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Abstract. We investigate a two-parameter family of relative normals that contains Manhart’s one-

parameter family and the centroaffine normal. The invariance group of each of these normals is clas-

sified, and variational problems are studied. The results are Euler-Lagrange equations for the hy-

persurfaces that are critical with respect to the area functionals of the induced and semi-Riemann-

ian volume forms and a classification of the critical hyperovaloids in the two-parameter family.

1. Introduction. F. Manhart [4] introduced a one-parameter family of relative nor-

mals that contains the Euclidean and the Blaschke normal. Obviously, for any two given

conormals on a non-degenerate hypersurface x, there is a one-parameter family connecting

them. This family is unique up to affine reparametrizations.

For example, suppose x is a non-degenerate centroaffine hypersurface immersion, then

the Euclidean support function ρE never vanishes. One can add another parameter to

Manhart’s family which joins the centroaffine normal, i.e.

(1) Y(a,b) = (ρE)−b|HE
n |−aµ, a, b ∈ R.

Here µ, ρE , HE
n denote the Euclidean conormal, support function, and Gauss-Kronecker

curvature, respectively. (The sign is fixed by ρE > 0.)

For a relative normal y for x we define the area functionals with respect to the induced

and semi-Riemannian volume forms ω and ω̂ by

A = A(M, x, y) :=

∫

M

ω, and Â = Â(M, x, y) :=

∫

M

ω̂.

Let A(a,b) := A(M, x, y(a,b)) and Â(a,b) := Â(M, x, y(a,b)).
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In affine differential geometry the Blaschke area Ae := A( 1
4 ,0) is one of the best

analysed functionals. Work in this direction was started by Blaschke [1] for dimension

two. The first and second variation of Ae for arbitrary dimension had been studied by

Calabi [2]; further contributions include [5] and [10]. Another approach is to use Â, which

was followed by [3], [4]. Wang [11] studies the first and second variation of the centroaffine

area Âc := Â(0,1).

The first and second variation of A(a,0) in Manhart’s one-parameter family were stud-

ied by the second author in [12]. Results for the first variation of A(0,b) can be found in

[7]. In this paper we derive Euler-Lagrange equations for the first variation of A(a,b) and

Â(a,b) and prove

Theorem 1. Let x : Mn → An+1 be a hyperovaloid which is A(a,b)-critical and suppose

(a, b) 6= (1, 0). Then x(M) is a sphere.

Remark 2. Any hypersurface is A(1,0)-critical.

2. Relative geometry of hypersurfaces. For a detailed introduction to the subject

see e.g. [6] or [9].

Consider a non-degenerate C∞-immersion x : Mn → An+1 of an n-dimensional, n ≥ 2,

connected oriented C∞-manifold into real flat affine space with standard flat connection

∇. Suppose that y : Mn → R
n+1 is a C∞ transversal vector field along x, i.e. dx(TpM)⊕

Ry(p) = R
n+1 at each p ∈ M . The vector space associated to An+1 is denoted by R

n+1.

The structure equations of x with respect to y read as follows:

∇udx(v) = dx(∇uv) + h(u, v)y, dy(u) = −dx(Su) + θ(u)y

for all vector fields u, v ∈ X(M). If y has vanishing connection form θ, then it is called a

relative normal. From now on we will always assume that y is a relative normal. In this

case the pair (x, y) is called a relative hypersurface.

h is a symmetric bilinear form which is also non-degenerate since x is non-degenerate;

it is hence called the relative metric induced by y. We denote the Levi-Civita connection

of h and the positive valued semi-Riemannian volume form of h by ∇̂ and ω̂, respectively.

∇ is a torsion-free Ricci-symmetric affine connection called the induced connection. S is

called the shape operator. Its trace nH := traceS is the relative mean curvature and its

determinant Hn := detS is the relative Gauss-Kronecker curvature. The induced volume

form ω is defined by

ω(u1, . . . , un) := det(dx(u1), . . . , dx(un), y);

it is parallel with respect to the induced connection: ∇ω = 0.

Define the (1, 2)-difference tensor C, the Tchebychev vector field T and the Tcheby-

chev form T ♭ by

C(u, v) = Cuv := ∇uv − ∇̂uv, nh(T, u) = nT ♭(u) := trace{v 7→ C(v, u)}.

Generally, ♭ denotes the operation of lowering an index with respect to h.
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Often it will be convenient to consider the conormal Y to describe the normalization

of a hypersurface, which is defined as a section of the cotangent line bundle satisfying

〈Y, dx〉 = 0 and 〈Y, y〉 = 1,

where 〈·, ·〉 : (Rn+1)∗ × R
n+1 → R denotes the standard scalar product. When talking

about a relative normalization, we mean that either Y or y is given on x. This makes sense,

since for relative hypersurfaces there is a bijective correspondence between normals and

conormals.

The relative support function with respect to a point x0 ∈ An+1 is defined by ρx0
:=

〈Y, x0 − x〉. Let ∆ denote the Laplacian with respect to ∇̂. We define the Laplace-type

operators

�f := ∆f + nT ♭(gradh f), �
∗f := ∆f − nT ♭(gradh f).

The induced quantities are invariant with respect to the full affine group GL(n +

1,R) ⊕ R
n+1 acting on R

n+1 in the following sense: For any given relative hypersurface

(x, y) and (B, b) ∈ GL(n + 1,R) ⊕ R
n+1, the coefficients of the structure equations of

(x, y) and (x♮ := Bx + b, y♮ := By) coincide: ∇ = ∇♮, h = h♮, and S = S♮.

We now list some formulas describing the change of relative normalization.

Lemma 1. For a hypersurface x : Mn → An+1, any two conormals Y and Y♮ with the

same orientation are related by Y♮ = eϕY, where ϕ ∈ C∞(M). Under this transition,

the relative metric changes conformally: h♮ = eϕh. Moreover, we compute (see e.g. [9])

y♮ = e−ϕ(y + dx(gradϕ)),

∇♮
uv = ∇uv − h(u, v) gradϕ,

∆♮f = e−ϕ

(

∆f +
n− 2

2
dϕ(grad f)

)

,

ω̂♮ = e
n

2 ϕω̂,

ω♮ = e−ϕω,

S♮u = e−ϕ(Su−∇u gradϕ+ u(ϕ) gradϕ),

H♮ = e−ϕ

(

H −
1

n
∆ϕ− T ♭(gradϕ) +

1

n
‖gradϕ‖2

)

,

T ♭♮ = T ♭ −
n+ 2

2n
dϕ,

T ♮ = e−ϕ

(

T −
n+ 2

2n
gradϕ

)

.

Finally, let us mention some special relative normals.

(i) The Blaschke normal ye is determined up to sign by |ω| = ω̂, which is called the

apolarity condition; it is also characterized up to a non-vanishing constant factor by

T = 0. The Blaschke normal is invariant with respect to unimodular affine transfor-

mations SL(n+1,R)⊕R
n+1, meaning that for any unimodular affine transformation

(B, b) the Blaschke normal of x♮ = Bx + b is y♮e = Bye. Invariants induced by the

Blaschke normal will be denoted by e.
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(ii) For an appropriate choice of an origin, any non-degenerate hypersurface locally can

be endowed with yc := −x, which is the centroaffine normal. It is characterized by

S = id. Therefore, a proper relative sphere is exactly the underlying hypersurface

with its centroaffine normal up to a constant factor. The centroaffine normal is

invariant with respect to GL(n+ 1,R). Centroaffine invariants will be marked by c

if ambiguous.

(iii) Locally, we can normalize any hypersurface with a constant transversal field, which

is always a relative normal. The hypersurface will be an improper relative sphere

with respect to this normal.

(iv) The Euclidean normal is a relative normal which is invariant with respect to the

group of Euclidean motions SO(n+1,R)⊕R
n+1. Euclidean invariants will be marked

by E if ambiguous. Moreover, we denote fundamental forms by I, II := hE and write

µ := YE = yE .

3. Invariance groups of constructions of relative normals. The construction of a

relative normal is a mapping which assigns a relative normal y to a given non-degenerate

hypersurface x. The invariance group of such a construction is the maximal subgroup

I ⊆ GL(n + 1,R) ⊕ R
n+1 such that the order of construction and transformation does

not matter, i.e. for any g ∈ I with linear part B we have c ◦ g = B ◦ c on the set of all

non-degenerate hypersurfaces.

Examples of constructions are E, e and c. Of course, we are only interested in a

small subset of all constructions, namely those with big invariance groups. In the generic

case, invariance groups will be {(id, 0)}. The invariance groups of relative normals in the

two-parameter family will be denoted by I(a,b).

Lemma 2. Let x : Mn → An+1 be a non-degenerate hypersurface. For a given conormal

Y and q ∈ C∞(M), let Y(a) = qaY be a one-parameter family of relative conormals.

Assume ρ = ρ(0) 6= 0. Let G be a subgroup of the full affine group such that G ⊆ I(a0)

and G ⊆ I(a1) for two values a0 6= a1. Then G ⊆ I(a) for all a ∈ R.

Proof. Without loss of generality we can assume a0 = 0 and a1 = 1, for otherwise the one-

parameter family Y(a) = q̃ãỸ where q̃ = qa1−a0 , ã = a−a0

a1−a0
and Ỹ = qa0Y satisfies this

condition. The proof is trivial for a pure translation, so assume the affine map from G fixes

the origin and has matrix B. Let x♮ = Bx, y♮ = By(a) be the transformed hypersurface.

It suffices to prove y♮(a) = y♮. We know that y♮(0) = By(0) and y♮(1) = By(1), thus

Y♮(0) = B∗−1Y(0) and Y♮(1) = B∗−1Y(1). From the assumption we can express q = ρ(1)

ρ(0) .

We get ρ♮(0) = ρ(0) and ρ♮(1) = ρ(1), hence q♮ = q. Finally we get

〈Y♮(a), y♮〉 = 〈q♮aB∗−1Y, Bq−a(y + dx grad log qa)〉 = 1.

Corollary 3. (i) In the particular case that I(a0) ⊆ I(a1) it follows that I(a) ∩ I(a1) =

I(a0) for each a ∈ R\{a1}.

(ii) If I(a0) ⊆ I(a1) = GL(n+ 1,R) ⊕ R
n+1, then I(a) = I(a0) for each a ∈ R\{a1}.

The following theorem is an extension of [12], Theorem 5.7.
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Theorem 4. Let x : Mn → An+1 be a non-degenerate hypersurface and a, b ∈ R. The

invariance group of the relative normal y(a,b) is

(i) SL(n+ 1,R) ⊕ R
n+1 if (a, b) = ( 1

n+2 , 0),

(ii) R
+SO(n+1,R)⊕R

n+1 if (a, b) = (− 1
n
, 0) (in this case y(a,b) is called the conformal

relative normal),

(iii) SO(n+ 1,R) ⊕ R
n+1 if a 6∈ { 1

n+2 ,−
1
n
}, b = 0,

(iv) GL(n+ 1,R) if (a, b) = (0, 1),

(v) SL(n+1,R) if a(n+2)+b = 1 and y(a,b) is neither the Blaschke nor the centroaffine

normal,

(vi) R
+SO(n+1,R) if b = an+1 and y(a,b) is neither the conformal nor the centroaffine

normal,

(vii) SO(n+ 1,R) otherwise.

Proof. As ρE is not invariant with respect to translations (origin is fixed), we know

that translations are not part of the invariance group for b 6= 0. We exclude the line

a(n+ 2) + b = 1. This part of the proof follows easily from Lemma 2, where one has to

use invariance groups of the centroaffine and the Blaschke normalizations.

Invariance. Suppose we have a linear transformation x♮ = Bx of x such that B = cD

for some D ∈ O(n + 1,R) and 0 6= c ∈ R. Define y♮ = By(a,b). It is our aim to find

conditions under which y♮ = y(a,b)♮, where y(a,b)♮ is the relative normal of x♮ belonging

to the parameter (a, b). We have dx♮ = cDdx and thus µ♮ = Dµ. The sign of µ♮ is chosen

such that

ρE♮ = −〈µ♮, x♮〉 = −〈Dµ, cDx〉 = −c〈µ, x〉 = cρE .

Moreover,

−dx♮(SE♮u) = dµ♮(u) = Ddµ(u) = −ǫDdx(SEu) = −c−1dx♮(SEu).

We get S♮E = c−1SE , hence Hn
♮E = c−nHE

n . Finally,

Y(a,b)♮ = ρE♮−b|HE
n

♮|−aµ♮ = can−bDY(a,b)

and

〈Y(a,b)♮, y♮〉 = can−b〈DY(a,b), By(a,b)〉 = can−b+1〈DY(a,b), Dy(a,b)〉 = can−b+1 = 1.

This works only for c = 1 or b = an+ 1.

Maximality. Suppose that x, x♮ : Mn → An+1 are non-degenerate hypersurfaces such

that x♮ = Bx and y(a,b)♮ = By(a,b), where B ∈ GL(n+ 1,R). Then all objects induced on

M by (x, y(a,b)) and (x♮, y(a,b)♮) coincide. Let us show that we can write B = cD for some

D ∈ SO(n+ 1,R) and c ∈ R\{0}, where c = 1 follows from the invariance part. This is

done if we prove ∇(I♮) = ∇(I) and II♮ = c II. The definition can be rewritten as

Y(a,b) = ρE−a(n+2)−bρea(n+2)µ = ρE−a(n+2)−b+1ρea(n+2)−1Ye.

We have

T ♭(a,b) =
n+ 2

2n
d log(ρEa(n+2)+b−1ρe1−a(n+2))
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With T ♭(a,b) = T ♭(a,b)♮ we get
(

ρe♮

ρe

)1−a(n+2)(
ρE♮

ρE

)a(n+2)+b−1

= const 6= 0.

Under a GL(n+1,R) transformation of the hypersurface the Blaschke support function is

changed by a constant factor which equals the determinant of the transformation matrix.

Thus, for a(n+ 2) + b 6= 1, we get that ρ♮E/ρE = const. We obtain II♮ = c II from

ρE−a(n+2)−bρea(n+2) II = h(a,b) = h♮(a,b) = ρE♮−a(n+2)−bρe♮a(n+2)II♮.

The proof is finished by recalling ∇♮(a,b) = ∇(a,b) in

∇(a,b)♮
uv = ∇(I♮)uv − II♮(u, v) grad(II♮) log(ρ♮E−a(n+2)−bρe♮a(n+2))

= ∇(I♮)uv − II(u, v) grad(II) log(ρE−a(n+2)−bρea(n+2))

= ∇(I♮)uv + ∇(a,b)
u v −∇(I)uv.

The classification follows from the unification of the two parts.

We conclude this section by mentioning another possibility of a one-parameter family.

Theorem 5. Suppose detSe 6= 0. Then Y(a) = |Hn
e|−aYe is a one-parameter family

with invariance group

(i) GL(n+ 1,R) ⊕ R
n+1 if a = − 2(n+1)

n2 , and

(ii) SL(n+ 1,R) ⊕ R
n+1 otherwise.

Proof. First observe that translations are included in the invariance groups since the

construction is translation independent. For B = cD ∈ GL(n + 1,R) where c > 0 and

detD = ±1 suppose x♮ = Bx and let y♮ = By(a). As in the previous proof, we ask

for y♮ = y(a)♮. As before we get Se♮ = c
−

n
n+2Se, thus Hn

e♮ = c
−

n2

n+2Hn
e. We obtain

Y(a)♮ = c
n(1+an)

n+2 D∗−1Y(a). Finally, 〈Y(a)♮, y♮〉 = c
an2+2n+2

n+2 shows that either c = 1 or

a = −2(n+1)
n2 . This shows that the normals are invariant with respect to the given groups.

The maximality follows from Corollary 3 (ii).

For hypersurfaces with non-singular Blaschke shape operator, there is a relative nor-

malization which is invariant with respect to the full affine group.

Corollary 6. Consider a one-parameter family Y(a) = |Hn|
−aY with Hn 6= 0. Then

I(0) ⊆ I(a) for all a ∈ R.

4. First variation of area functionals. To do variational calculus we follow the no-

tation of [12]. A relative deformation of a hypersurface x with relative normal y is a

C∞-family (xt, yt) of non-degenerate relative hypersurfaces such that x0 = x and y0 = y.

We describe an infinitesimal deformation of x by the pair (ψ, φ) defined by

x′ = dx(ψ) + φy, (.)′ :=
∂

∂t
(.)|t=0.

We will use the following formulas from [12], Lemma 3.4 and (6.1.3), which hold for any

relative deformation.

〈Y′, dx〉 = − ψ♭ − dφ,(2)



INVARIANCE GROUPS OF RELATIVE NORMALS 177

(logω)′ = 〈Y, y′〉 − nHφ+ divψ,(3)

(log ω̂)′ = 1
2 (−n〈Y, y′〉 + �

∗φ− nHφ+ 2d̂ivψ),(4)

ρ′ = − ρ〈Y, y′〉 + h(grad ρ, ψ + gradφ) − φ.(5)

Moreover, for a Euclidean deformation (i.e. yt is the Euclidean normal of xt) with in-

finitesimal representation (ψ̃, φ̃) we obtain (cf. [12], (4.1.2b))

(6) (logHE
n )′ = �

E φ̃+ nHEφ̃− 2nT ♭E(ψ̃ + grad(II)φ̃).

Proposition 7. Let x : Mn → An+1 be a non-degenerate hypersurface and a, b ∈ R.

Then

(i) x is A(a,b)-critical if and only if

(a− 1)nH(a,b) −
b

ρ(a,b)
= 0.

(ii) x is Â(a,b)-critical if and only if

(1 + an)(div(∇̂(a,b)T (a,b)) −H(a,b)) +
b

ρ(a,b)
= 0.

Proof. Fix (a, b) and assume that for each deformed hypersurface xt the deformed normal

is y(a,b)t from the two-parameter family. Then

dx(ψ) + φy(a,b) = x′ = dx(ψ̃) + φ̃µ

links the two representations. We will first compute the unknown part 〈Y(a,b), y(a,b)′〉 in

the formulas above.

〈Y(a,b), y(a,b)′〉 = − 〈(ρE−b|HE
n |−aµ)′, ρEb|HE

n |a(µ+ dx(grad log(ρE−b|HE
n |−a)))〉(7)

= aHE
n

−1(HE
n

′ − II(grad(II)HE
n , ψ̃ + grad(II)φ̃))

+ bρE−1(ρE ′ − II(grad(II)ρE , ψ̃ + grad(II)φ̃))

= a(�(a,b)φ+ nH(a,b)φ) − bρ(a,b)−1φ.

We used the fact φ̃ = ρEb|HE
n |aφ. For the first part of the assertion we compute, using

(3) and (7),

(A(a,b))′ =

∫

ω(a,b)′ =

∫

(〈Y(a,b), y(a,b)′〉 − nH(a,b)φ+ div(∇(a,b))ψ)ω(a,b)

=

∫

(a�(a,b)φ+ (a− 1)nH(a,b)φ− bρ(a,b)−1φ)ω(a,b).

Now (i) follows by the fundamental theorem since
∫

�
(a,b)(·)ω(a,b) = 0. For the second

part (ii),

(Â(a,b))′ =

∫

ω̂(a,b)′ =
1

2

∫

(−n〈Y(a,b), y(a,b)′〉 + �
∗(a,b)φ− nH(a,b)φ)ω̂(a,b)

=
1

2

∫

((�∗(a,b) − an�
(a,b))φ− (1 + an)nH(a,b)φ+ nbρ(a,b)−1φ)ω̂(a,b)

=
n

2

∫

((1 + an)d̂iv(a,b)T (a,b) − (1 + an)H(a,b) + bρ(a,b)−1)φω̂(a,b),
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where we have used (4), (7), the definitions of �, �
∗ and the identity

∫

T ♭(gradφ)ω = −

∫

h

(

gradφ, grad log

∣

∣

∣

∣

ω

ω̂

∣

∣

∣

∣

)

)ω =

∫

(d̂ivT )φω.

We will now prove Theorem 1. Observe that by applying the first Minkowski integral

formula

0 =

∫

(1 − ρ(a,b)H(a,b))ω(a,b) =
n(a− 1) − b

n(a− 1)

∫

ω(a,b)

we get b = n(a − 1). Proposition 7 (i) states that there is the relation H = f(ρ) = 1
ρ

for some function f on the real line. The assertion follows from the following theorem of

U. Simon for the first relative curvature function, which is the mean curvature.

Theorem 8 ([8], Theorem 6.1). Let x : Mn → An+1 be a closed locally strongly convex

C5-hypersurface with a relative normal y. Suppose H > 0. Assume that there exists a

C1-function f such that H = f(ρ) and f ′ ≤ 0. Then x(M) is a sphere.
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