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Abstract. Let E be an ideal of L0 over a σ-finite measure space (Ω, Σ, µ). For a real Banach

space (X, ‖ · ‖X) let E(X) be a subspace of the space L0(X) of µ-equivalence classes of strongly

Σ-measurable functions f : Ω → X and consisting of all those f ∈ L0(X) for which the scalar

function ‖f(·)‖X belongs to E. Let E(X)∼ stand for the order dual of E(X). For u ∈ E+ let

Du (= {f ∈ E(X): ‖f(·)‖X ≤ u}) stand for the order interval in E(X). For a real Banach

space (Y, ‖ · ‖Y ) a linear operator T : E(X) → Y is said to be order-bounded whenever for each

u ∈ E+ the set T (Du) is norm-bounded in Y . In this paper we examine order-bounded operators

T : E(X) → Y . We show that T is order-bounded iff T is (τ(E(X),E(X)∼), ‖·‖Y )-continuous. We

obtain that every weak Dunford-Pettis operator T : E(X) → Y is order-bounded. In particular,

we obtain that if a Banach space Y has the Dunford-Pettis property, then T is order-bounded

iff it is a weak Dunford-Pettis operator.

1. Introduction and preliminaries. P. G. Dodds [D] introduced and examined order-

bounded operators from a vector lattice E to a Banach space Y . Recall that a linear

operator T : E → Y is called order-bounded if the set T ([−u, u]) is norm-bounded in Y

for every 0 ≤ u ∈ E. M. Duboux [Du] extended some of Dodd’s results to the setting

of Y being a locally convex space. Next, Z. Ercan [E] obtained some properties of order-

bounded operators from a vector lattice E to a topological vector space Y .

In this paper we consider order-bounded operators from a vector-valued function space

E(X) to a Banach space Y .

For the terminology concerning vector lattices and function spaces we refer to [AB1],

[AB3] and [KA]. Given a topological vector space (L, τ) by (L, τ)∗ we will denote its
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topological dual. We denote by σ(L, K) and τ (L, K) the weak topology and the Mackey

topology for a dual system (L, K) resp. By N and R we will denote the sets of all natural

and real numbers.

Throughout the paper we assume that (Ω, Σ, µ) is a complete σ-finite measure space

and L0 denotes the corresponding space of µ-equivalence classes of all Σ-measurable real

valued functions. Let χA stand for the characteristic function of a set A. Let E be an

ideal in L0 with supp E = Ω and let E∼ stand for the order dual of E.

Let (X, ‖ · ‖X) be a real Banach space and let SX stand for the unit sphere of X. By

L0(X) we denote the set of µ-equivalence classes of all strongly Σ-measurable functions

f : Ω → X. For f ∈ L0(X) let us set f̃(ω) := ‖f(ω)‖X for ω ∈ Ω. Let

E(X) = {f ∈ L0(X): f̃ ∈ E}.

A subset H of E(X) is said to be solid whenever f̃1 ≤ f̃2 and f1 ∈ E(X), f2 ∈ H

imply f1 ∈ H. A linear topology τ on E(X) is said to be locally solid if it has a local base

at zero consisting of solid sets. A linear topology τ on E(X) that is at the same time

locally solid and locally convex will be called a locally convex-solid topology on E(X)

(see [N1]).

Recall that the algebraic tensor product E ⊗ X is the subspace of E(X) spanned by

the functions of the form u ⊗ x, (u ⊗ x)(ω) = u(ω)x, where u ∈ E, x ∈ X.

For each u ∈ E+ the set Du = {f ∈ E(X) f̃ ≤ u} will be called an order interval in

E(X) (see [BL]).

Following [D] we are now ready to define some class of linear operators.

Definition. Let E be an ideal of L0 and (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) real Banach spaces.

A linear operator T : E(X) → Y is said to be order-bounded whenever for each u ∈ E+

the set T (Du) is norm-bounded in Y .

Now we recall terminology concerning the duality theory of the function spaces E(X)

as set out in [B], [BL], [N1], [N2].

For a linear functional F on E(X) let us put

|F |(f) = sup{|F (h)|: h ∈ E(X), h̃ ≤ f̃ } for f ∈ E(X).

The set

E(X)∼ = {F ∈ E(X)#: |F |(f) < ∞ for all f ∈ E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of E(X)).

For F1, F2 ∈ E(X)∼ we will write |F1| ≤ |F2| whenever |F1|(f) ≤ |F2|(f) for all

f ∈ E(X). A subset A of E(X)∼ is said to be solid whenever |F1| ≤ |F2| with F1 ∈ E(X)∼

and F2 ∈ A imply F1 ∈ A.

Now we consider absolute weak topologies on E(X) and E(X)∼. For each F ∈ E(X)∼

let

ρF (f) = |F |(f) for f ∈ E(X).

Wedefine the absoluteweak topology σ|(E(X), E(X)∼) onE(X) as the locally convex topol-

ogy generated by the family {ρF : F ∈ E(X)∼} of seminorms. Then |σ|(E(X), E(X)∼)

is the topology of uniform convergence on sets of the form {G ∈ E(X)∼: |G| ≤ |F |} for

every F ∈ E(X)∼ (see [N1, Section 4]).
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For each f ∈ E(X) let

ρf (F ) = |F |(f) for F ∈ E(X)∼.

We define the absolute weak topology |σ|(E(X)∼, E(X)) on E(X)∼ as the locally convex

topology generated by the family {ρf : f ∈ E(X)} of seminorms. Clearly |σ|(E(X)∼, E(X))

is the topology of uniform convergence on the family of all order intervals Du, where

u ∈ E+.

In particular, if (E, ‖ · ‖E) is a Banach function space then the space E(X) provided

with the norm ‖f‖E(X) := ‖f̃‖E is a Banach space and it is usually called the Köthe-

Bochner space. It is well known that (E(X), ‖·‖E(X))
∗ = E(X)∼ (see [BL, §3, Lemma 12]).

2. Characterization of order-bounded operators. It is known that on every vector

lattice E one can define the so-called order-bounded topology τ0 as the finest locally

convex topology on E for which every order interval is a bounded set (see [Na]). A local

base at zero for τ0 is given by the class of all absolutely convex subsets of E that absorb

all order bounded sets in E. It is known that τ0 coincides with the Mackey topology

τ (E, E∼) (see [F, 811(c)]).

Now let B0 be the family of all absolutely convex subsets of E(X) that absorb every

order interval in E(X). Then B0 is a local base at zero for a locally convex topology τ0

on E(X), which will be called an order-bounded topology on E(X).

We are ready to characterize order-bounded operators T : E(X) → Y in terms of the

(τ0, ‖ · ‖Y )-continuity of T .

Theorem 2.1. For a linear operator T : E(X) → Y the following statements are equiva-

lent:

(i) T is order-bounded.

(ii) T is (τ0, ‖ · ‖Y )-continuous.

Proof. (i)⇒(ii). Assume that T is order bounded and let r > 0 be given. We shall show

that there is V ∈ B0 such that T (V ) ⊂ BY (r) (= {y ∈ Y : ‖y‖Y ≤ r}). In fact, let

V = T−1(BY (r)) = {f ∈ E(X): ‖T (f)‖Y ≤ r}. Since T (V ) = T (T−1(BY (r))) ⊂ BY (r),

it is enough to show that V absorbs every order interval in E(X). Indeed, for given

u ∈ E+ there is ru > 0 such that T (Du) ⊂ BY (ru). Taking λu = r
ru

for f ∈ Du we get

‖T (λuf)‖Y ≤ r, so λnf ∈ V . This means that λuDu ⊂ V .

(ii)⇒(i). Assume that T is (τ0, ‖ · ‖Y )-continuous. Then there is V ∈ B0 such that

T (V ) ⊂ BY (1). Moreover, given u ∈ E+ there is λu > 0 such that λuDu ⊂ V . Hence

T (λuDu) ⊂ BY (1), so T (Du) ⊂ BY (1/λu), as desired.

As an application of Theorem 2.1 we obtain:

Corollary 2.2. The order-bounded topology τ0 on E(X) coincides with the Mackey

topology τ (E(X), E(X)∼), i.e., τ0 = τ (E(X), E(X)∼).

Proof. In view of Theorem 2.1, (E(X), τ0)
∗ = E(X)∼, so by the Mackey-Arens theorem

τ0 ⊂ τ (E(X), E(X)∼).

To show that τ (E(X), E(X)∼) ⊂ τ0, let W ∈ Bτ(E(X),E(X)∼) (= the local base at zero

for τ (E(X), E(X)∼) ). It is enough to show that W absorbs every order interval in E(X).
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Since the Mackey topology τ (E(X), E(X)∼) is locally solid (see [N2, Theorem 3.7]),

W = 0A (= {f ∈ E(X): |F (f)| ≤ 1 for all F ∈ A}), where A is an absolutely convex,

solid and σ(E(X)∼, E(X))-compact subset of E(X)∼. But in view of [N2, Theorem 3.5]

A is |σ|(E(X)∼, E(X))-bounded, so for each f ∈ E(X) we have:

(∗) sup{|F |(f): F ∈ A} < ∞.

Observe that
0A = {f ∈ E(X): |F |(f) ≤ 1 for all F ∈ A}.

In fact, let f ∈ 0A, i.e., |F (f)| ≤ 1 for all F ∈ A. It is enough to show that |F |(f) ≤ 1

for all F ∈ A. Given F0 ∈ A, for each G ∈ E(X)∼ with |G| ≤ |F0| we have that

G ∈ A because A is a solid subset of E(X)∼. Hence |G(f)| ≤ 1. But by [N1, Lemma 2.1]

F0|(f) = sup{|G(f)|: G ∈ E(X)∼, |G| ≤ |F0|}, so we obtain that |F0|(f) ≤ 1, as desired.

Now, we are ready to show that W absorbs every order interval in E(X). In fact, let

u ∈ E+ and x0 ∈ SX . Hence in view of (∗) sup{|F |(u ⊗ x0): F ∈ A} = λu < ∞. Then

for f ∈ Du and all F ∈ A we have:

|F |

(
1

λu

f

)
=

1

λu

|F |(f) ≤
1

λu

|F |(u ⊗ x0) ≤ 1,

so 1
λu

f ∈ W , i.e., Du ⊂ λuW .

We say that a sequence (fn) in E(X) is uniformly convergent to f ∈ E(X) (in symbols,

fn → f(ru)), if there exist r ∈ E+ and a sequence (εn) of positive numbers with εn ↓ 0

such that ‖fn(ω) − f(ω)‖X ≤ εnr(ω) µ-a.e. on Ω.

Making use of Theorem 2.1 and Corollary 2.2 we get:

Theorem 2.3. For a linear operator T : E(X) → Y the following statements are equiva-

lent:

(i) T is order bounded.

(ii) T is (τ (E(X), E(X)∼), ‖ · ‖Y )-continuous.

(iii) T is (σ(E(X), E(X)∼), σ(Y, Y ∗))-continuous.

(iv) If f̃n ≤ u for some u ∈ E+ and all n ∈ N and fn → 0 for |σ|(E(X), E(X)∼), then

supn ‖T (fn)‖Y < ∞.

(v) If fn → 0(ru), then supn ‖T (fn)‖Y < ∞.

In particular, for a Banach function space (E, ‖ ·‖E) the statements (i)–(v) are equiv-

alent to the following:

(vi) T is (‖ · ‖E(X), ‖ · ‖Y )-continuous.

Proof. (i)⇔(ii). It follows from Theorem 2.1 and Corollary 2.2.

(ii)⇔(iii). See [W, Corollary 11.1.3, Corollary 11.2.6].

(i)⇒(iv). It is obvious.

(iv)⇒(i). Assume that (iv) holds and (i) fails. Hence there is u0 ∈ E+ such that

sup{‖T (f)‖Y : f ∈ E(X), f̃ ≤ u0} = ∞. It follows that one can find a sequence (fn) in

E(X) such that fn ≤ u0 for all n ∈ N and ‖T (fn)‖Y ≥ n2 for all n ∈ N. Hence putting

hn = 1
n
fn for n ∈ N, we have h̃n ≤ 1

n
u0 ≤ u0 and ‖T (hn)‖Y ≥ n for n ∈ N. We shall
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show that hn → 0 for |σ|(E(X), E(X)∼). Indeed, let F ∈ E(X)∼, and x0 ∈ SX . Then

ρF (hn) = |F |(hn) ≤ |F |

(
1

n
(u0 ⊗ x0)

)
=

1

n
|F |(u0 ⊗ x0) → 0.

Hence hn → 0 for σ|(E(X), E(X)∼), so by (iv) supn ‖T (hn)‖Y < ∞. This contradiction

establishes that (iv)⇒(i).

(i)⇒(v). Assume that (i) holds and (v) fails. Then there exists a sequence (fn) in

E(X) such that fn → 0 (ru) and supn ‖T (fn)‖Y = ∞. This means that there exist

r ∈ E+ and a sequence (εn) with εn ↓ 0 such that f̃n ≤ εnr ≤ εnr for all n ∈ N. Hence

by (i) supn ‖T (fn)‖Y < ∞, and we get a contradiction.

(v)⇒(i). Assume that (i) fails. Hence there exists u0 ∈ E+ such that

sup{‖T (f)‖Y : f ∈ E(X), f̃ ≤ u0} = ∞.

So, there exists a sequence (fn) in E(X) such that f̃n ≤ u0 and ‖T (fn)‖Y ≥ n2 for all

n ∈ N. Denoting hn = 1
n
fn for n ∈ N we get h̃n ≤ 1

n
u0 for n ∈ N, i.e., hn → 0 (ru) and

‖T (hn)‖Y ≥ n for all n ∈ N. It follows that (v) does not hold.

Now assume that (E, ‖ · ‖E) is a Banach function space. Then (E(X), ‖ · ‖E(X))
∗ =

E(X)∼ and the Mackey topology τ (E(X), E(X)∼) coincides with the ‖ · ‖E(X)-norm

topology. Hence (ii)⇔(vi).

Recall that a Banach space Y is said to have the Dunford-Pettis property if for se-

quences (yn) in Y and (y∗

n) in Y ∗, y∗

n(yn) → 0 whenever yn
(w)
−→ 0 in Y and y∗

n

(w)
−→ 0 in

Y ∗ (see [AB1, Section 19]).

Following ([AB2], [AB3, Section 19]) we say that a linear operator T : E(X) → Y is

a weak Dunford-Pettis operator if fn → 0 in E(X) for σ(E(X), E(X)∼) and y∗

n

(w)
−→ 0 in

Y ∗ imply y∗

n(T (fn)) → 0.

As an application of Theorem 2.3 we get (see [E, Theorem 1.4]):

Theorem 2.4.

(i) Every weak Dunford-Pettis operator T : E(X) → Y is order-bounded.

(ii) If Y has the Dunford-Pettis property, then every order-bounded operator T : E(X)

→ Y is a weak Dunford-Pettis operator.

Proof. (i) Assume that T : E(X) → Y is a weak Dunford-Pettis operator and it is not

order-bounded. Hence by Theorem 2.3 there exists a sequence (fn) in E(X) such that

fn → 0 (ru) and supn ‖T (fn)‖Y = ∞. This means that there exist u0 ∈ E+ and a

sequence (εn) with εn ↓ 0 such that f̃n ≤ εnu0 for all n ∈ N and the set {T (fn): n ∈ N}

in Y is not weakly bounded. Hence there exist y∗

0 ∈ Y ∗ and a subsequence (fkn
) of (fn)

such that

(∗) |y∗

0(T (fkn
))| > n for all n ∈ N.

One can observe that fn → 0 for σ(E(X), E(X)∼). Indeed, let F ∈ E(X)∼ and x0 ∈ SX .

Then

|F (fn)| ≤ |F |(fn) ≤ |F |(εn(u0 ⊗ x0)) = εn|F |(u0 ⊗ xn),
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so F (fn) → 0, as desired. On the other hand, since 1
n
y∗

0

(w)
−→ 0 in Y ∗ and T is supposed

to be a weak Dunford-Pettis operator, we get 1
n
y∗

0(T (fkn
)) → 0, which contradicts (∗).

(ii) Assume that T : E(X) → Y is order-bounded. Then by Theorem 2.3 T is (σ(E(X),

E(X)∼), σ(Y, Y ∗))-continuous. Let fn → 0 for σ(E(X), E(X)∼) and y∗

n

(w)
−→ 0 in Y ∗.

Then T (fn)
(w)
−→ 0 in Y , and since Y is supposed to have the Dunford-Pettis property, we

conclude that y∗

n(T (fn)) → 0. This means that T is a weak Dunford-Pettis operator.
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