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100 A. NARLOCH

ε ∈ (0, 1) and z ∈ S(X) there exists δ(ε, z) ∈ (0, 1) suh that inequality ‖y + εz/2‖ 6

1 − δ(ε, z) holds whenever y ∈ B(X) and ‖y + εz‖ 6 1.Reall that if a Banah spae X is URED, then it has normal struture and so it hasthe weak �xed point property (see [CCHS℄).Let (T, Σ, µ) be a omplete and σ-�nite measure spae and L0 = L0(T, Σ, µ) be thespae of all (equivalene lasses of) Σ-measurable real funtions de�ned on T .A Banah spae (E, ‖ ‖E) is said to be a Köthe spae (see [KA℄) if E ⊂ L0 and:(i) for every x ∈ L0 and y ∈ E with |x(t)| 6 |y(t)| for µ-a.e. t ∈ T , we have x ∈ Eand ‖x‖E 6 ‖y‖E ,(ii) there is a funtion x ∈ E suh that x(t) > 0 for any t ∈ T .By E+ we denote the positive one of E, that is, E+ = {x ∈ E : x > 0}.A Köthe spae E is said to be uniformly monotone if for any ε ∈ (0, 1) there is
δ(ε) ∈ (0, 1) suh that ‖x− y‖E 6 1− δ(ε) whenever 0 6 y 6 x, ‖x‖E = 1 and ‖y‖E > ε.For the onditions that are equivalent to this de�nition we refer to [HKM2℄.We say that a Köthe spae E has the Fatou property (E ∈ (FP ) for short) if for any
x ∈ L0 and (xn) in E+ suh that xn ↑ |x| µ-a.e. and supn ‖xn‖E < ∞, we have x ∈ Eand ‖xn‖E → ‖x‖E (see [Bi℄ and [KA℄).A point x ∈ E is said to have order ontinuous norm if for any sequene (yn) in Esuh that 0 6 yn 6 |x| (n ∈ N) and yn → 0 µ-a.e., we have ‖yn‖E → 0. If every point of
E has order ontinuous norm, then we say that the spae E is order ontinuous.A point x ∈ E is said an Hµ-point if for any sequene (xn) ⊂ E suh that xn → xloally in measure and ‖xn‖E → ‖x‖E , we have ‖xn − x‖E → 0. If every point x ∈ Eis Hµ-point, then we say that the spae E has Hµ-property (see [HM℄).A funtion ϕ : [0,∞) → [0,∞] is said to be an Orliz funtion if ϕ is onvex, vanishingand ontinuous at zero, left ontinuous on (0,∞) and not identially equal to zero (see[Ch℄, [KR℄, [Lu℄, [Ma℄, [Mu℄ and [RR℄). If the Orliz funtion ϕ vanishes only at zero, thenwe will write ϕ > 0 and if ϕ takes only values from [0,∞), then we will write ϕ < ∞.Given a real Köthe spae E and an Orliz funtion ϕ, we de�ne on L0 the onvexmodular

̺ϕ(x) =

{

‖ϕ ◦ |x| ‖E if ϕ ◦ |x| ∈ E,

∞ otherwise.The Calderón-Lozanovski�� spae Eϕ generated by the ouple (E, ϕ) is de�ned as the setof those x ∈ L0 suh that ̺ϕ(λx) < +∞ for some λ > 0. The norm in Eϕ is de�ned by
‖x‖ϕ = inf{λ > 0 : ̺ϕ(x/λ) 6 1}(see [CHM℄ and [Ma℄; f. [Ca℄ and [Lo℄). If E has the Fatou property, then also Eϕ hasthis property, whene it follows that Eϕ is a Banah spae. This lass of Köthe spaes is asublass of the more general lass of Köthe spaes Ψ(E, F ) that are interpolation spaesbetween two Köthe spaes E and F over the same measure spae generated by onaveand homogeneous funtions Ψ : R+ ×R+ → R+. Köthe spaes onstruted in suh a wayby Lozanovski�� (see [Lo℄) are generalizations of the interpolation spaes onstruted byCalderón (see [Ca℄).



CALDERÓN-LOZANOVSKĬI SPACES 101In the remaining part of the paper we will assume that E is a Köthe spae with theFatou property.We say an Orliz funtion ϕ satis�es ondition ∆2(0) (ϕ ∈ ∆2(0) for short) if thereexist K > 0 and u0 > 0 suh that 0 < ϕ(u0) and the inequality ϕ(2u) 6 Kϕ(u) holds forall u ∈ [0, u0].We say a funtion ϕ satis�es ondition ∆2(∞) (ϕ ∈ ∆2(∞) for short) if there exist
K > 0 and u0 > 0 suh that ϕ(u0) < ∞ and the inequality ϕ(2u) 6 Kϕ(u) holds for all
u > u0.If there exists K > 0 suh that ϕ(2u) 6 Kϕ(u) for all u > 0, then we say that ϕsatis�es ondition ∆2(R+) (ϕ ∈ ∆2(R+) for short).For a Köthe spae E and an Orliz funtion ϕ we say that ϕ satis�es ondition ∆E

2(ϕ ∈ ∆E
2 for short) if:1) ϕ ∈ ∆2(0) whenever E →֒ L∞,2) ϕ ∈ ∆2(∞) whenever L∞ →֒ E,3) ϕ ∈ ∆2(R+) whenever neither L∞ →֒ E nor E →֒ L∞(see [HKM1℄).Lemma 1. If Eϕ is a Calderón-Lozanovski�� spae and x ∈ Eϕ, then:

(i) if ‖x‖ϕ 6 1, then ̺ϕ(x) 6 ‖x‖ϕ,
(ii) if ‖x‖ϕ > 1, then ̺ϕ(x) > ‖x‖ϕ.Lemma 2 (see [CHM℄, [FH1℄ and [FH2℄). If ϕ is an Orliz funtion suh that ϕ < ∞,

ϕ ∈ ∆E
2 and E is a Köthe spae, then for any x ∈ Eϕ and any sequene (xn) in Eϕ, wehave:

(i) ̺ϕ(x) = 1 whenever ‖x‖ϕ = 1,
(ii) ̺ϕ(xn) → 1 whenever ‖xn‖ϕ → 1,
(iii) ̺ϕ(λx) < ∞ for any λ > 0.Lemma 3 (see [CHM℄, [FH1℄ and [FH2℄). Let ϕ be an Orliz funtion suh that ϕ > 0and ϕ ∈ ∆E

2 . Then for any sequene (xn) in the Calderón-Lozanovski�� spae Eϕ, we have
‖xn‖ϕ → 0 whenever ̺ϕ(xn) → 0.Remark 1. For any real numbers a, b we have:

(i) if ab > 0, then |a + b| = |a| + |b| and |a − b| = | |a| − |b| |,
(ii) if ab < 0, then |a + b| = | |a| − |b| | and |a − b| = |a| + |b|.ResultsProposition 1. Let E be a uniformly monotone Köthe spae and ϕ be an Orliz funtionwith ϕ > 0, ϕ < ∞ and ϕ ∈ ∆E

2 . If E is fully k-rotund, then Eϕ is fully k-rotund (k > 2).Proof. Let (xn) be a sequene in B(Eϕ) suh that(1) ‖x(1)
n + x(2)

n + · · · + x(k)
n ‖ϕ → k as n → ∞



102 A. NARLOCHfor any subsequenes (x
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CALDERÓN-LOZANOVSKĬI SPACES 103Using again Remark 1, we get the inequalities
‖ |xm| − |xl| ‖ϕ + ‖(|xm| + |xl|)χAml

− |xm + xl|χAml
‖ϕ

> ‖ | |xm| − |xl| |χT\Aml
+ | |xm| − |xl| |χAml

+ (|xm| + |xl|)χAml
− |xm + xl|χAml

‖ϕ

= ‖ | |xm| − |xl| |χT\Aml
+ (|xm| + |xl|)χAml

‖ϕ

> ‖ |xm − xl|χT\Aml
+ |xm − xl|χAml

‖ϕ = ‖ |xm − xl| ‖ϕ = ‖xm − xl‖ϕ,whih, by (3) and (5), yield
‖xm − xl‖ϕ → 0 as m, l → ∞.Analogously we an proveProposition 2. Let E be a uniformly monotone Köthe spae and ϕ be an Orliz funtionwith ϕ > 0, ϕ < ∞ and ϕ ∈ ∆E

2 . If E is ompatly fully k-rotund, then Eϕ is ompatlyfully k-rotund (k > 2).Remark 2. In the proof of Proposition 1 it is shown that for any Köthe spae E if thepositive one E+ is (ompatly) fully k-rotund and E is uniformly monotone, then E is(ompatly) fully k-rotund.Proposition 3. If E is a uniformly monotone Köthe spae and ϕ is a stritly onvexOrliz funtion satisfying the ∆E
2 -ondition, then Eϕ is a URED-spae.Proof. Let us �x ε ∈ (0, 1) and z ∈ εS(Eϕ). Let y ∈ B(Eϕ) be suh that ‖y + z‖ϕ 6 1.Sine the spae E is uniformly monotone, ϕ ∈ ∆E

2 and ϕ is stritly onvex, so Eϕ isuniformly monotone (see [CHM℄) and in onsequene, Eϕ is order ontinuous (see [Bi℄).Therefore, we an �nd a measurable set A with positive �nite measure and a number
k > 0 suh that

1/k 6 |z(t)| 6 k for any t ∈ A and ‖zχA‖ϕ > 4ε/5.Now we see that χA ∈ E and, sine ϕ > 0, we have ̺ϕ(zχA) > 0. Note that ̺ϕ(y) 6

‖y‖ϕ 6 1 (see Lemma 1). In the following we will onsider two ases separately.
1◦ Assume �rst that A is not an atom. Let U be an arbitrary subset of A suhthat 0 < µ(U) < µ(A). Sine E is a stritly monotone spae (beause it is uniformlymonotone), we have

‖χA‖E − ‖χU‖E =: δ1 > 0.Let us hoose l > 0 suh that
ϕ(l)‖χU‖E > 1and de�ne B = {t ∈ A : |y(t)| 6 l}. If we suppose that ‖χA\B‖E > ‖χU‖E , then we have

̺ϕ(y) > ̺ϕ(yχA\B) = ‖ϕ ◦ |y|χA\B‖E > ϕ(l)‖χA\B‖E > ϕ(l)‖χU‖E > 1,a ontradition. Therefore, ‖χA\B‖E 6 ‖χU‖E , and, in onsequene,
‖χB‖E = ‖χA − χA\B‖E > ‖χA‖E − ‖χA\B‖E > ‖χA‖E − ‖χU‖E = δ1and

̺ϕ(zχB) = ‖ϕ ◦ |z|χB‖E > ϕ(1/k)‖χB‖E > ϕ(1/k)δ1 =: δ2 > 0.
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2◦ Now we onsider the ase when A is an atom. Let l > 0 be suh that
ϕ(l)‖χA‖E > 1.Denote again B = {t ∈ A : |y(t)| 6 l}. If µ(A \ B) = µ(A), then χA = χA\B and

̺ϕ(y) > ̺ϕ(yχA\B) = ‖ϕ ◦ |y|χA\B‖E = ‖ϕ ◦ |y|χA‖E > ϕ(l)‖χA‖E > 1.But we have ̺ϕ(y) 6 ‖y‖ϕ 6 1. Therefore, µ(A) = µ(B) and ̺ϕ(zχB) = ̺ϕ(zχA) > 0.We have shown that there exist numbers l, δ > 0 (independent of y) suh that, forthe set C = {t ∈ A : |y(t)| 6 l}, we have(6) ̺ϕ(zχC) > δ.Observe that
max{|y(t) + z(t)|, |y(t)|} 6 k + land

|(y(t) − z(t)) − y(t)| = |z(t)| > 1/kfor µ-a.e t ∈ C. So, by strit onvexity of ϕ there exists p ∈ (0, 1), depending on k, l (i.e.depending on z and ε) only, suh that
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2 -ondition for ϕ there exists β > 0, depending only on η, suh that

‖x‖ϕ 6 1 − β whenever ̺ϕ(x) 6 1 − η for any x ∈ Eϕ. Finally, we have
∥

∥

∥

∥

y +
1

2
z

∥

∥

∥

∥

ϕ

6 1 − β.If E →֒ L∞, then ‖x‖∞ 6 M for every x ∈ B(Eϕ) and some M > 0. Sine ϕ ∈ ∆E
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‖y + z/2‖ϕ < 1 − β1.The remaining ase when neither L∞ →֒ E nor E →֒ L∞ is analogous and even easier tohandle beause the ∆E
2 -ondition means in this ase the ∆2-ondition on the whole R+.We say that x ∈ E+ is an H+

µ -point if for any sequene (xn) in E+ suh that xn

µ (lo)
−−→ x(loally in measure) and ‖xn‖E → ‖x‖E , we have ‖xn − x‖E → 0. If all points x ∈ E+are H+

µ -points, then we say that E has H+
µ -property.In Proposition 1 in [HM℄ it was proved that any order ontinuous Köthe spae hasthe Hµ-property if and only if it has the H+
µ -property. The next lemma is a loal versionof that proposition.Lemma 4. For any order ontinuous Köthe spae E, a point x ∈ E is an Hµ-point ifand only if |x| is an H+

µ -point.Proof. Su�ieny. We may assume that x ∈ S(E). Let (xn) be an arbitrary sequene in
E suh that(10) xn

µ (lo)
−−→ x and ‖xn‖E → 1 = ‖x‖E .We will show that ‖xn −x‖E → 0 (by the assumption that |x| is an H+

µ -point). Observethat ondition xn

µ (lo)
−−→ x yields

|xn|
µ (lo)
−−→ |x|.



106 A. NARLOCHThe point |x| is an H+
µ -point, so we have

‖ |xn| − |x| ‖E → 0Therefore, there exist y ∈ E+ and an inreasing sequene (nk) of natural numbers suhthat(11) | |xnk
| − |x| | 6 yfor any k ∈ N (see Lemma 2 in [KA℄, p. 141). We may assume additionally that(12) xnk

→ x µ-a.e. on T .Applying (11) we have the inequality(13) |xnk
− x| 6 y + 2|x|for any k ∈ N. Conditions (12) and (13) together with the order ontinuity of E give

‖xnk
− x‖E → 0.Now it remains to apply the double extrat subsequene theorem to obtain

‖xn − x‖E → 0and to end the proof of su�ieny.Neessity. Let x be an Hµ-point and (xn) be an arbitrary sequene in E+ suh that
xn

µ (lo)
−−→ |x| and ‖xn‖E → ‖x‖E . De�ne yn := fxn (n ∈ N), where f(t) = 1 if x(t) > 0and f(t) = −1 if x(t) < 0 (t ∈ T ). Then, we have

|yn − x| = |fxn − f |x| | = |xn − |x| |for any n ∈ N. Therefore, yn

µ (lo)
−−→ x. Moreover, ‖yn‖E = ‖xn‖E → ‖x‖E . So, ‖yn−x‖E →

0 and in onsequene, ‖xn − |x| ‖E → 0. This means that |x| is an H+
µ -point.Proposition 4. Let E be an order ontinuous Köthe spae and ϕ be an Orliz funtionwith ϕ > 0, ϕ < ∞ and ϕ ∈ ∆E

2 . An element x ∈ Eϕ is an Hµ-point if and only if ϕ ◦ |x|is an H+
µ -point in E.Proof. Su�ieny. Without loss of generality, we may assume that x ∈ S(Eϕ). The orderontinuity of E and onditions ϕ > 0 and ϕ ∈ ∆E

2 imply that Eϕ is order ontinuous (see[FH1℄). Therefore, by Lemma 4, it su�es to show that |x| is H+
µ -point. Let (xn) be anarbitrary sequene in E+

ϕ suh that(14) xn

µ (lo)
−−→ |x| and ‖xn‖ϕ → 1.So, in view of ϕ ∈ ∆E

2 and ϕ < ∞, we have
̺ϕ(xn) = ‖ϕ ◦ xn‖E → 1 = ‖ϕ ◦ |x| ‖E(see Lemma 2). Condition (14) also yields(15) ϕ ◦ xn

µ (lo)
−−→ ϕ ◦ |x|.Indeed, if xn

µ (lo)
−−→ |x|, then xnk

→ |x| µ-a.e. on T for some inreasing sequene (nk) ofnatural numbers. Hene, by ontinuity of the funtion ϕ, we get ϕ◦xnk
→ ϕ◦|x| µ-a.e. on
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T whih implies ϕ ◦ xnk

µ (lo)
−−→ ϕ ◦ |x|. Applying the double extrat subsequene theoremwe obtain ondition (15).The element ϕ ◦ |x| is an H+

µ -point in E, so we obtain
‖ϕ ◦ xn − ϕ ◦ |x| ‖E → 0and in onsequene,

̺ϕ(xn − |x|) = ‖ϕ ◦ |xn − |x| | ‖E 6 ‖ϕ ◦ xn − ϕ ◦ |x| ‖E → 0,by superadditivity of ϕ on R+. But ϕ ∈ ∆E
2 and ϕ > 0, so

‖xn − x‖ϕ → 0(see Lemma 3), whih means that |x| is an H+
µ -point.Neessity. We may assume that x ∈ S(Eϕ). Then, by ϕ ∈ ∆E

2 and ϕ < ∞, we have
‖ϕ ◦ |x| ‖E = 1. Let us hoose an arbitrary sequene (yn) in E+ suh that yn

µ (lo)
−−→ ϕ ◦ |x|and ‖yn‖E → 1. The funtion ϕ is an injetion, so we an de�ne xn := ϕ−1 ◦ yn for all

n ∈ N. We have xn ∈ E+
ϕ and ‖xn‖ϕ → 1 beause ̺ϕ(xn) = ‖yn‖E → 1 (see Lemma 1).Moreover, ondition yn

µ (lo)
−−→ ϕ◦|x|, ontinuity of ϕ−1 and the double extrat subsequenetheorem give
ϕ−1 ◦ yn = xn

µ (lo)
−−→ |x| = ϕ−1 ◦ ϕ ◦ |x|.From the assumption that x is an Hµ-point in Eϕ we have that |x| is an H+

µ -point in Eϕ(see Lemma 4), so
‖xn − |x| ‖ϕ → 0.By Lemma 2 in [KA℄ (page 141), there exist z ∈ E+

ϕ and an inreasing sequene (nk) ofnatural numbers suh that
|xnk

− |x| | 6 zfor all k ∈ N. Then, we have(16) xnk
+ |x| 6 z + 2|x| (k ∈ N).The onditions ϕ ∈ ∆E

2 , ϕ < ∞ and Lemma 2 yield ‖ϕ ◦ (z +2|x|)‖E < ∞, whih means,by E ∈ (FP ), that ϕ ◦ (z + 2|x|) ∈ E. Let (nm) be a subsequene of (nk) suh that(17) ynm
→ ϕ ◦ |x| µ-a.e. on T .Now, by ondition (16) and superadditivity of the funtion ϕ, we get

ynm
= ϕ ◦ xnm

= ϕ ◦ |(xnm
+ |x|) − |x| | 6 |ϕ ◦ |xnm

+ |x| | − ϕ ◦ |x| | 6

ϕ ◦ |xnm
+ |x| | + ϕ ◦ |x| 6 ϕ ◦ (z + 2|x|) + ϕ ◦ |x|.Therefore, the order ontinuity of E and ondition (17) imply that ‖ynm

−ϕ◦ |x| ‖E → 0.Finally, applying the double extrat subsequene theorem, we obtain ‖yn − |x| ‖E → 0,whih means that ϕ ◦ |x| is H+
µ -point in E.
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