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Abstract. We focus our attention on projectively flat affine surfaces. First, we classify the

affine surfaces with projectively flat induced connection and constant Pick invariant. We also

investigate the compact case and study how the geometry at the boundary determines the

geometry of the surface.

1. Introduction. The properties of nondegenerate surfaces invariant under the group

of unimodular affine transformations in the real affine three-space R3 were first treated by

Tzitzèica, [18], and later by Blaschke, [2]. On such surfaces there is a canonical transversal

vector field (Blaschke normal) which induces an affine connection, a bilinear symmetric

form (Blaschke metric) and a volume form.

In this paper we investigate those surfaces for which the induced connection is projec-

tively flat; they are called projectively flat affine surfaces. Previous papers on this subject

are [9], [13], [14] and [15] among others, [1] appeared recently. Basic examples of pro-

jectively flat affine surfaces are the affine spheres and all locally symmetric surfaces. A

nondegenerate immersion of a surface in R3 is called an affine sphere if all the Blaschke

normal lines through each point of the surface either are parallel or else intersect at one

point. There exist, surprisingly, many examples of affine spheres which have been widely

studied since the beginning of the past century. Some interesting results can be found

for example in [2], [8], [10], [11] [12] and [19]. However there are examples of projectively

flat surfaces which are not locally symmetric neither affine spheres (see [15]). Although

one is far from a local classification there are known local classifications under further

restrictions like flat Blaschke metric, see ([9]).
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In the second section we describe the fundamental invariants in affine differential

geometry and give some basic examples of projectively flat affine surfaces.

In Section 3, we completely classify projectively flat nondegenerate immersions with

constant Pick invariant (see Theorem 1 and Theorem 2).

In Section 4, we investigate compact locally strongly convex surfaces with boundary

and projectively flat induced connection. We study the question: how does the geometry

at the boundary determine the geometry of the surface?

We learned from the referee’s report that the results in Section 3 have been proved

in [1] using a different approach.

2. Basic notations and examples. By Σ we always mean a connected surface with

boundary ∂Σ. For a nondegenerate immersion ψ : Σ → R3 in the affine space R3 equipped

with its usual flat connection D and volume form given by the determinant function, it is

well known, (see [12]), how to introduce a canonical transversal vector field ξ (Blaschke

normal) and how, using ξ, by the formulas of Gauss and Weingarten we obtain the affine

metric, g, the induced connection, ∇, and the shape operator, S.

However, some of the equiaffine invariants can also be introduced using “Euclidean”

invariants. Indeed by considering on R
3 its canonical Euclidean structure, the affine met-

ric, also known as Berwald-Blaschke metric, is the following semi-Riemannian metric g

on Σ,

g = |Ke|
−1/4σe,

where σe and Ke are the second fundamental form and the euclidean Gauss curvature of

ψ, respectively. The equiaffine normalization of ψ is given by the Blaschke normal ξ and

the affine conormal vector field N :

(1) ξ =
1

2
△g ψ, N = |Ke|

−1/4ne,

where △g is the Laplace-Beltrami operator associated to g and ne denotes the usual

Gauss map of ψ. With this normalization,

(2) g := −〈dψ, dN〉,

here, 〈., .〉 is the usual scalar product in R3.

The structure equations of the immersion read

(3)

Gauss : DXdψ(Y ) = dψ(∇XY ) + g(X,Y )ξ,

DXdN(Y ) = dN(∇XY ) + σ(X,Y )N ;

Weingarten: dξ(X) = −dψ(S(X)),

where X,Y, . . . here and in the following are tangent vector fields on Σ. It is well known

that the Levi-Civita connection of g is (∇ + ∇)/2. The difference tensor 2K := ∇ − ∇

defines the totally symmetric cubic form K̂(X,Y, Z) := g(K(X,Y ), Z); K satisfies the

apolarity condition traceKX = 0 and defines the Pick invariant 2J := ‖K‖2, where the

norm is induced by g on tensor spaces. The affine shape operator S gives the symmetric

Weingarten form σ(X,Y ) := g(SX, Y ).

The basic surfaces in this theory are the affine spheres. A nondegenerate immersion ψ

is called an affine sphere if all affine normal lines of the immersion either intersect at one
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point, called its center, or else are parallel. It is called elliptic, parabolic or hyperbolic

according to whether the center is, respectively, on the concave side of the surface ψ(Σ),

at infinity, or on the convex side. The prototypes of affine spheres of the three types are

given by quadrics: ellipsoids, paraboloids and hyperboloids, which are characterized as

nondegenerate immersions with K = 0 (Theorem of Maschke).

The surface ψ1ψ2ψ3 = 1 is, besides the elliptic paraboloid, the unique affine sphere

with flat definite Blaschke metric (see [8]). In the indefinite case, the surfaces ψ3 =

ψ1ψ2 +Φ(ψ2), where the differentiable function Φ depends only on the second coordinate

function ψ2, and ψ1(ψ
2
2+ψ2

3) = 1 are the unique affine spheres with flat indefinite Blashcke

metric (see [11]).

The immersion ψ is projectively flat if the induced connection ∇ is projectively equiv-

alent to a flat connection. This condition is equivalent to either traceg∇S = 0 or △gξ ‖ ξ

(see [12]).

From the fundamental Theorem given in [5], every projectively flat immersion has

a dual immersion (also projectively flat) ψ with Blaschke metric metric g and induced

connection ∇. Thus, K = ∇−∇ = −K and ψ and ψ have the same Pick invariant, the

same affine Gauss curvature and the same affine mean curvature (see (5) below and [12]

for relations between them)

3. Projectively flat immersions with constant Pick invariant

3.1. The definite case. Let ψ : Σ → R3 be a locally strongly convex immersion, oriented

so that the second fundamental form is positive definite everywhere. On Σ we have an

orientation and a conformal structure representable by the common conformal equivalence

class of g. Therefore, Σ naturally can be regarded as a Riemann surface. Moreover, the

structure equations of affine differential geometry can be derived in terms of a local

complex parameter z in the following way: if

(4) g := 2ρ|dz|2,

we can introduce complex valued functions U and B and a real function H such that

(5)

Gauss: ψzz = (log ρ)z ψz + U ψz,

ψzz = ρ ξ,

Weingarten: ξz = −H ψz +B ψz,

where, for instance, ψz denotes the partial derivative of ψ with respect to z and ¯ is the

usual conjugation (see [3], [10] and [20] for more details).

The function H := (traceS)/2 is the affine mean curvature and J = ρ−1UU is the

Pick invariant. The Weingarten form, can be expressed by

(6) σ := −ρB(dz)2 + 2Hdzdz − ρB(dz)2.

Using that ψzzz = ψzzz and ξzz is real, from (5) we have the following integrability

equations:

Gauss: (log ρ)zz + UU + ρH = 0;(7)

Codazzi: Uz + U(log ρ)z = ρB,(8)

ρUB −Hzρ = (Bρ)z.(9)
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From (5) and (9) we also get

(10) ξzz = ρ−1(Bρ)zψz + ρ−1(Bρ)zψz −Hρξ,

and consequently, the immersion is projectively flat if and only if Bρ is holomorphic, that

is, the (2,0)-part of the Weingarten form σ must be holomorphic.

Theorem 1. Let ψ : Σ → R3 be a locally strongly convex immersion with projectively flat

induced connection and constant Pick invariant. Then ψ is locally equiaffine-equivalent

to a quadric or to the surface ψ1ψ2ψ3 = 1.

Proof. If J = 0, then from the Maschke Theorem, ψ(Σ) lies on a quadric.

Assume J = ρ−1‖U‖2 is a non-zero constant. Since Bρ is holomorphic, then from

(8) and (9) we have

(11) J(log(U‖U‖2))z = Hz

and hence (log(U‖U‖2))zz = (log(U‖U‖2))zz, that is, (log(U/U))zz = 0, and we can

write

(12) U = eµ+iν ,

for some real functions µ and ν, with ν harmonic. From (8) and (12), U(3µ + iν)z is

holomorphic, that is,

(13) (µ+ iν)z(3µ+ iν)z + (3µ+ iν)zz = 0.

Using (7) and (11), we have −H = 2Je−2µµzz + J and

(14) (2e−2µµzz + 3µ+ iν)z = 0.

Thus,

(15) µzzz = 2µzµzz −
1

2
e2µ(3µ+ iν)z.

Deriving (13) with respect to z and using (15), we get

−µzz(6µ+ i4ν)z = 6µzµzz −
3

2
e2µ(3µ+ iν)z.

Thus, (14) and the last equation give

0 = (3µ+ iν)z

(

8

3
e−2µµzz − 1

)

= (3µ+ iν)z

(

h−
4

3
(3µ+ iν)

)

,

for some holomorphic function h. Hence, 2(3µ+ iν)2 − 3h(3µ+ iν) must be holomorphic

and so 3µ+ iν.

Therefore, µ is harmonic, g is flat, and we can choose a local parameter z so that

ρ = J−1e2µ = 1 and ν must be constant. We conclude from (8) and (12) that B = Uz = 0

and ψ is a flat affine sphere with a non-zero constant Pick invariant. The result follows

from [8].

3.2. The indefinite case. Let ψ : Σ → R3 be a nondegenerate immersion with indefinite

Blaschke metric and consider on Σ the natural structure of a Lorentz surface induced by

g. Choose local asymptotic parameters u and v on Σ such that

(16) g := 2ρdudv.
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We can introduce real functions U , V , A, B and H satisfying

(17)

Gauss: ψuu = (log ρ)u ψu + U ψv,

ψvv = V ψu + (log ρ)v ψv,

ψuv = ρ ξ;

Weingarten: ξu = −H ψu +B ψv,

ξv = A ψu −H ψv,

where, for instance, ψu denotes the partial derivative of ψ with respect to u (see [2] and

[19] for more details).

The function H is the affine mean curvature and J = ρ−1UV is the Pick invariant.

The Weingarten form can be expressed by

(18) σ := −ρB(du)2 + 2Hdudv − ρA(dv)2.

Using ψuuv = ψuvu, ψvvu = ψuvv, and ξuv = ξvu, from (17) we have the following

integrability equations:

(19)

Gauss: (log ρ)uv + UV + ρH = 0;

Codazzi: Uv + U(log ρ)v = ρB,

Vu + V (log ρ)u = ρA,

ρBV −Hvρ = (Aρ)u,

ρAU −Huρ = (Bρ)v.

From (17) and (19) we also have

(20) ξuv = ρ−1(Aρ)uψu + ρ−1(Bρ)vψv −Hρξ,

and consequently, the immersion is projectively flat if and only if

(21) (Bρ)v = (Aρ)u = 0.

From the above relations and similarly to Theorem 1 we can prove

Theorem 2. Let ψ : Σ → R3 be a nondegenerate immersion with indefinite Blaschke

metric, projectively flat induced connection and constant Pick invariant. Then ψ is locally

equiaffine-equivalent to one of the following surfaces:

i) The ruled surface given by ψ(u, v) = uφ(v) +ϕ(v), where φ and ϕ are curves in R
3

satisfying det[φ, ϕ′, φ′] = 1 and det[φ, φ′, φ′′] = constant.

ii) The affine sphere ψ1(ψ
2
2 + ψ2

3) = 1.

iii) The affine sphere ψ3 = ψ1ψ2 + Φ(ψ2), where the differentiable function Φ depends

only on the second coordinate function ψ2.

4. Compact projectively flat immersions. Along this section Σ will be a compact

surface and ψ : Σ → R3 a locally strongly convex immersion with projectively flat induced

connection.

If ∂Σ = ∅, then Σ is diffeomorphic to the 2-sphere and the holomorphic function Bρ

vanishes identically on Σ (see [7]). Hence and from (5), S = HI, that is, ψ is an affine

sphere. Now, (see [2]), ψ(Σ) must be an ellipsoid. Consequently, we shall assume in the

rest of this section that ∂Σ is a non-empty set such that ψ(∂Σ) = Γ.
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Lemma 1. If Γ lies on a plane Π and Π ∩ ψ(Σ\∂Σ) = ∅, then ψ is an embedding and

ψ(Σ) lies on the boundary of a convex set in R
3.

Proof. Assume that Γ lies on the xy-plane and consider the projective transformation T

given by

(x, y, z) → T (x, y, z) = (x/z, y/z, 1/z).

Then T ◦ ψ maps Σ\(∂Σ) to a complete surface without boundary. Since projective

transformations preserve the sign of curvature, T ◦ψ is a complete locally strongly convex

immersion without boundary. Using van Heijenjoort’s theorem (see [6]), (T ◦ψ)(Σ\(∂Σ))

is the boundary of a convex set in R3. Further, T preserves line segments, and therefore

sends convex bodies to convex bodies which concludes the proof.

Proposition 1. If the Euler-Poincaré characteristic of Σ, χ(Σ), is 1 and Γ is an affine

line of curvature (not necessarily planar), then ψ is an affine sphere.

Proof. Since χ(Σ) = 1 the surface Σ is conformally equivalent to the closed unit disk

D = {z ∈ C/ |z| ≤ 1}.

Thus, we can consider Σ = D and choose polar coordinates (r, θ) given by z = u+iv =

reiθ. Therefore,
∂

∂r
= cos θ

∂

∂u
+ sin θ

∂

∂v
,

∂

∂θ
= − sin θ

∂

∂u
+ cos θ

∂

∂v
,

on ∂D. Using that (u, v) are conformal parameters we have

g

(

∂ψ

∂r
,
∂ψ

∂θ

)

= 0.

From the above equation and the fact that Γ is a line of curvature, we obtain

(22) 0 = σ

(

∂ψ

∂r
,
∂ψ

∂θ

)

= −
1

2
sin 2θ (e− g) + cos 2θ f on ∂D,

where

e = σ(
∂ψ

∂u
,
∂ψ

∂u
), f = σ(

∂ψ

∂u
,
∂ψ

∂v
) and g = σ(

∂ψ

∂v
,
∂ψ

∂v
).

Since the (2,0)-part of σ is holomorphic, F (z) = e(z) − g(z) − 2if(z) is a holomorphic

function and so it is G(z) = z2F (z). But the imaginary part of G is a harmonic function

on D and it is given by sin 2θ (e− g) − 2 cos 2θ f on ∂D. Then, from (22) the imaginary

part of G vanishes and G must be constant.

As G(0) = 0, then F = 0, that is, Bρ = 0 and ψ is an affine sphere.

Corollary 1. If Γ lies on a plane Π such that Π∩ψ(Σ\∂Σ) = ∅ and Γ is an affine line

of curvature, then ψ must be an affine sphere.

Proof. From Lemma 1, the Euler-Poincaré characteristic of Σ must be 1 and the Corollary

follows from Proposition 1.

Corollary 2. If Γ lies on a plane Π such that Π∩ψ(Σ\∂Σ) = ∅ and the affine normal

lines on ∂Σ intersect at one point or are parallel, then ψ is an affine sphere.



PROJECTIVELY FLAT AFFINE SURFACES 169

Proof. If the affine normal lines on ∂Σ intersect at one point or are parallel, then Γ is an

affine line of curvature and the result follows from Corollary 1.
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