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Abstrat. We investigate urvature properties of hypersurfaes in semi-Riemannian spaes ofonstant urvature with the minimal polynomial of the seond fundamental tensor of seonddegree. We present suitable examples of hypersurfaes.1. Introdution. A semi-Riemannian manifold (M, g), n = dim M ≥ 3, is said to bean Einstein manifold if

S =
κ

n
g(1)on M . The Einstein manifolds form a natural sublass of the lass of quasi-Einsteinmanifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is alled a quasi-Einstein manifoldif at every x ∈ M its Rii tensor S has the form

S = αg + ǫw ⊗ w, ǫ = ±1,(2)where w ∈ T ∗

x M and α ∈ R. For preise de�nitions of the symbols used we refer toSetions 2 and 3 of [28℄ (see also [3℄ and [15℄). Another sublass of quasi-Einstein manifoldsform Rii-simple manifolds, i.e. semi-Riemannian manifolds having the Rii tensor ofrank at most one. Quasi-Einstein manifolds arose in the study of exat solutions of theEinstein �eld equations and in the study of quasi-umbilial hypersurfaes of onformally�at spaes. Quasi-Einstein hypersurfaes were studied among others in [14℄, [17℄, and[19℄, see also referenes therein. We refer to [3℄ for a review of results on quasi-Einsteinmanifolds. We mention that the problem of equivalene of the onditions of semisymmetry2000 Mathematis Subjet Classi�ation: Primary 53B20, 53B25; Seondary 53C25.Key words and phrases: Roter type hypersurfae, Akivis-Goldberg type hypersurfae, Cartantype hypersurfae, Rii-pseudosymmetri hypersurfae.Researh supported by the Agriultural University of Wroªaw (Poland) grant 225/GW/2003and the VolkswagenStiftung (Germany).The paper is in �nal form and no version of it will be published elsewhere.
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134 M. GŁOGOWSKA(R·R = 0, [27℄) and Rii-semisymmetry (R·S = 0), on hypersurfaes in Eulidean spaes,named the problem of P. J. Ryan, leads to onsideration of quasi-Einstein hypersurfaes(see e.g. [1℄, [12℄ and [18℄).A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetri ([3℄, [10℄)if, at every point of M , the tensors R · R and Q(g, R) are linearly dependent. This isequivalent to
R · R = LRQ(g, R)(3)on UR = {x ∈ M |R− κ

(n−1)nG 6= 0 at x}, where LR is some funtion on UR. The lass ofpseudosymmetri manifolds is an extension of the lass of semisymmetri manifolds (seee.g. [3℄, setions 3 and 4). In [25℄ (see also [26℄) a speial sublass of pseudosymmetrimanifolds was introdued. Namely, aording to [25℄, a pseudosymmetri manifold isalled a pseudo-symmetri spae of onstant type if the funtion LR is onstant.A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Rii-pseudosymmetri ([3℄,[10℄) if, at every point of M , the tensors R · S and Q(g, S) are linearly dependent. Thisis equivalent to
R · S = LSQ(g, S)(4)on US = {x ∈ M |S − κ

n
g 6= 0 at x}, where LS is some funtion on US . The lassof Rii-pseudosymmetri manifolds is an extension of the lass of Rii-semisymmetrimanifolds, as well as of the lass of pseudosymmetri manifolds (see [3℄ and [10℄). ARii-pseudosymmetri manifold is alled a Rii-pseudosymmetri manifold of onstanttype if the funtion LS is onstant. The Cartan hypersurfaes of dimension ≥ 6 areRii-pseudosymmetri manifolds of onstant type whih are non-pseudosymmetri (seeSetion 2). Another example of a Rii-pseudosymmetri manifold of onstant type whihis non-pseudosymmetri is given in Setion 4 of [19℄.Let (M, g), n ≥ 4, be a semi-Riemannian manifold suh that its urvature tensor Rsatis�es on UC ∩ US ⊂ M the equation

R = φS + µg ∧ S + ηG,(5)where φ, µ and η are some funtions on this set and UC = {x ∈ M |C 6= 0 at x}. Aordingto [11℄, (5) is alled the Roter type equation. Consequently, a manifold (M, g), n ≥ 4, sat-isfying (5) on UC ∩US ⊂ M , will be alled a Roter type manifold. Obviously, we onsidermanifolds (M, g) with nonempty set UC ∩ US ⊂ M . We mention that the deompositionof R on UC ∩US in terms S, g ∧ S and G is unique ([17℄, Lemma 3.2). If (5) holds on anopen set U ⊂ UC ∩US then we say that the Roter type equation is satis�ed on U . Rotertype manifolds were reently de�ned in [11℄, although investigations on these manifoldswere initiated earlier in [16℄. Examples of suh manifolds are presented in [11℄ and [20℄.It is easy to prove that every Roter type manifold is a non-Einstein and non-onfor-mally �at semi-Riemannian manifold of dimension ≥ 4. The lass of Roter type manifoldsforms an essential sublass of the lass of pseudosymmetri manifolds. Roter type mani-folds satisfy also other urvature onditions of pseudosymmetry type (see Setion 2). Fora survey of results on manifolds satisfying pseudosymmetry type urvature onditions werefer to [3℄ and [15℄. A hypersurfae whih is a Roter type manifold is alled a Roter type



CURVATURE CONDITIONS ON HYPERSURFACES 135hypersurfae. We an prove that every Roter type manifold satis�es
S · R = L1S + L2g ∧ S + L3G,(6)

R · R − Q(S, R) = L4Q(g, C),(7)
S2 = L5S + L6g,(8)where L1, . . . , L6 are some funtions on UC ∩ US .Aording to [11℄, a semi-Riemannian manifold (M, g), n ≥ 4, is said to be an Akivis-Goldberg type manifold if (6), (7) and (8) hold on UC∩US ⊂ M . Every Roter type manifoldis an Akivis-Goldberg type manifold. The onverse statement is not true ([11℄). We referto [11℄ for a survey of results on Akivis-Goldberg type manifolds. Again, investigationson these manifolds were initiated in earlier papers: [8℄ and [23℄ (see also [2℄).Investigations of urvature properties of Rii-pseudosymmetri hypersurfaes, and inpartiular, of the Cartan hypersurfaes of dimension ≥ 6 (see [13℄ and referenes therein),as well as the onsiderations presented above lead to the de�nition of the lass of Cartantype manifolds. A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold ofCartan type if on UC ∩ US ⊂ M we have (7), (8) and

S · R = L0R + L1S + L2g ∧ S + L3G,(9)where L0, . . . , L6 are some funtions on UC ∩ US . Every Akivis-Goldberg type manifoldis a Cartan type manifold. The onverse statement is not true (see Theorem 3.4).Hypersurfaes whih are Akivis-Goldberg type manifolds and hypersurfaes whihare Cartan type manifolds will be alled Akivis-Goldberg type hypersurfaes and Cartantype hypersurfaes, respetively. In Setion 3 we prove that every Cartan hypersurfaeof dimension ≥ 6 is a Cartan type hypersurfae whih is not an Akivis-Goldberg typehypersurfae.In [22℄ (Theorem 1), among other things, it was proved that if the minimal polynomialof the seond fundamental tensor H of a hypersurfae immersed isometrially in a semi-Riemannian spae of onstant urvature is of seond degree then suh a hypersurfae is apseudosymmetri manifold. In this paper we improve that result. Namely, we prove thatsuh a hypersurfae is a Roter type hypersurfae (see Theorem 3.1). As an immediateonsequene of Theorem 3.1 we haveTheorem 1.1. Let M be a hypersurfae in a Riemannian spae of onstant urvature
Nn+1(c), n ≥ 4. If at every point of UC ∩ US there are exatly two distint prinipalurvatures then M is a Roter type hypersurfae.The onverse statement is not true. Namely, we an prove that the hypersurfae on-sidered in [17℄(Example 5.2) is a Roter type hypersurfae with three distint prinipalurvatures. We mention that quasi-umbilial hypersurfaes of dimension ≥ 4 in Rieman-nian spaes of onstant urvature are non-Roter type pseudosymmetri hypersurfaes(see Remark 3.1). But on the other hand, every non-Einstein and non-onformally �atCli�ord torus of dimension ≥ 4 is a Roter type hypersurfae (see Corollary 3.2). It iswell-known that every Cli�ord torus is a semisymmetri manifold. Furthermore in Ex-ample 3.1 we present an example of a warped produt Roter type manifold whih an beloally realized as a hypersurfae in a semi-Eulidean spae.



136 M. GŁOGOWSKAThe author would like to express her thanks to the referee for his hints, remarks andomments.2. Preliminaries. It is easy to hek that (2) implies
S2 = (κ − (n − 2)α)S + α((n − 1)α − κ)g.Thus we haveProposition 2.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (2).Then (8), with L5 = κ− (n−2)α and L6 = α((n−1)α−κ), is satis�ed on M . Moreover,if (6) and (7) hold on UC ∩ US ⊂ M then (M, g) is an Akivis-Goldberg type manifold.Further, we haveProposition 2.2. Let (M, g), n ≥ 4, be a semi-Riemannian manifold. The followingonditions: (2) and

S = αg ∧ S − α2G = α2G + αǫg ∧ (w ⊗ w)(10)are equivalent on US ⊂ M .Proof. Our assertion is an immediate onsequene of Lemma 3.1 of [24℄ and (2).We an also prove the followingProposition 2.3. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (9).Let V be a set of all points of UC ∩ US ⊂ M at whih (2) or (5) is ful�lled. Then thedeomposition of the tensor S ·R in terms R, S, g∧S and G is unique on (UC ∩US)\V .Proof. Let x ∈ (UC ∩ US) \ V and let
S · R = L′

0R + L′

1S + L′

2g ∧ S + L′

3G(11)at x, where L′

0, . . . , L
′

3 ∈ R. We suppose that at x we have L0−L′

0 6= 0. Now (9) and (11)imply (5), a ontradition. Thus at x we have L0 = L′

0. Further, we suppose that at x wehave L1 − L′

1 6= 0. Now (9) and (11) imply (10). This, in view of Lemma 3.1 [24℄, turnsinto (2), a ontradition. Thus at x we have L1 = L′

1. Similarly, we prove that L2 = L′

2and L3 = L′

3 at x. Our proposition is thus proved.We an hek that (5) implies (3) with LR = (n− 2)(µ
φ
(µ− 1

n−2 )− η) ([16℄, Theorem4.2) and
R · R − Q(S, R) =

(
LR +

µ

φ

)
Q(g, C),(12)

S2 = αS + βg,(13)
S · R = −4(αφ + µ)S − 2(αµ + η + βφ)g ∧ S − 4βµG,(14)

α = κ +
(n − 2)µ − 1

φ
, β =

µκ + (n − 1)η

φ
.Furthermore, we have C · C = LCQ(g, C) and C · R = LCQ(g, R), where LC = LR +

1
n−2( κ

n−1 − α). We haveTheorem 2.1 ([11℄, Theorem 3.1). Every Roter type semi-Riemannian manifold (M, g),
n ≥ 4, is an Akivis-Goldberg type manifold.



CURVATURE CONDITIONS ON HYPERSURFACES 137Proposition 2.4. On every semi-Riemannian Einstein manifold (M, g), n ≥ 4, (8) and(9) are satis�ed on M . Moreover, if (M, g) is pseudosymmetri then (7) holds on M .Proof. Our proposition is an immediate onsequene of (11) of [28℄ and (1), (8) and (9).From Propositions 2.3 and 2.4 it follows that onsideration of Einstein manifolds,as well as of onformally �at manifolds, satisfying (6) (or (9)), (7) and (8) is ratheruninteresting.Using Propositions 2.1 and 2.3 and Theorems 3.3 and 3.4 of [9℄ we an prove thefollowingProposition 2.5. If (7) is satis�ed on a onformally �at semi-Riemannian manifold
(M, g), n ≥ 4, then (8) and (9) hold on M .3. Rii-pseudosymmetri hypersurfaes. Let M be a hypersurfae immersed iso-metrially in a semi-Riemannian manifold (N, gN ). If (5), resp. (6), (7) and (8) or (7),(8) and (9), hold on UC ∩ US ⊂ M then M is said to be a Roter type hypersurfae, resp.an Akivis-Goldberg type hypersurfae ([11℄) or a Cartan type hypersurfae.Let Nn+1

s (c), n ≥ 4, denote a semi-Riemannian spae of onstant urvature, withsignature (s, n + 1 − s), where c = κ̃
n(n+1) and κ̃ being its salar urvature. Further, let

M be a hypersurfae immersed isometrially in Nn+1
s (c). The Gauss equation of M in

Nn+1
s (c) reads (see e.g. [15℄, [28℄)

Rhijk = ε(HhkHij − HhjHik) +
κ̃

n(n + 1)
Ghijk,(15)where Rhijk, Ghijk and Hij denote the loal omponents of the urvature tensor R, thetensor G and the seond fundamental tensor H of M . Contrating (15) with gij and gkh,respetively, we obtain

Shk = ε(tr(H)Hhk − H2
hk) +

(n − 1)κ̃

n(n + 1)
ghk,(16)

κ = ε((tr(H))2 − tr(H2)) +
(n − 1)κ̃

n + 1
,respetively, where κ is the salar urvature of M , tr(H) = ghkHhk, tr(H2) = ghkH2

hkand Shk are the loal omponents of the Rii tensor S of M . For the de�nition of thetensor H2 see e.g. [28℄ (Setion 1). Further, we denote by UH the set of all points of Mat whih the tensor H2 is not a linear ombination of the metri tensor g and the seondfundamental tensor H of M . Using (16) and Theorem 4.1 of [21℄ we an dedue that
UH ⊂ UC ∩ US ⊂ M . Evidently, on (UC ∩ US) \ UH we have

H2 = αH + βg,(17)where α and β are some funtions on (UC ∩ US) \ UH .We reall that a Cartan hypersurfae in the sphere Sn+1(c) is a ompat minimal hy-persurfae with onstant prinipal urvatures −(3c)
1

2 , 0, (3c)
1

2 of the same multipliity n
3 .It is known that the Cartan hypersurfaes are tubes of onstant radius over the standardVeronese embeddings i : EP 2 → S3d+1(c) → E3d+2, d = 1, 2, 4, 8, of the projetive plane

EP 2 into the sphere S3d+1(c) in a Eulidean spae E3d+2, where E = R (real numbers),



138 M. GŁOGOWSKA

C (omplex numbers), Q (quaternions) or O (Cayley numbers), respetively ([4℄). EveryCartan hypersurfae satis�es (4). Preisely, we have (see e.g. [13℄, Theorem 4.3)
R · S =

κ̃

n(n + 1)
Q(g, S).(18)Thus suh a hypersurfae is a Rii-pseudosymmetri manifold of onstant type. In ad-dition, the Cartan hypersurfae in S4(c) is a pseudosymmetri manifold satisfying ([22℄,Example 2)

R · R =
κ̃

12
Q(g, R).If on the set UH of a hypersurfae M in Nn+1

s (c), n ≥ 3, we have H3 = tr(H)H2 + λH,for some funtion λ, then (18) holds on UH ([7℄, Proposition 3.2). It is also known thatif rankH = 2 at every point of a hypersurfae M in Nn+1
s (c), n ≥ 3, then it is a pseudo-symmetri spae of onstant type ([7℄, Theorem 4.2). Preisely, on suh a hypersurfaewe have

R · R =
κ̃

n(n + 1)
Q(g, R).On every hypersurfae M in Nn+1

s (c), n ≥ 4, we have ([21℄)
R · R − Q(S, R) = −

(n − 2)κ̃

n(n + 1)
Q(g, C).(19)Thus on UC ∩ US ⊂ M we have (8) with L4 = − (n−2)κ̃

n(n+1) . Clearly, if (6) and (8), resp. (8)and (9), hold on UC ∩US ⊂ M then M is an Akivis-Goldberg type hypersurfae, resp. aCartan type hypersurfae.Theorem 4.3 of [13℄ states that every Cartan hypersurfae of dimension n ≥ 6 isa Cartan type hypersurfe. They are non-pseudosymmetri Rii-pseudosymmetri hy-persurfaes. Further, (9), with L1 = 0, is satis�ed on UH ⊂ UC ∩ US ⊂ M for everyRii-pseudosymmetri hypersurfae M in Nn+1
s (c), n ≥ 4, ([13℄, Theorem 3.2). In otherwords, on UH we have (8) and

S · R = L0R + L2g ∧ S + L3G.In this setion we prove that suh hypersurfaes are Cartan type hypersurfaes. We alsomention that examples of quasi-Einstein Rii-pseudosymmetri hypersurfaes were foundreently in [17℄ and [19℄.Sine (19) is a relation of the form (7), we haveProposition 3.1. Let M be a hypersurfae in Nn+1
s (c), n ≥ 4.(i) The relation (7) is satis�ed on M .(ii) If (6) and (8) hold on UC ∩US ⊂ M then M is an Akivis-Goldberg type hypersurfae.Propositions 2.1 and 3.1 implyProposition 3.2. If M is a hypersurfae in Nn+1

s (c), n ≥ 4, satisfying (2) and (6) on
UC ∩ US ⊂ M then M is an Akivis-Goldberg type hypersurfae.



CURVATURE CONDITIONS ON HYPERSURFACES 139Proposition 3.3. Let M be a hypersurfae in Nn+1
s (c), n ≥ 4. Then on (UC∩US)\UH ⊂

M we have
R = ε(tr(H) − α)−2

(
S −

(
(n − 1)κ̃

n(n + 1)
− εβ

)
g ∧ S

)(20)
+

(
ε(tr(H) − α)−2

(
(n − 1)κ̃

n(n + 1)
− εβ

)2

+
κ̃

n(n + 1)

)
G,where α and β are de�ned by (17).Proof. First of all, we note that (16) and (17) yield

S = ε(tr(H) − α)H + (
(n − 1)κ̃

n(n + 1)
− εβ)g.(21)Thus we see that tr(H) − α 6= 0 at every point of (UC ∩ US) \ UH . Further, using (15)and (21) we get (20), ompleting the proof.Proposition 3.3 impliesTheorem 3.1. Let M be a hypersurfae in Nn+1

s (c), n ≥ 4, and let (UC ∩US)\UH ⊂ Mbe nonempty. Then the Roter type equation holds on this set. Moreover, if UH ⊂ M isempty then M is a Roter type hypersurfae.It is easy to see that the last theorem implies Theorem 1.1.Remark 3.1. Let M be a hypersurfae in a Riemannian spae of onstant urvature
Nn+1(c), n ≥ 4. Using the well-known Cartan-Shouten result (see e.g. [5℄, Setion13.1.1.) we an easily dedue that if at a point of UC ⊂ M there are exatly two distintprinipal urvatures then the multipliity of eah prinipal urvature is ≥ 2, i.e. M an-not be quasi-umbilial at this point. More generally, if M is a hypersurfae in Nn+1

s (c),
n ≥ 4, and if (17) is satis�ed at a point of UC ⊂ M then M is not quasi-umbilial at thispoint ([21℄, Theorem 4.1).Theorem 3.2 ([13℄, Theorem 3.2). If M is a Rii-pseudosymmetri hypersurfae in
Nn+1

s (c), n ≥ 4, then (8) and (9) hold on UH ⊂ M .Theorems 3.1 and 3.2 yieldTheorem 3.3. Every Rii-pseudosymmetri hypersurfae in Nn+1
s (c), n ≥ 4, is a Car-tan type hypersurfae.Theorem 3.4. The Cartan hypersurfae M in Sn+1(c), n = 6, 12 or 24 is a Cartan typehypersurfae whih is not an Akivis-Goldberg type hypersurfae.Proof. First of all we note that M is a non-pseudosymmetri Rii-pseudosymmetrihypersurfae (e.g. see [13℄, setion 2). From the de�nition of the Cartan hypersurfaeit follows that UC ∩ US = M . We suppose now that M is an Akivis-Goldberg typehypersurfae. Thus on M we have S ·R = L′

1S +L′

2g∧S +L′

3G, where L′

1, L
′

2 and L′

3 aresome funtions on M . The last relation, together with the equation (53) of [13℄, yields(5). But (5) implies (3) (see setion 2), a ontradition. Thus our theorem is proved.Example 3.1. Let M1, resp. M2, be a nonempty open onneted subset of Rp, resp.
Rn−p, 2 ≤ p ≤ n− 2, equipped with the standard metri g1, g1ab = εaδab, εa = ±1, resp.
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g2, g2αβ = εαδαβ, εα = ±1, where a, b, c, d, e, f ∈ {1, . . . , p}, α, β, γ, δ ∈ {p+1, . . . , n} and
h, i, j, k ∈ {1, . . . , n}. We set F = F (x1, . . . , xp) = k exp(ξaxa), where k, ξ1, . . . , ξp ∈ R,
ξ2
1 + . . . + ξ2

p > 0, k > 0 and g
ef

1 ξeξf 6= 0. We onsider the warped produt M1 ×F M2.Let τ be a funtion on M ×F Ñ de�ned by (f. [8℄, Setion 4)
τ2 = −

ε

4
g

ef
1 ξeξf , ε = ±1.(22)It is lear that there exist onstants ε, εa, and ξa suh that the right-hand side of (22) ispositive at every point x of M ×F Ñ . Using now (44) of [8℄ and (22) we �nd

Sab = −
n − p

4
ξaξb, Sαβ = (n − p)ετ2gαβ ,

S2 =
κ

n − p + 1
S, κ = (n − p)(n − p + 1)ετ2.

(23)
In Setion 4 of [8℄ it was shown that the onditions: R · R = Q(S, R) and S · R = 0are satis�ed on M ×F Ñ . Further, we have (see [8℄, setion 4) R = εH , where H is asymmetri (0, 2)-tensor with the loal omponents

Hab = −
1

4τ
ξaξb, Haα = 0, Hαβ = ετgαβ .(24)The tensor H is a Codazzi tensor. Therefore M1 ×F M2 loally an be realized as ahypersurfae in a semi-Eulidean spae En+1

s . From (23) and (24) it follows thattrH = −
1

4τ
g1efξeξf + (n − p)ετ = (n − p + 1)ετ, H2 = ετH.Applying this and (23) into (16) and (15), on M1 ×F M2 we get

S = (n − p)τH, R =
n − p + 1

(n − p)κ
S,respetively. Thus we see that M1 ×F M2 is a Roter type manifold whih loally an berealized as a hypersurfae in a semi-Eulidean spae En+1

s .Remark 3.2. (i) An example of a hypersurfae M in Nn+1
s (c), c 6= 0, n ≥ 4, satisfyingthe Roter type equation on the set (UC ∩US)\UH ⊂ M , is given in [20℄. We also mentionthat warped produts satisfying (5) were investigated in [20℄.(ii) The warped produt de�ned in Example 4.1 of [14℄ is a Rii-simple Akivis-Goldbergtype manifold. Clearly, suh manifold is not a Roter type manifold. That warped produtloally an be realized as a hypersurfae in a semi-Eulidean spae En+1

s ([14℄, Example5.1).(iii) Examples of Rii-pseudosymmetri quasi-Einstein hypersurfaes in spaes of on-stant urvature are given in [17℄ and [19℄.We onsider the Cartesian produt Np
s1

(c1)×Nn−p
s2

(c2) of two semi-Riemannian spaesof onstant urvature Np
s1

(c1) and Nn−p
s2

(c2), 2 ≤ p ≤ n − 2, where c1 = κ1

(p−1)p ,
c2 = κ2

(n−p−1)(n−p) and κ1 and κ2 are the salar urvatures of Np
s1

(c1) and Nn−p
s2

(c2),respetively. This produt is a semisymmetri manifold ([27℄, Theorem 4.5). Further, it isknown that the loal omponents Rhijk of the urvature tensor and the loal omponents
Shk of the Rii tensor S of Np

s1
(c1) × Nn−p

s2
(c2) whih might not vanish identially, are



CURVATURE CONDITIONS ON HYPERSURFACES 141the following:
Rabcd = c1(gadgbc − gacgbd),

Rαβγδ = c2(gαδgβγ − gαγgβδ),

Sad = (p − 1)c1gad,

Sαδ = (n − p − 1)c2gαδ,

(25)
where ghk are the loal omponents of the metri tensor of Np

s1
(c1)×Nn−p

s2
(c2), a, b, c, d ∈

{1, 2, . . . , p} and α, β, γ, δ ∈ {p + 1, p + 2, . . . , n}. The salar urvature κ of Np
s1

(c1) ×

Nn−p
s2

(c2) is given by
κ = p(p − 1)c1 + (n − p)(n − p − 1)c2.(26)In addition, we assume that the onsidered produt satis�es

(a) c1 + c2 6= 0 and (b) (p − 1)c1 6= (n − p − 1)c2.(27)Using (25) and (27) we an onlude that Np
s1

(c1) × Nn−p
s2

(c2), 2 ≤ p ≤ n − 2, is anon-onformally �at and non-Einstein manifold. Further, from (25) it follows that also(5) is satis�ed with
φ = τ (c1 + c2),

µ = −(n − 2)τc1c2,

η = τc1c2((p − 1)2c1 + (n − p − 1)2c2),

τ = ((p − 1)c1 − (n − p − 1)c2)
−2.Moreover, (26) and (27) yield

φκ

n − 1
+ µ −

1

n − 2
=

(p − 1)(n − p − 1)

(n − 2)(n − 1)
τ (c1 + c2)

2.(28)The above onsiderations yieldProposition 3.4. The Cartesian produt Np
s1

(c1)×Nn−p
s2

(c2), 2 ≤ p ≤ n− 2, is a Rotertype manifold, provided that (27) is satis�ed.Example 3.2. Let Sp(r) be p-dimensional standard sphere of radius r in Ep+1. We notethat r−2 = κ
(p−1)p , where κ is the salar urvature of the given sphere. From the aboveonsiderations it follows that the Cartesian produt Sp(r1) × Sn−p(r2), 2 ≤ p ≤ n − 2,of two spheres Sp(r1) and Sn−p(r2) is a Roter type manifold, provided that (27)(b), orequivalently, (n − p − 1)r2

1 6= (p − 1)r2
2 is satis�ed. From Theorem 5.1 of [30℄ (f. [6℄) itfollows that M = Sp(r1)×Sn−p(r2), r1 =

√
p
n
, r2 =

√
n−p

n
, 2 ≤ p ≤ n−2, an be realizedas a minimal hypersurfae immersed isometrially in the sphere Sn+1(1) having at everypoint exatly two distint prinipal urvatures ρ1 and ρ2 of multipliity p and n − p,respetively. It is known that ρ1ρ2 + 1 = 0 and ρ2

i = r−2
i − 1, i = 1, 2. The hypersurfae

M is alled the Cli�ord torus.Corollary 3.1. The Cli�ord torus Sp(
√

p
n
) × Sn−p(

√
n−p

n
), 2 ≤ p ≤ n − 2, n 6= 2p, isa Roter type hypersurfae.We �nish this setion with the following



142 M. GŁOGOWSKARemark 3.3. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying
C =

L

2

(
S −

κ

n − 1
g

)
∧

(
S −

κ

n − 1
g

)(29)on UC ∩ US ⊂ M , where L is some funtion on UC ∩ US . Manifolds satisfying (29) wereinvestigated in [24℄. Evidently, (29) is equivalent to (5) with φ = L, µ = 1
n−2 − Lκ

n−1 and
η = κ

n−1 ( Lκ
n−1 − 1

n−2 ). It is easy to see that on UC ∩ US we have φκ
n−1 + µ − 1

n−2 = 0.Comparing this with (28) we an onlude that a semi-Riemannian manifold (M, g),
n ≥ 4, satisfying (29) on UC ∩ US ⊂ M , and Np

s1
(c1) × Nn−p

s2
(c2), 2 ≤ p ≤ n − 2,satisfying (27), are not isometri.
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