} by Proposition 2.3, there is a set

B0 ∈ Bpc such that eA ∈ AB0
. Thus, by Proposition 2.6, for each B ∈ I(a) there is a

set D ∈ Bpc such that B ∪B0 ⊂ D. Therefore we can assume that eA, a ∈ AB1
for some

B1 ∈ Bpc. Now there is a set B2 ∈ Bpc such that (a− λeA)−1 ∈ AB2
and a set B3 ∈ Bpc

such that B1∪B2 ⊂ B3 by Proposition 2.6. Hence, eA, a, a−λeA and (a−λeA)−1 belong

to AB3
. This means that λ 6∈ spAB3

(a), which proves the statement (a). The proof for

non-unital algebra A is similar.

b) It is clear by (3) that

rA(a) ≤ inf{rAB (a) : B ∈ I(a)}
for each a ∈ A. Let now A be a unital algebra and λ > rA(a). Then λ 6∈ spA(a). Therefore

(a− λeA)−1 ∈ AB for some B ∈ Bpc. As above we can show that there is a set B ∈ I(a)

such that a − λeA ∈ InvAB . This means that λ > rAB (a). Consequently, the statement

(b) holds for unital algebra A. The proof for non-unital algebra A is similar.

c) As every AB with B ∈ Bpc is a commutative k-Banach algebra for some k ∈ (0, 1]

by Proposition 2.2 b), all AB are Q-algebras (see [5], Proposition 3.6.23; for unital case

see [21], p. 10, and [ 22], Lemma 3.6). Therefore spAB (a) is a closed subset in C for each

a ∈ AB with B ∈ I(a) (see [16], p. 60). Hence, spA(a) is a closed subset of C.

3. Main result. It is known (see [4], Proposition 1.2) that every pseudo-Banach alge-

bra with respect to some bound structure is representable in the form of the inductive

limit of an (algebraic) inductive system of unital Banach algebras with continuous unital

monomorphisms. Next we prove a similar result for topological algebras with pseudocon-

vexly bounded elements.

Theorem 3.1. Let A be a commutative sb-complete Hausdorff algebra with bounded el-

ements. If the von Neumann bornology of A is pseudoconvex, A is representable in the

form of an (algebraic) inductive limit of an inductive system of locally bounded Fréchet

algebras with continuous monomorphisms.

Proof. By assumptions every B ∈ Bpc defines a number k ∈ (0, 1] such that AB is a

commutative k-Banach algebra by Proposition 2.2 b). We define the ordering in Bpc in

5In case of unital algebra A let I(a) = {B ∈ Bpc : a, eA ∈ AB}, otherwise let I(a) =

{B ∈ Bpc : a ∈ AB}.
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the following way: for each B,C ∈ Bpc (then there are numbers k, k′ ∈ (0, 1] such that

B ∈ Bk and C ∈ Bk′) we shall say that B < C if and only if B ⊂ µC for some positive

number µ. It is easy to see that the set Bpc is upward directed (by Proposition 2.6) and

preordered. Now AB ⊂ AC by Proposition 2.1 whenever B < C. For any B,C ∈ Bpc with

B < C let iCB be the inclusion map from AB into AC . Then

pC(iCB(a)) = pC(a) ≤ µk′pB(a)
k′
k

for each a ∈ AB . Therefore iCB is continuous by Theorem III.2.10 from [5] whenever

B < C. Hence, (AB ; iCB ;Bpc) is an inductive system of locally bounded Fréchet algebras

AB with continuous monomorphisms.

Let now O be a neighbourhood of zero in A, γ a positive number such that B ⊂ γO

and O′ = {a ∈ AB : pB(a) < γ−k}. Then O′ is a neighbourhood of zero in AB in the

topology defined by pB and O′ ⊂ γ−1B ⊂ O. Therefore the inclusion map iB from AB
into A is continuous. Since A = ∪{AB : B ∈ Bpc} by Proposition 2.3, A is the inductive

limit of the system (AB; iCB ;Bpc).

Corollary 3.2. If k ∈ [0, 1], then every commutative sb-complete locally k-convex Haus-

dorff algebra with bounded elements is representable in the form of an (algebraic) inductive

limit of an inductive system of k-Banach algebras with continuous monomorphisms.

4. Relations between the spectral radius and the radius of boundedness. It is

well known (see, for example, [3], [6], [7], [8], [9] and [10]) that there are locally pseu-

doconvex algebras A for which rA(a) = βA(a), rA(a) < βA(a) or rA(a) > βA(a) for all

a ∈ A as well as there are topological algebras A for which rA(a) = 0 and βA(a) = +∞
or rA(a) = +∞ and βA(a) is finite for some a ∈ A. To describe these classes of topo-

logical (not necessarily locally pseudoconvex) algebras A for which rA(a) ≤ βA(a) and

rA(a) = βA(a) for each a ∈ A we first prove

Proposition 4.1. Let A be a commutative complete locally m-pseudoconvex Hausdorff

algebra over C. Then rA(a) = βA(a) for each a ∈ Ab.

Proof. Let {pλ : λ ∈ Λ} be a saturated family of kλ-homogeneous submultiplicative

seminorms (with kλ ∈ (0, 1] for each λ ∈ Λ) which defines the topology of A. First we

assume that A is a unital algebra. Let a ∈ Ab and ν be a positive number such that

βA(a) < ν. Then S(a, ν) is bounded in A. Therefore for each λ ∈ Λ there is a positive

number µλ such that

pλ

(
1

µλ

(
a

ν

)n)
< 1

for each n ∈ N. Hence kλn
√
pλ(an) < µ

1
n

λ ν for each λ ∈ Λ and n ∈ N. Thus

rA(a) = sup
λ∈Λ

lim
n→∞

kλn
√
pλ(an) ≤ ν

by Proposition 12 from [2]. Consequently, rA(a) ≤ βA(a).

If rA(a) = ∞ for some a ∈ A, then βA(a) ≤ rA(a). Let now a ∈ A and ν be a

positive number such that rA(a) < ν. Then rA((a/ν)n) < 1 for each n ∈ N, because
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rA(an) = rA(a)
n

for6 each a ∈ A and n ∈ N. Therefore

Tλ = lim
n→∞

kλn

√
pλ

((
a

ν

)n)
< 1

for each λ ∈ Λ. Now for each λ ∈ Λ there is a number ηλ such that Tλ < ηλ < 1. Then

for each λ ∈ Λ there is an nλ ∈ N such that

pλ

((
a

ν

)n)
< ηnkλλ

whenever n > nλ. Hence, (
∑

(a/ν)k) converges in A. Thus, the set S(a, ν) is bounded

in A. Now from βA(a) < ν it follows that βA(a) ≤ rA(a).

Let now A be an algebra without unit element. Then the unitization A× C of A (in

the topology defined by the family {qλ : λ ∈ Λ} of kλ-homogeneous seminorms, where

qλ((a, µ)) = pλ(a) + |µ|kλ

for each λ ∈ Λ and (a, µ) ∈ A × C) is a unital commutative complete locally m-pseudo-

convex Hausdorff algebra. Therefore rA(a) = rA×C((a, 0)) = βA×C((a, 0)) = βA(a) for

each a ∈ A.

Theorem 4.2. If either

(a) A is a sa-complete topological algebra which has the property

if βA(a) < 1, then
( n∑

k=1

an
)

is a Cauchy sequence in A; (4)

or

(b) A is a topological algebra in which QinvA is a bornivore,

then rA(a) ≤ βA(a) for each a ∈ A. Moreover, if

(c) A is a sb-complete Hausdorff algebra over C with bounded elements and the von

Neumann bornology of A is pseudoconvex,

then rA(a) = βA(a) for each a ∈ A.

Proof. a) Let a ∈ A. If βA(a) = ∞, then rA(a) ≤ βA(a). Let now ρ > 0 be a number

such that βA(a) < ρ. Then βA(a/ρ) < 1. Therefore the sequence ((a/ρ)n) vanishes in A

and (Sn), where

Sn = −
n∑

k=1

(
a

ρ

)k

for each n ∈ N, is a Cauchy sequence in A by (4). Since

Sn ◦
a

ρ
=
a

ρ
◦ Sn =

(
a

ρ

)n+1

, (5)

6The proof of this statement is similar to the proof in case of complete locally m-convex

algebras using here Arens-Michael teorem for complete locally m-pseudoconvex algebras (see

[5], Theorem 4.5.3, or [1], Theorem 5) and the fact that every locally bounded Fréchet algebra

has the functional spectrum (see [2], Theorem 12).



TOPOLOGICAL ALGEBRAS WITH PSEUDOCONVEXLY BOUNDED ELEMENTS 31

(Sn) is an advertibly convergent Cauchy sequence in A. Hence, (Sn) converges in A.

This means that a/ρ ∈ QinvA or ρ 6∈ spA(a) by (5). Consequently, rA(a) < ρ. Thus,

rA(a) ≤ βA(a).

Next let A be a topological algebra in which QinvA is a bornivore and let a ∈ A be

such that βA(a) < 1. Then there is a number µ such that βA(a) < µ < 1. Since β( aµ ) < 1,

the set S(a, µ) is bounded in A. Let B′ be a balanced bounded subset of A such that

S(a, µ) ⊂ B′ and for each ε > 0 let nε ∈ N be such that µn < ε whenever n > nε.

Then an ∈ εB′ whenever n > nε. Thus, (an) Mackey converges to θA. Let Sn =
∑n

k=1 a
k

for each n ∈ N. Since Sn ◦ a = a ◦ Sn = an+1, it follows that (Sn ◦ a) and (a ◦ Sn)

Mackey converge to θA. Therefore for any ε > 0 there is a mε ∈ N such that Sn ◦ a ∈ εB′
and a ◦ Sn ∈ εB′ whenever n > mε. As QinvA is a bornivore in A, there is a positive

number ρ such that B′ ⊂ ρQinvA. If now n0 > mε and ε < 1
ρ , then Sn0

◦ a ∈ QinvA and

a ◦ Sn0
∈ QinvA. Hence a ∈ QinvA or 1 6∈ spA(a). Consequently, rA(a) < 1. This means

that rA(a) ≤ β(a) for each a ∈ A.

Let now A be a commutative topological algebra which has the property (c) and let

a ∈ A. Then A = ∪{AB : B ∈ Bpc} by Proposition 2.3, where every AB is a commutative

k-Banach algebra for some k ∈ (0, 1]. Therefore

rA(a) = inf{rAB : B ∈ I(a)} = inf{βAB (a) : B ∈ I(a)} = βA(a)

by Corollary 2.4 and Propositions 2.8 and 4.1.

If A is not commutative, then let C be a maximal commutative subalgebra of A. Then

C has the property (c) and rA(a) = rC(a) = βC(a) = βA(a), because spA(a) = spC(a)

for each a ∈ C.

Corollary 4.3. If either

(a) A is a sa-complete locally pseudoconvex algebra or

(b) A is a Mackey Q-algebra,

then rA(a) ≤ βA(a) for each a ∈ A.

Proof. Let {pλ : λ ∈ Λ} be a saturated family of kλ-homogeneous seminorms (with

kλ ∈ (0, 1] for each λ ∈ Λ) which defines the topology of A. If a ∈ A and βA(a) < 1, then

there is a number ρ such that βA(a) < ρ < 1. Since

βA(a) = sup
λ∈Λ

lim sup
n→∞

kλn
√
pλ(an)

for locally pseudoconvex algebras (see [7]), pλ(an) < (ρkλ)n for each n ∈ N and λ ∈
Λ. Therefore (

∑n
k=1 a

n) is a Cauchy sequence in A. Hence, the condition (4) has been

satisfied. If now A is a Mackey Q-algebra, then QinvA is a bornivore in A. Consequently,

in both cases rA(a) ≤ βA(a) for each a ∈ A by Theorem 4.2.

Corollary 4.4. Let k ∈ (0, 1] and A be a sb-complete locally k-convex Hausdorff algebra

over C with bounded elements. Then rA(a) = βA(a) for each a ∈ A.

Remark 4.5. Part (a) of Corollary 4.3 for unital sa-complete locally pseudoconvex al-

gebras and part (b) of Corollary 4.3 for unital locally k-convex Mackey Q-algebras for

some k ∈ (0, 1] have been proved in [8], Propositions 2.1 and 2.4; part (b) of Corollary
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4.3 has been proved in [7], Proposition 10; Corollary 4.4 for k = 1 has been proved in

[9], Proposition III.4 and similar results to parts (a) and (c) of Theorem 4.2 have been

proved in [18], Proposition 8. It is easy to show by Corollary 6 from [2] that Proposition

4.1 holds also for commutative advertibly complete locally m-pseudoconvex Hausdorff

algebras over C.
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