BANACH CENTER PUBLICATIONS, VOLUME 18 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2005

ON SOME LOCAL GEOMETRY OF MUSIELAK-ORLICZ SEQUENCE SPACES EQUIPPED WITH THE LUXEMBURG NORM

YUNAN CUI

ChongQing University of Posts and Telecommunications ChongQing 400065, P.R. China E-mail: cuiya@hrbust.edu.cn

YANHONG LI

Beijing University of Technology, Beijing 100080, P.R. China

MINGXIA ZOU

Department of Mathematics, Harbin University of Science and Technology Harbin 150080, P.R. China

Abstract. Criteria for strong U-points, compactly locally uniformly rotund points, weakly compactly locally uniformly rotund points and locally uniformly rotund points in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm are given.

1. Introduction. Throughout this paper, X denotes a Banach space and X^* denotes its dual space. By B(X) and S(X) we denote the closed unit ball and the unit sphere of X, respectively.

DEFINITION 1. A point $x \in S(X)$ is said to be an *extreme point* if for every $y, z \in S(X)$ with $x = \frac{y+z}{2}$, we have y = z = x.

A Banach space X is said to be *rotund* $(X \in (R)$ for short) if every point on S(X) is an extreme point.

DEFINITION 2. A point $x \in S(X)$ is said to be a *strong* U-*point* (SU-point for short) if for any $y \in S(X)$ with ||y + x|| = 2 we have x = y.

2000 Mathematics Subject Classification: 46B20, 46E30.

Key words and phrases: Musielak-Orlicz sequence spaces, SU-point, CLUR-point, WCLUR-point, LUR-point.

Supported by NSF of CHINA.

The paper is in final form and no version of it will be published elsewhere.

It is obvious that a Banach space X is rotund if and only if every $x \in S(X)$ is a SU-point.

DEFINITION 3. A point $x \in S(X)$ is said to be a *locally uniformly rotund point* (LURpoint for short) if for any sequence $\{x_n\}_{n=1}^{\infty}$ in S(X) with $\lim_{n\to\infty} ||x_n + x|| = 2$, we have $\lim_{n\to\infty} ||x_n - x|| = 0$.

DEFINITION 4. A point $x \in S(X)$ is said to be a weakly compactly locally uniformly rotund point (WCLUR-point for short) if for any sequence $\{x_n\}_{n=1}^{\infty}$ in S(X) with $\lim_{n\to\infty} ||x_n+x||$ =2, there exist an $x' \in S(X)$ and a subsequence $\{x'_n\}$ of $\{x_n\}$ such that x'_n convergent to x' weakly $(x'_n \to x'$ for short).

DEFINITION 5. A point $x \in S(X)$ is said to be a compactly locally uniform rotund point (CLUR-point for short) if for any sequence $\{x_n\}_{n=1}^{\infty}$ in S(X) with $\lim_{n\to\infty} ||x_n + x|| = 2$, the sequence $\{x_n\}$ is compact in B(X).

DEFINITION 6. A Banach space X is said to have H-property if the weak convergence and the convergence in norm coincide in S(X).

For these geometric notions and their role in mathematics we refer to the monographs [1] and [2].

The function sequence $M = (M_i)_{i=1}^{\infty}$ is called a *Musielak-Orlicz function* provided that for any $i \in \mathbb{N}$, $M_i : (-\infty, +\infty) \to [0, +\infty)$ is even, convex, left continuous on $[0, +\infty)$, $M_i(0) = 0$ and there exists $u_i > 0$ such that $M_i(u_i) < \infty$. By $N = (N_i)_{i=1}^{\infty}$ we denote the Musielak-Orlicz function conjugate to $M = (M_i)$ in the sense of Young, i.e.

$$N_i(u) = \sup_{v>0} \{ |u| v - M_i(v) \}$$

for each $u \in \mathbb{R}$ and $i \in \mathbb{N}$. Furthermore, $P = (p_i)$ is the right derivative of $M = (M_i)$, i.e. p_i is the right derivative of M_i for every $i \in \mathbb{N}$.

By l^0 we denote the space of all sequences $x = (x(i))_{i=1}^{\infty}$ of reals. For a given Musielak-Orlicz function $M = (M_i)$ we define the Musielak-Orlicz sequence space l_M by

$$l_M = \{x \in l^0 : \rho_M(\lambda x) < \infty \text{ for some } \lambda > 0\},\$$

where

$$\rho_M(x) = \sum_{i=1}^{\infty} M_i(x(i)) \text{ for any } x = (x(i)) \in l^0.$$

This space equipped with the Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \rho_M(x/\lambda) \le 1\}$$

or with the Orlicz norm

$$||x||^{0} = \sup\left\{\sum_{i} x(i)y(i) : \rho_{N}(y) \le 1\right\} = \inf_{k>0} \frac{1}{k} (1 + \rho_{M}(kx))$$

is a Banach space (see [3]).

By h_M we denote the subspace of l_M defined by

$$h_M = \Big\{ x \in l_M : \forall \ \lambda > 0, \ \exists \ i_0 \text{ such that} \sum_{i > i_0} M_i(\lambda x(i)) < \infty \Big\}.$$

To simplify notations, we put $l_M = (l_M, \|\cdot\|)$ and $l_M^0 = (l_M, \|\cdot\|^0)$.

We say that the Musielak-Orlicz function $M = (M_i)$ satisfies the δ_2 -condition ($M \in \delta_2$ for short) if there exist $a > 0, k > 0, i_0 \in \mathbb{N}$ and a sequence $(c_i)_{i=i_0+1}^{\infty}$ in $[0, +\infty)$ with $\sum_{i>i_0}^{\infty} c_i < \infty$ such that

$$M_i(2u) \le kM_i(u) + c_i$$

for every $i \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $M_i(u) \leq a$ (see [3]).

We say that the Musielak-Orlicz function $M = (M_i)$ satisfies the $\overline{\delta}_2$ -condition ($M \in \overline{\delta}_2$ for short) if its complementary function $N = (N_i)$ satisfies the δ_2 -condition.

For convenience, we introduce the following notions. For every $x \in l_M$ and $i \in \mathbb{N}$, we put

 $\xi(x) = \inf \left\{ \lambda > 0 : \text{ there exists } i_0 \text{ such that } \sum_{i > i_0} M_i(x(i)/\lambda) < \infty \right\},$ $e(i) = \sup\{u \ge 0 : M_i(u) = 0\},$ $B(i) = \sup\{u > 0 : M_i(u) < \infty\}.$

For every $i \in \mathbb{N}$, we say that a point $x \in \mathbb{R}$ is a strictly convex point of M_i if $M_i(\frac{u+v}{2}) < \frac{1}{2}(M_i(u) + M_i(v))$ whenever $x = \frac{u+v}{2}$ and $u \neq v$. We write then $x \in SC_{M_i}$. An interval $[a, b]^{(i)}$ is called a structurally affine interval for M_i (or simply SAI of M_i) provided that M_i is affine on $[a, b]^{(i)}$ and it is not affine on $[a - \varepsilon, b]^{(i)}$ or $[a, b + \varepsilon]^{(i)}$ for any $\varepsilon > 0$. Let $SAI(M_i) = \{[a_n, b_n]^{(i)}\}_{n=1}^{\infty}$. It is obvious that $SC_{M_i} = \mathbb{R} \setminus \bigcup_n [a_n, b_n]^{(i)}$, where $[a_n, b_n]^{(i)} \in SAI(M_i)$ for $n = 1, 2, \ldots$.

For every $i \in \mathbb{N}$, denote

$$SC_{M_i}^- = \{ u \in SC_{M_i} : \exists \varepsilon > 0 \text{ such that } M_i \text{ is affine on } [u, u + \varepsilon] \},$$

$$SC_{M_i}^+ = \{ u \in SC_{M_i} : \exists \varepsilon > 0 \text{ such that } M_i \text{ is affine on } [u - \varepsilon, u] \},$$

$$SC_{M_i}^0 = SC_{M_i} \setminus (SC_{M_i}^+ \cup SC_{M_i}^-).$$

We first formulate several lemmas.

LEMMA 1 ([5]). $(h_M)^* = l_N^0, (h_M^0)^* = l_N.$ LEMMA 2 ([5]). $h_M = l_M$ (or $h_M^0 = l_M^0$) if and only if $M \in \delta_2$.

LEMMA 3 ([4]). If $M \notin \overline{\delta}_2$, then there exist a sequence $0 = m_0 < m_1 < m_2 < \cdots$ and $u_i^n > 0$ $(i = m_{n-1} + 1, \dots, m_n)$ such that $M_i(u_i^n) \leq 1/n$ and

$$M_i\left(\frac{u_i^n}{2}\right) > \left(1 - \frac{1}{n}\right) \frac{M_i(u_i^n)}{2}, \quad \sum_{i=m_{n-1}+1}^{m_n} M_i(u_i^n) > 1, \quad n = 1, 2, \dots$$

LEMMA 4 ([4]). $M \in \delta_2$ if and only if $||x|| = 1 \Leftrightarrow \rho_M(x) = 1$.

LEMMA 5. If $M \in \delta_2$, ||x|| = 1, $||x_n|| \le 1$ and $||x_n + x|| \to 2 \ (n \to \infty)$, then

$$\lim_{n \to \infty} \rho_M(x_n) = \lim_{n \to \infty} \rho_M\left(\frac{x + x_n}{2}\right) = 1.$$

Proof. We suppose that there exists $\varepsilon_0 > 0$ such that $\rho_M(x_n) \leq 1 - \varepsilon_0$ (n = 1, 2, ...). Since $\frac{\|x_n + x\|}{2} \to 1$, for any $\eta > 0$ there exists $n_0 \in \mathbb{N}$ such that

(1)
$$\left\|\frac{(1+\eta)(x+x_n)}{2}\right\| > 1$$

when $n \ge n_0$.

For any $\varepsilon > 0$, by $M \in \delta_2$, there exist $\lambda_0 > 1$, a > 0 and $c_i > 0$ (i = 1, 2, ...) such that $\sum_{i=1}^{\infty} c_i < \infty$ and $M_i(\lambda_0 u) \le (1 + \varepsilon)M_i(u) + c_i \ (\forall i \in \mathbb{N}, M_i(u) \le a)$.

Take $i_0 \in \mathbb{N}$ such that $\sum_{i > i_0} c_i < \varepsilon$ and $M_i(x(i)) \le a \quad (i > i_0)$.

Take $\lambda'_0 > 0$ with $1 < \lambda'_0 < \lambda_0$ such that $\sum_{i=1}^{i_0} (M_i(\lambda x(i)) - M_i(x(i))) < \varepsilon$ $(1 \le \lambda \le \lambda'_0)$. Therefore when $1 \le \lambda \le \lambda'_0$, it follows that

$$\rho_M(\lambda x) = \sum_{i=1}^{i_0} M_i(\lambda x(i)) + \sum_{i>i_0} M_i(\lambda x(i))$$

$$\leq \sum_{i=1}^{i_0} M_i(\lambda x(i)) + \varepsilon + \sum_{i>i_0} ((1+\varepsilon)M_i(x(i)) + c_i)$$

$$\leq (1+\varepsilon)\rho_M(x) + 2\varepsilon$$

i.e.

(2)
$$\lim_{\lambda \to 1} \rho_M(\lambda x) = \rho_M(x)$$

Combining (1) with (2) we have

$$1 < \rho_M \left(\frac{(1+\eta)(x+x_n)}{2} \right) = \rho_M \left(\frac{1+\eta}{2} x_n + \frac{1-\eta}{2} \frac{1+\eta}{1-\eta} x \right)$$

$$\leq \frac{1+\eta}{2} \rho_M(x_n) + \frac{1-\eta}{2} \rho_M \left(\frac{1+\eta}{1-\eta} x \right)$$

$$\leq \frac{1+\eta}{2} (1-\varepsilon_0) + \frac{1-\eta}{2} (1+o(\eta)).$$

Let $\eta \to 0$ to get $1 \leq \frac{1-\varepsilon_0}{2} + \frac{1}{2}$. This is a contradiction. So $\rho_M(x_n) \to 1 \ (n \to \infty)$.

Using $\left\|\frac{x+\frac{x+x_n}{2}}{2}\right\| = \left\|\frac{3}{4}x+\frac{1}{4}x_n\right\| \to 1$, by the same argument as above we have $\rho_M(\frac{x+x_n}{2}) \to 1 \ (n \to \infty)$.

LEMMA 6. If
$$M \in \delta_2$$
 and $x_n(i) \to 0$ $(i = 1, 2...)$, then $||x_n|| \to 0 \Leftrightarrow \rho_M(x_n) \to 0$.

Proof. Since it is obvious that $||x_n|| \to 0$ implies $\rho_M(x_n) \to 0$, we only need to prove that $\rho_M(x_n) \to 0$ implies $||x_n|| \to 0$ $(n \to \infty)$. For any $\varepsilon > 0$, by $M \in \delta_2$, there exist k > 0, $a > 0, i_0 \in \mathbb{N}$ and $\{c_i\}_{i=i_0+1}^{\infty}$ with $\sum_{i=i_0+1}^{\infty} c_i < \infty$ which satisfy

$$M_i(u/\varepsilon) \le kM_i(u) + c_i \quad (i > i_0, \ M_i(u) \le a).$$

Since $\sum_{i=i_0+1}^{\infty} c_i < \infty$, there exists $i_1 \in \mathbb{N}$ such that $\sum_{i=i_1+1}^{\infty} c_i < 1/3$. By $x_n(i) \to 0$ $(i = 1, 2, \dots, i_1)$, there exists $n_0 \in \mathbb{N}$ such that $\sum_{i=1}^{i_1} M_i(x_n(i)/\varepsilon) < 1/3$ when $n \ge n_0$. Moreover, since $\rho_M(x_n) \to 0$, there exists $n_1 \in \mathbb{N}$ such that $\rho_M(x_n) < \min\{1/3k, a\}$ when $n \ge n_1$. Therefore, when $n \ge \max\{n_0, n_1\}$, we have

$$\sum_{i=1}^{\infty} M_i\left(\frac{x_n(i)}{\varepsilon}\right) = \sum_{i=1}^{i_1} M_i\left(\frac{x_n(i)}{\varepsilon}\right) + \sum_{i=i_1+1}^{\infty} M_i\left(\frac{x_n(i)}{\varepsilon}\right)$$
$$\leq \frac{1}{3} + \sum_{i=i_1+1}^{\infty} (kM_i(x_n(i)) + c_i)$$
$$\leq \frac{1}{3} + k \cdot \frac{1}{3k} + \frac{1}{3} = 1.$$

It follows that $||x_n|| < \varepsilon$, i.e. $||x_n|| \to 0 \ (n \to \infty)$.

LEMMA 7 ([1]). If $M \in \delta_2$, then $B(i) = \infty$.

2. Results

THEOREM 1. A point $x \in S(l_M)$ is a strongly U-point if and only if

- (1) $|x(i)| = B(i) \ (i \in \mathbb{N}) \ or \ \rho_M(x) = 1,$
- $(2) \quad \xi(x) < 1,$

(3) (i) If for any $i \in \mathbb{N}$, $|x(i)| \in SC_{M_i}$, then there do not exist $i, j \in \mathbb{N}$ with $i \neq j$ such that $|x(i)| \in SC_{M_i}^+$ and $|x(j)| \in SC_{M_i}^-$,

(ii) If there exists $i_0 \in \mathbb{N}$ such that $|x(i_0)| \notin SC_{M_{i_0}}$, then $|x(j)| \in SC_{M_j}^0$ for any $j \in \mathbb{N}$ with $j \neq i_0$,

(4) If e(i) > 0, then e(i) < |x(i)| (i = 1, 2, ...).

Proof. Without loss of generality, we may assume that $x(i) \ge 0$ $(i \in \mathbb{N})$.

We suppose (1) does not hold, then there exists $i_0 \in \mathbb{N}$ such that $x(i_0) < B(i_0)$ and $\rho_M(x) < 1$. Furthermore, we can find a real number $\lambda > 0$ such that

$$M_{i_0}(x(i_0) + \lambda) \le 1 - \sum_{i \ne i_0} M_i(x(i))$$

Put

$$y(i) = \begin{cases} x(i), & i \neq i_0, \\ x(i_0) + \lambda, & i = i_0, \end{cases} \quad z(i) = \begin{cases} x(i), & i \neq i_0, \\ x(i_0) - \lambda, & i = i_0. \end{cases}$$

It is obvious that y+z = 2x and $y \neq z$. But $\rho_M(y) = \sum_{i \neq i_0} M_i(x(i)) + M_{i_0}(x(i_0) + \lambda) \leq 1$, hence $||y|| \leq 1$. Similarly, we also have $||z|| \leq 1$. Using ||y+z|| = 2, we get ||y|| = ||z|| = 1. This means that x is not an extreme point. Since a strong U-point must be an extreme point, this is a contradiction.

Let us prove the necessity of condition (2). Otherwise, $\xi(x) = 1$ i.e. $\rho_M(\lambda x) = \infty$ for any $\lambda > 1$. Since ||x|| = 1, there exists $i_0 \in \mathbb{N}$ such that $x(i_0) \neq 0$. Put

$$y(i) = \begin{cases} x(i), & i \neq i_0, \\ 0, & i = i_0. \end{cases}$$

It is obvious that $\rho_M(\lambda y) = \infty$ for any $\lambda > 1$, whence $||y|| \ge 1$. On the other hand, clearly $||y|| \le ||x|| = 1$. So we have ||y|| = 1. Consequently, $1 \ge \left\|\frac{1}{2}(x+y)\right\| \ge \left\|\frac{1}{2}(y+y)\right\| = 2$, hence ||x+y|| = 2. But $x \ne y$, which contradicts that x is a strong U-point.

If the condition (i) of (3) does not hold, then there exist $i, j \in \mathcal{N}$ such that $x(i) \in SC_{M_i}^+$ and $x(j) \in SC_{M_j}^-$. For convenience we may assume i = 1, j = 2 and $x(1) = b_1$, $x(2) = a_2$ where $b_1 \in SC_{M_1}^+$, $a_2 \in SC_{M_2}^-$, then there exist $a_1 > 0$ and $b_2 > 0$ such that

 $M_1(u) = A_1 u + B_1$ for $u \in [a_1, b_1]$

and

Take $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that $b_1 - \varepsilon_1 \in (a_1, b_1)$, $a_2 + \varepsilon_2 \in (a_2, b_2)$ and $A_1 \varepsilon_1 = A_2 \varepsilon_2$. Let

 $M_2(u) = A_2u + B_2$ for $u \in [a_2, b_2]$.

$$y = (x(1) - \varepsilon_1, x(2) + \varepsilon_2, x(3), x(4), \ldots)$$

Then

 ρ_M

$$\begin{aligned} (y) &= M_1(x(1) - \varepsilon_1) + M_2(x(2) + \varepsilon_2) + \sum_{i \ge 3} M_i(x(i)) \\ &= A_1(x(1) - \varepsilon_1) + B_1 + A_2(x(2) + \varepsilon_2) + B_2 + \sum_{i \ge 3} M_i(x(i)) \\ &= M_1(x(1)) + M_2(x(2)) + \sum_{i \ge 3} M_i(x(i)) = \rho_M(x) = 1. \end{aligned}$$

So by the definition of the Luxemburg norm, we have ||y|| = 1. Similarly,

$$\rho_M\left(\frac{x+y}{2}\right) = M_1\left(x(1) - \frac{\varepsilon_1}{2}\right) + M_2\left(x(2) + \frac{\varepsilon_2}{2}\right) + \sum_{i\geq 3} M_i(x(i))$$
$$= M_1(x(1)) + M_2(x(2)) + \sum_{i\geq 3} M_i(x(i)) = \rho_M(x) = 1,$$

i.e. $\left\|\frac{x+y}{2}\right\| = 1$. Since $x \neq y$, x is not a strong U-point. A contradiction.

We suppose the condition (ii) of (3) is not true. Then there exists $i_0 \in \mathbb{N}$ such that $|x(i_0)| \notin SC_{M_{i_0}}$ and $j \in \mathbb{N}$, $j \neq i_0$ such that $x(j) \notin SC_{M_j}^0$. i.e. $x(j) \notin SC_{M_j}$ or $x(j) \in SC_{M_j}^+$ or $x(j) \in SC_{M_j}^-$. So, we can repeat the procedure from the proof of the necessity of the condition (i) of (3).

Let us finally prove the necessity of (4). Otherwise, there exists $i_0 \in \mathbb{N}$ such that $e(i_0) > 0$ and $x(i_0) \leq e(i_0)$. Let us consider two cases:

CASE I: $x(i_0) = e(i_0)$. Put

$$y(i) = \begin{cases} x(i), & i \neq i_0, \\ \frac{x(i_0)}{2}, & i = i_0. \end{cases}$$

Since $x(i_0) = e(i_0) < B(i_0)$, in virtue of (1) we have $\rho_M(x) = 1$. Therefore, we have the following equality

$$\rho_M(y) = \sum_{i \neq i_0} M_i(x(i)) + M_{i_0}\left(\frac{x(i_0)}{2}\right) = \sum_{i \neq i_0} M_i(x(i)) + M_{i_0}(x(i_0)) = \rho_M(x) = 1.$$

So ||y|| = 1. Similarly,

$$\rho_M\left(\frac{x+y}{2}\right) = \sum_{i \neq i_0} M_i(x(i)) + M_{i_0}\left(\frac{3}{4}x(i_0)\right) = \sum_{i \neq i_0} M_i(x(i)) + M_{i_0}(x(i_0)) = \rho_M(x) = 1,$$

i.e. ||x + y|| = 2. But obviously $x \neq y$, which contradicts the fact that x is a strong U-point.

CASE II: $x(i_0) < e(i_0)$. We put

$$y(i) = \begin{cases} x(i), & i \neq i_0, \\ x(i_0) + \frac{e(i_0) - x(i_0)}{2}, & i = i_0, \end{cases} \quad z(i) = \begin{cases} x(i), & i \neq i_0, \\ x(i_0) - \frac{e(i_0) - x(i_0)}{2}, & i = i_0. \end{cases}$$

It is obvious that y + z = 2x and $y \neq z$. In the same way as in case I, it is easy to prove that ||y|| = ||z|| = 1. Therefore, x is not an extreme point, which leads to a contradiction.

Sufficiency. Let $x, y \in S(l_M)$ with ||x + y|| = 2, we consider the following two cases:

CASE I: |x(i)| = B(i) for all $i \in \mathbb{N}$. Without loss of generality, we may assume $x(i) \ge 0$ and $y(i) \ge 0$ (i = 1, 2, ...). In this case we have ||(B(1), B(2), ...)|| = ||x(1), x(2), ...)|| = ||x|| = 1. Using

$$x(i) + y(i) \le 2B(i)$$
 $(i = 1, 2, ...)$

and

$$2 = ||x + y|| \le 2 ||(B(1), B(2), \ldots)|| = 2$$

we have the equality x(i) = B(i) (i = 1, 2, ...). Therefore y(i) = x(i) = B(i) for all $i \in \mathbb{N}$ i.e. x = y.

CASE II: $\rho_M(x) = 1$. First, we will prove that $\rho_M(\frac{x+y}{2}) = 1$.

For any $\varepsilon \in (0, \frac{1-\xi(x)}{1+\xi(x)})$ we have $\left\|(1+\varepsilon)\frac{x+y}{2}\right\| = 1+\varepsilon$ and $\rho_M\left(\frac{1+\varepsilon}{1-\varepsilon}x\right) < \infty$. Hence there exists $\alpha > 0$ such that

$$\rho_M\left(\frac{1+\varepsilon}{1-\varepsilon}x\right) = \rho_M(x) + \alpha\varepsilon.$$

Therefore

$$1 < \rho_M \left((1+\varepsilon) \frac{x+y}{2} \right) = \rho_M \left(\frac{1+\varepsilon}{2} y + \frac{1-\varepsilon}{2} \frac{1+\varepsilon}{1-\varepsilon} x \right)$$

$$\leq \frac{1+\varepsilon}{2} \rho_M(y) + \frac{1-\varepsilon}{2} \rho_M \left(\frac{1+\varepsilon}{1-\varepsilon} x \right)$$

$$= \frac{1+\varepsilon}{2} \rho_M(y) + \frac{1-\varepsilon}{2} (\rho_M(x) + \alpha \varepsilon).$$

Letting $\varepsilon \to 0$, we get $\rho_M(y) = 1$. Since $\left\|\frac{x+y}{2}\right\| = 1$ and the norm $\left\|\cdot\right\|_M$ is a convex function, it follows that $\left\|\cdot\right\|_M$ is an affine function on the segment between x and y. Therefore

$$\left\|\frac{(\frac{1}{2}(x+y)+x)}{2}\right\| = \left\|\frac{1}{4}y + \frac{3}{4}x\right\| = 1.$$

Hence we can get in the same way as above (with $\frac{1}{2}(x+y)$ in place of y) that $\rho_M(\frac{x+y}{2}) = 1$. Hence

$$0 = \frac{\rho_M(x) + \rho_M(y)}{2} - \rho_M\left(\frac{x+y}{2}\right) \\ = \sum_{i=1}^{\infty} \left[\left(\frac{M_i(x(i) + M_I(Y(i)))}{2} - M_i\left(\frac{x(i) + y(i)}{2}\right) \right] \ge 0.$$

Thus we have

$$\frac{M_i(x(i)) + M_i(y(i))}{2} = M_i\left(\frac{x(i) + y(i)}{2}\right), \qquad i = 1, 2, 3, \dots$$

This means that x(i) = y(i) or x(i) and y(i) belong to the same intervals of $SAI(M_i)$ for all $i \in \mathbb{N}$.

If the condition (i) of (3) holds true, we may assume without loss of generality that $x, y \ge 0$ and either $x(i) \in SC^+_{M_i}$ or $x(i) \in SC^0_{M_i}$ for all $i \in \mathbb{N}$. Define

$$N_1 = \{i \in \mathbb{N} : x(i) \in SC_{M_i}^+\}$$

In view of condition (4), we get, for any $i \in \mathbb{N}$, that there exist $A_i > 0$, $B_i \in \mathbb{R}$ and $\varepsilon_i > 0$ such that $M_i(u) = A_i u + B_i$ for all $u \in [x(i) - \varepsilon_i, x(i)]$. Therefore by the above properties of x and y, we have

$$y(i) = x(i) \qquad (\forall i \in \mathbb{N} \setminus N_1),$$

$$y(i) \le x(i) \qquad (\forall i \in N_1).$$

The equality $\rho_M(\frac{x+y}{2}) = \rho_M(x)$ implies that

$$\sum_{i \in N_1} M_i\left(\frac{x(i) + y(i)}{2}\right) = \sum_{i \in N_1} M_i(x(i)),$$

i.e.

$$\sum_{i \in N_1} \left(A_i \frac{x(i) + y(i)}{2} + B_i \right) = \sum_{i \in N_1} (A_i x(i) + B_i),$$

Hence

$$\sum_{i \in N_1} A_i\left(\frac{y(i) - x(i)}{2}\right) = 0.$$

Consequently, y(i) = x(i) for all $i \in \mathbb{N}$, i.e. x = y.

If (ii) of (3) holds, then x(i) = y(i) for $i \neq i_0$. Moreover, by condition (4), there exist $A_0 > 0, B_0 \in \mathbb{R}$ and $\varepsilon_0 > 0$ such that

$$M_{i_0}(u) = A_0 u + B_0, \qquad u \in [x(i_0) - \varepsilon_0, x(i_0) + \varepsilon_0].$$

The equality $\rho_M(\frac{x+y}{2}) = \rho_M(x)$ implies $M_{i_0}(\frac{x(i_0)+y(i_0)}{2}) = M_{i_0}(x(i_0))$, i.e. $A_0\left(\frac{x(i_0)+y(i_0)}{2}\right) + B_0 = A_0(x(i_0)) + B_0.$

Hence $x(i_0) = y(i_0)$ and so x = y. This finishes the proof of the theorem.

THEOREM 2. If $x \in S(l_M)$, then the following statements are equivalent:

- 1. x is a CLUR-point,
- 2. x is a WCLUR-point,
- 3. (i) $M \in \delta_2$ (ii) $M \in \overline{\delta}_2$ or $\{i \in \mathbb{N} : |x(i)| \in (a, b]\} = \emptyset$ where $[a, b] \in SAI(M_i)$.

Proof. The implication $1 \Rightarrow 2$ is obvious.

 $2\Rightarrow3$. We suppose (i) does not hold, i.e. $M \notin \delta_2$. By Lemma 2, there exist $z \in l_M$ and a singular function Φ with $\rho_M(z) < \infty$ and $\Phi(x-z) \neq 0$. Set

$$x_n = (x(1), \dots, x(n), z(n+1), z(n+2), \dots)$$
 $(n = 1, 2, \dots)$

Then

$$\rho_M(x_n) \le \rho_M(x) + \sum_{i=n+1}^{\infty} M_i(z(i)) \to \rho_M(x) \le 1,$$

so $\limsup_{n\to\infty} \|x_n\| \leq 1$. Notice $\|x_n+x\| \geq 2 \|(x(1),\ldots,x(n),0,\ldots)\| \to 2$, we have $\liminf_{n\to\infty} \|x_n+x\| \geq 2$. Hence $\|x_n\| \to 1$ and $\|x_n+x\| \to 2$ $(n\to\infty)$. Since $x_n \to x$ coordinatewise, we may assume without loss of generality that $x_n \xrightarrow{w} x$ (passing to a subsequence if necessary). But $\Phi(x-x_n) = \Phi(x-z) \neq 0$, which contradicts $x_n \xrightarrow{w} x$. This contradiction shows that $M \in \delta_2$.

Without loss of generality, we assume $x(i) \ge 0$ for all $i \in \mathbb{N}$.

If the condition (ii) of (3) does not hold, then there exists $j \in \mathbb{N}$ such that $x(j) \in (a, b]$, without loss of generality we may assume j = 1 and $M \notin \overline{\delta}_2$ where $[a, b] \in SAI(M_1)$ satisfies $M_1(u) = Au + B$ for $u \in [a, b]$. Take $\varepsilon > 0$, such that $x(1) - \varepsilon \in (a, b]$. Since $M \notin \overline{\delta}_2$, by Lemma 3, there exist $u_i^n > 0$ satisfying

$$M_i(u_i^n) \le \frac{1}{n}, \quad M_i\left(\frac{u_i^n}{2}\right) > \left(1 - \frac{1}{n}\right) \frac{M_i(u_i^n)}{2} \quad (i = m_{n-1} + 1, \dots, m_n)$$

and

$$\sum_{i=m_{n-1}+1}^{m_n} M_i(u_i^n) > 1.$$

Without loss of generality, we may assume $A\varepsilon < 1$. For every sufficiently large n, take $m_{n-1} < m'_n \le m_n$ such that

$$A\varepsilon - \frac{1}{2^n} \le \sum_{i=m_{n-1}+1}^{m'_n} M_i(u_i^n) < A\varepsilon, \qquad n = 1, 2, \dots$$

Let $\{e_n\}_n$ be the natural basis of l^1 and $\{p_n\}_n$ the projections $p_n(x) = \sum_{i=1}^n x(i)e_i$ for $x = (x(i))_i \in l_M$. Put

$$x_n = P_n x - P_1 x + (x(1) - \varepsilon)e_1 + \sum_{i=m_{n-1}+1}^{m'_n} u_i^n e_i$$

Then

$$\rho_M(x_n) = M_1(x(1) - \varepsilon) + \sum_{i=2}^n M_i(x(i)) + \sum_{i=m_{n-1}+1}^{m'_n} M_i(u_i^n)$$
$$= \alpha x(1) - \alpha \varepsilon + \beta + \sum_{i=2}^n M_i(x(i)) + \sum_{i=m_{n-1}+1}^{m'_n} M_i(u_i^n)$$

$$= M_1(x(1)) - \alpha\varepsilon + \sum_{i=2}^n M_i(x(i)) + \sum_{i=m_{n-1}+1}^{m'_n} M_i(u_i^n)$$
$$< \sum_{i=1}^n M_i(x(i)) - A\varepsilon + A\varepsilon = \sum_{i=1}^n M_i(x(i)) \le 1.$$

So $\limsup_{n\to\infty} ||x_n|| \le 1$. Moreover,

$$\rho_M\left(\frac{x+x_n}{2}\right) \ge M_1\left(x(1) - \frac{\varepsilon}{2}\right) + \sum_{i=2}^n M_i(x(i)) + \sum_{i=m_{n-1}+1}^{m'_n} M_i\left(\frac{x(i)+u_i^n}{2}\right)$$
$$\ge \sum_{i=1}^n M_i(x(i)) - \frac{A\varepsilon}{2} + \sum_{i=m_{n-1}+1}^{m'_n} \left(\left(1 - \frac{1}{n}\right) \frac{M_i(u_i^n)}{2}\right)$$
$$\ge \sum_{i=1}^n M_i(x(i)) - \frac{A\varepsilon}{2} + \frac{1}{2}\left(1 - \frac{1}{n}\right) \left(A\varepsilon - \frac{1}{2^n}\right) \to 1 \ (n \to \infty).$$

Hence $\liminf_{n\to\infty} \left\|\frac{x+x_n}{2}\right\| \ge 1$. Thus we have $\|x_n\| \to 1$ and $\|x_n + x\| \to 2 \ (n \to \infty)$.

Since $\lim_{n\to\infty} (A\varepsilon - 1/2^n) = A\varepsilon > A\varepsilon/2$, there exists n_0 such that $A\varepsilon - 1/2^n > A\varepsilon/2$ when $n \ge n_0$. Therefore

$$\|x_m - x_n\| \ge \left\|\sum_{i=m_{m-1}+1}^{m'_m} u_i^m e_i\right\| \ge \sum_{i=m_{m-1}+1}^{m'_m} M_i(u_i^m) > A\varepsilon - \frac{1}{2^m} > \frac{A\varepsilon}{2}$$

when $m > n \ge n_0$.

This means that $\{x_n\}$ is not compact in $S(l_M)$, hence x is not a CLUR-point. But, by $M \in \delta_2$ and Theorem 2 in [7], we can get that l_M has H-property. Therefore x is not a WCLUR-point. This is a contradiction.

 $3 \Rightarrow 1$. Suppose $x \in S(l_M), \{x_n\}_{n=1}^{\infty} \subset S(l_M)$ and $||x_n + x|| \to 2 \ (n \to \infty)$. In order to complete this proof we distinguish two cases.

(I) $M \in \delta_2 \cap \overline{\delta}_2$. In this case, by Lemma 1 and Lemma 2, we take $\{f_n\} \subset S(l_N^0)$ such that $f_n(x_n + x) = ||x_n + x|| \to 2 \ (n \to \infty)$. Then

$$f_n(x) \to 1$$
 and $f_n(x_n) \to 1$ $(n \to \infty)$.

In virtue of [6], l_N^0 is reflexive. Then there is a subsequence $\{f_{n_i}\}$ of $\{f_n\}$ and $f \in l_N^0$ such that $f_n \to {}^w f$. It is obvious that in virtue of $\lim_{n\to\infty} f_n(x) = 1$ this yields f(x) = 1. Hence $\|f\|^0 = 1$. By Theorem 1 in [7], we get that l_N^0 has H-property. Hence $\|f_n - f\|^0 \to 0$ $(n \to \infty)$. So

$$f(x_{n_i}) = (f - f_{n_i})(x_{n_i}) + f_{n_i}(x_{n_i}) \to 1 \quad (n \to \infty).$$

Using now the reflexivity of l_M , we can find a subsequence $\{x'_{n_i}\} \subset \{x_{n_i}\}$ and $x' \in l_M$ such that $x'_{n_i} \to^w x' \quad (n \to \infty)$. Obviously f(x') = 1, whence ||x'|| = 1. By the property H for l_M , we have $\lim_{n\to\infty} ||x'_{n_i} - x'|| = 0$, i.e. $\{x_n\}$ is compact in $S(l_M)$, which implies that x is a CLUR-point. (II) $M \in \delta_2$ and $\{i \in \mathbb{N} : |x(i)| \in (a, b]\} = \emptyset$ where $[a, b] \in SAI(M_i)$. First, we will prove that $x_n(i) \to x(i)$ for all $i \in \mathbb{N}$. We first show

(1)
$$\liminf_{n} x_n(j) \ge x(j), \quad j = 1, 2, \dots$$

If not, there exist $j_0 \in \mathbb{N}$, $\varepsilon_0 > 0$ and a subsequence of $\{x_n\}$, denoted again by $\{x_n\}$, such that

$$x_n(j_0) \le x(j_0) - \varepsilon.$$

Since $x(j_0) \notin (a, b]$, there exists $\delta > 0$ such that

$$M_{j_0}\left(\frac{x(j_0) + x_n(j_0)}{2}\right) \le (1 - \delta)\frac{M_{j_0}(x(j_0)) + M_{j_0}(x_n(j_0))}{2}$$

Then by Lemma 4 and Lemma 5, we get

$$0 \leftarrow \frac{\rho_M(x) + \rho_M(x_n)}{2} - \rho_M\left(\frac{x_n + x}{2}\right)$$

= $\sum_{i=1}^{\infty} \left[\frac{M_i(x_n(i)) + M_i(x(i))}{2} - M_i\left(\frac{x_n(i) + x(i)}{2}\right)\right]$
 $\geq \frac{M_{j_0}(x_n(j_0)) + M_{j_0}(x(j_0))}{2} - M_{j_0}\left(\frac{x_n(j_0) + x(j_0)}{2}\right)$
 $\geq \delta \frac{M_{j_0}(x_n(j_0)) + M_{j_0}(x(j_0))}{2} \geq \frac{\delta}{2}M\left(\frac{\varepsilon}{2}\right) > 0.$

This contradiction shows that condition (1) holds.

Now, we will show that

(2)
$$\limsup_{n} x_n(j) \le x(j), \quad j = 1, 2, \dots$$

Otherwise, there exist $j_0 \in \mathbb{N}$ and $\varepsilon > 0$ such that $\limsup_n x_n(j_0) \ge x(j_0) + \varepsilon$. Then $\limsup_n M_{j_0}(x_n(j_0)) \ge M_{j_0}(x(j_0)) + \varepsilon'$ for some $\varepsilon' > 0$. Hence

$$1 = \limsup_{n} \rho_M(x_n) = \limsup_{n} \sum_{i \neq j_0} M_i(x_n(i)) + M_{j_0}(x_n(j_0))$$
$$\geq \sum_{i \neq j_0} M_i(x(i)) + M_{j_0}(x(j_0)) + \varepsilon' = \rho_M(x) + \varepsilon' = 1 + \varepsilon'.$$

This is a contradiction. So $\lim_{n\to\infty} x_n(i) = x(i)$ $(i \in \mathbb{N})$ thanks to (1) and (2).

Next, we will show that $\rho_M(\frac{x_n-x}{2}) \to 0 \ (n \to \infty)$. In fact, for any $\varepsilon > 0$, there exist i_0 and n_0 such that

$$\sum_{i>i_0} M_i(x(i)) < \frac{\varepsilon}{4}, \qquad \sum_{i=1}^{i_0} M_i\left(\frac{x_n(i) - x(i)}{2}\right) < \frac{\varepsilon}{4}$$

and

$$\sum_{i=1}^{i_0} |M_i(x_n(i) - M_i(x(i)))| < \varepsilon \quad \text{when } n \ge n_0.$$

Hence when $n \ge n_0$,

$$\sum_{i>i_0} M_i(x_n(i)) = \rho_M(x_n) - \sum_{i=1}^{i_0} M_i(x_n(i) \le 1 - \sum_{i=1}^{i_0} M_i(x(i)) + \varepsilon$$
$$\le 1 - \left(1 - \sum_{i>i_0} M_i(x(i))\right) + \varepsilon < \frac{5}{4}\varepsilon.$$

Therefore

$$\rho_M\left(\frac{x_n - x}{2}\right) = \sum_{i=1}^{i_0} M_i\left(\frac{x_n(i) - x(i)}{2}\right) + \sum_{i > i_0} M_i\left(\frac{x_n(i) - x(i)}{2}\right)$$
$$\leq \sum_{i=1}^{i_0} M_i\left(\frac{x_n(i) - x(i)}{2}\right) + \frac{1}{2} \left[\sum_{i > i_0} M_i(x_n(i)) + \sum_{i > i_0} M_i(x(i))\right]$$
$$< \frac{\varepsilon}{4} + \frac{1}{2} \left(\frac{5}{4}\varepsilon + \frac{\varepsilon}{4}\right) = \varepsilon,$$

i.e. $\rho_M(\frac{x_n-x}{2}) \to 0 \ (n \to \infty)$. So by $\lim_{n\to\infty} x_n(i) = x(i) \ (i \in \mathbb{N})$ and Lemma 6, we get $||x_n - x|| \to 0 \ (n \to \infty)$. This means x is a CLUR-point. Thus, the proof is finished.

It is obvious that a point $x \in S(X)$ is a LUR-point if and only if it is a CLUR-point and a SU-point. So, in view of Lemma 7, Theorem 1 and Theorem 2, we easily obtain the following criteria for LUR-point of $S(l_M)$.

THEOREM 3. A point $x \in S(l_M)$ is a LUR-point if and only if:

- 1. $M \in \delta_2$,
- 2. If for any $i \in \mathbb{N}$, $|x(i)| \in SC_{M_i}$, then (i) $\{i \in \mathbb{N} : |x(i)| \in SC_{M_i}^+\} = \emptyset$; (ii) if $\{i \in \mathbb{N} : |x(i)| \in SC_{M_i}^+\} \neq \emptyset$, then $\{\forall i \in \mathbb{N} : |x(i)| \in SC_{M_i}^-\} = \emptyset$ and $M \in \overline{\delta}_2$.

3. If there exists $i_0 \in \mathbb{N}$ such that $|x(i_0)| \notin SC_{M_{i_0}}$, then $|x(j)| \in SC_{M_j}^0$ $(j \in \mathbb{N}, j \neq i_0)$ and $M \in \overline{\delta}_2$,

4. If e(i) > 0, then e(i) < |x(i)| for all $i \in \mathbb{N}$.

References

- [1] S. Chen, *Geometry of Orlicz spaces*, Dissertationes Math. 356 (1996).
- [2] J. Diestel, Geometry of Banach Spaces, Lecture Notes in Math. 485, Springer, 1975.
- [3] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- J. Wang and T. Wang, WM property of Musielak-Orlicz sequence space, Fareast J. Math. Sci. 5 (1997), 475–496.
- [5] H. Hudzik and Y. Ye, Support functionals and smoothness in Musielak-Orlicz spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolin. 31 (1990), 661–684.
- [6] M. Denker and H. Hudzik, Uniform non-l_n⁽¹⁾ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. 101 (1991), 71–86.
- [7] Y. Cui, Some convexities of Musielak-Orlicz sequence spaces, J. Math. (PRC) 15 (1995), 291–296.