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Abstract. We continue the paper [Ts] on the boundedness of polynomials in the Volterra oper-

ator. This provides new ways of constructing power-bounded operators. It seems interesting to

point out that a similar procedure applies to the operators satisfying the Ritt resolvent condition:

compare Theorem 5 and Theorem 9 below.

1. Preliminaries. An operator A is called power-bounded if

sup
n≥0
‖An‖ <∞.

Denote by V the classical Volterra operator

(V f)(x) =

∫ x

0

f(s)ds, 0 < x < 1, on Lp(0, 1), 1 ≤ p ≤ ∞.

The more general Riemann–Liouville integral operator of fractional order α > 0 is defined

by

(Jαf)(x) =
1

Γ(α)

∫ x

0

(x− s)α−1f(s)ds, 0 < x < 1, on Lp(0, 1), 1 ≤ p ≤ ∞,

where Γ is the Euler gamma function. In particular, V = J1.
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Recall that the Ritt condition for the resolvent R(λ,A) = (λI − A)−1 of a bounded

operator A on a Banach space is

‖R(λ,A)‖ ≤ const

|λ− 1| , |λ| > 1,

which is equivalent to a geometric condition much stronger than the power boundedness

of A, namely,

sup
n≥0

n‖An −An+1‖ <∞

has to be added to the power boundedness of A, see [NaZe], [Ne]. Examples are the

operators I − Jα with 0 < α < 1, see [Ly]. In particular, the geometric characterization

in terms of the behaviour of the powers gives easily the following:

Proposition 1. Let A and B be two commuting Ritt operators. Then their product AB

is also a Ritt operator.

If the operator A is merely power-bounded, then the weaker Kreiss condition

‖R(λ,A)‖ ≤ const

|λ| − 1
, |λ| > 1,

holds, but not conversely in general.

The behaviour of the consecutive powers has been studied in [Ly], [Ne] and [ToZe].

We shall need the following simple facts (see [Ts]):

Proposition 2. Let A and B be two commuting power-bounded operators on a Banach

space, 0 ≤ t ≤ 1. Then the convex combination tA+ (1− t)B is a power-bounded opera-

tor.

Proposition 3. Let σ(Q) = {0}. If I−Q satisfies the Ritt condition, then so does I−tQ
for t ≥ 0. Consequently, (1− t)I + t(I −Q)2 is a Ritt operator for t ≥ 0.

2. The results

Lemma 4. The resolvent for aV + bV 2 (a and b constants) is

(R(λ, aV + bV 2)f)(x) =
f(x)

λ

+
1√

a2 + 4bλ

(
a+
√
a2 + 4bλ

2λ

)2 ∫ x

0

e
a+
√
a2+4bλ
2λ (x−s)f(s)ds

− 1√
a2 + 4bλ

(
a−
√
a2 + 4bλ

2λ

)2 ∫ x

0

e
a−
√
a2+4bλ
2λ (x−s)f(s)ds,

where λ ∈ C \ {0} and σ(aV + bV 2) = {0}.
Proof. Let C∞(0, 1) be the space of infinitely differentiable functions on (0, 1). If f ∈
C∞(0, 1), then the equation

((λI − aV − bV 2)g)(t) = f(t)

is equivalent to the differential equation

λg′′(t)− ag′(t)− bg(t) = f ′′(t),
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which is satisfied by

g(x) = (R(λ, I − aV − bV 2)f)(x)

=
f(x)

λ
+

1√
a2 + 4bλ

(
a+
√
a2 + 4bλ

2λ

)2 ∫ x

0

e
a+
√
a2+4bλ
2λ (x−s)f(s)ds

− 1√
a2 + 4bλ

(
a−
√
a2 + 4bλ

2λ

)2 ∫ x

0

e
a−
√
a2+4bλ
2λ (x−s)f(s)ds.

Note that C∞(0, 1) is dense in Lp(0, 1) (1 ≤ p ≤ ∞).

Theorem 5. The operator I − aV + bV 2 is power-bounded on L2(0, 1) for a > 0 and

b ≥ 0 (and also for a = b = 0).

Proof. Case 0 ≤ b ≤ a2/4. We can write

I − aV + bV 2 =

(
I − a−

√
a2 − 4b

2
V

)(
I − a+

√
a2 − 4b

2
V

)
,

and use [Ts, Theorem 1].

Case b > a2/4. Note that (I − at
2 V )2 is power-bounded for each t > 0, by [Ts,

Theorem 1]. It then follows from Proposition 1 that

(1− λ)I + λ

(
I − atV +

a2t2

4
V 2

)
= I − λatV +

λa2t2

4
V 2

is power-bounded for 0 < λ < 1. So, t = 1/λ with t = 4b/a2 > 1 proves the claim.

Proposition 6. The operator I − aV + zV 2 (z ∈ C) is not power-bounded on L2(0, 1),

for a < 0, and also for a > 0 and z ∈ C \ [0,∞), or a = 0 and z 6= 0.

Proof. Using Lemma 4 we obtain

−(R(λ, I − aV − zV 2)f)(x) = (R(1− λ, aV + zV 2)f)(x)

=
f(x)

1− λ +
1√

a2 + 4z(1− λ)

(
a+

√
a2 + 4z(1− λ)

2(1− λ)

)2 ∫ x

0

e
a+
√
a2+4z(1−λ)
2(1−λ)

(x−s)f(s)ds

− 1√
a2 + 4z(1− λ)

(
a−

√
a2 + 4z(1− λ)

2(1− λ)

)2 ∫ x

0

e
a−
√
a2+4z(1−λ)

2(1−λ)
(x−s)f(s)ds

where λ 6= 1. Analyzing the behaviour of these expressions as λ → 1+, we see that the

resolvent R(λ, I − aV − zV 2) does not satisfy the Kreiss condition on L2(0, 1). See also

[Ts, Theorem 3].

Theorem 7. Let m ≥ 1 be fixed. The operator

Lm(V ) =
m∑

k=0

(
m

k

)
(−1)k

V k

k!

is power-bounded on L2(0, 1).

Proof. Recall that the zeros of the Laguerre polynomials Lm(·) are real, positive and

simple (see [MaOb, p. 84] or [Sz, p. 122]). Suppose that a1, a2, . . . , am are the zeros of

the Laguerre polynomial Lm. We can write
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m!Lm(V ) = (a1 − V )(a2 − V ) . . . (am − V )

=

(
I − 1

a1
V

)(
I − 1

a2
V

)
. . .

(
I − 1

am
V

) m∏

i=1

ai.

It is clear that
∏m
i=1 ai = m!. Hence Lm(V ) is power-bounded by [Ts, Theorem 1].

Theorem 8. The operator I − V 1/2 + bV is power-bounded on L2(0, 1), for b ∈ R.

Proof. Case 0 ≤ b ≤ 1/4. We can write

I − V 1/2 + bV =

(
I − 1 +

√
1− 4b

2
V 1/2

)(
I − 1−

√
1− 4b

2
V 1/2

)
,

and use Proposition 3. Note that V 1/2 = J1/2, hence I − V 1/2 is a Ritt operator.

Case b > 1/4. It follows from Proposition 2, and from the power boundedness of

(I − t
2V

1/2)2, t > 0 (see Proposition 3), that

(1− λ)I + λ

(
I − tV 1/2 +

t2

4
V

)
= I − λtV 1/2 +

λt2

4
V

is power-bounded for 0 < λ < 1. So, λ = 1/t with t = 4b > 1 proves the claim.

Case b < 0. It follows from Proposition 2, the power boundedness of I−aV 1/2 (a > 0,

see Proposition 3) and I − tV (t > 0, [Ts, Theorem 1]) that

(1− λ)(I − aV 1/2) + λ(I − tV ) = I − a(1− λ)V 1/2 − λtV
is power-bounded for 0 < λ < 1. We choose a = 1/(1− λ), with 0 < λ = −b/t < 1, which

is possible for a sufficiently large t > 0. The proof is complete.

Theorem 9. Let σ(Q) = {0}. If I − Q is a Ritt operator, then so is the operator I −
aQ+ bQ2 for a > 0 and b ≥ 0 (and also for a = b = 0).

Proof. If a2 ≥ 4b ≥ 0, we can write

I − aQ+ bQ2 =

(
I − a−

√
a2 − 4b

2
Q

)(
I − a+

√
a2 − 4b

2
Q

)
,

where both the factors are Ritt operators, by Proposition 3, hence so is their product, by

Proposition 1.

Suppose that 0 < a2 < 4b. Let 0 < s < 1 and t > 0. By Proposition 3,

(1− s)I + s

(
1− at

2
Q

)2

= I − astQ+
a2st2

4
Q2

is a Ritt operator. Choosing s = 1/t with t = 4b/a2 > 1, we get the result.

Proposition 10 ([Al]). Let σ(Q) = {0}. If the operators I − Q and I + Q are power-

bounded, then Q = 0.

Proof. We can write

Q = Q

(
I −Q+ I +Q

2

)n
=

1

2n

n∑

k=0

(
n

k

)
(I −Q)n−kQ(I +Q)k.
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Observe that, for large n, either (I−Q)n−kQ or Q(I+Q)k is small, by [Es, Theorem 9.1],

while the remaining operator powers (actually both (I+Q)k and (I−Q)n−k) are bounded,

by assumption. It follows that Q = 0.

Remarks

Remark 11. Let

Mn(T ) =
I + T + . . .+ Tn−1

n
.

The operator I − V is not power-bounded on L1(0, 1) (‖(I − V )n‖ is of order n1/4),

but ‖Mn(I − V )‖ is bounded; see ([Hi], [ToZe]). It can be shown that ‖Mn(I − tV )‖ is

bounded, with respect to n, for each fixed t > 0. Indeed, an argument similar to that for

Proposition 3 (see [Ts, Proposition 2]) shows that the resolvent of the operator I−tV , for

a fixed t > 0, remains uniformly Abel bounded on the half-line λ > 1, which is equivalent

to the Cesàro boundedness of I − tV (see [MoSaZe, Theorem 3.1]). Thus, we see one

more advantage of the resolvent characterizations of various geometric properties of the

powers.

Remark 12. Observe that the power-boundedness in Theorem 8 for b < 0 is due to the

fact that the operator I − V 1/2 satisfies the Ritt condition (which makes it possible to

use Proposition 3).

Remark 13. In Theorem 5, for a > 0 and b > a2/4, the operator is a product of two

operators of the form I−zV , with z 6∈ R, that are not power-bounded by [Ts, Theorem 1].

Nevertheless their product is power-bounded.

Remark 14. Let σ(Q) = {0}. Suppose that the operators I −Q and I −Q2 are power-

bounded. Does it follow that I −Q+ tQ2 is power-bounded for t ∈ R? This would be a

generalization of Theorem 8. What about the operators in Theorem 9, for other values

of a and b?

Remark 15. Let m be fixed. Observe that the operator Lm(Jα), for 0 < α < 1, satisfies

the Ritt condition on Lp(0, 1), for 1 ≤ p ≤ ∞, by [Ly], Propositions 1 and 3, and the

proof of Theorem 7, but not for α = 1 and m = 1. However, by Theorem 7 and [Es,

Theorem 9.1] we know that

lim
k→∞

‖Lm(V )k − Lm(V )k+1‖ = 0.

What is the rate of this convergence? Does it depend on m?

Remark 16. Suppose that A satisfies the Kreiss condition. Does it follow that also A2

is a Kreiss operator?
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