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Abstra
t. We investigate 
urvature properties of hypersurfa
es in semi-Riemannian spa
es of
onstant 
urvature with the minimal polynomial of the se
ond fundamental tensor of se
onddegree. We present suitable examples of hypersurfa
es.1. Introdu
tion. A semi-Riemannian manifold (M, g), n = dim M ≥ 3, is said to bean Einstein manifold if

S =
κ

n
g(1)on M . The Einstein manifolds form a natural sub
lass of the 
lass of quasi-Einsteinmanifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is 
alled a quasi-Einstein manifoldif at every x ∈ M its Ri

i tensor S has the form

S = αg + ǫw ⊗ w, ǫ = ±1,(2)where w ∈ T ∗

x M and α ∈ R. For pre
ise de�nitions of the symbols used we refer toSe
tions 2 and 3 of [28℄ (see also [3℄ and [15℄). Another sub
lass of quasi-Einstein manifoldsform Ri

i-simple manifolds, i.e. semi-Riemannian manifolds having the Ri

i tensor ofrank at most one. Quasi-Einstein manifolds arose in the study of exa
t solutions of theEinstein �eld equations and in the study of quasi-umbili
al hypersurfa
es of 
onformally�at spa
es. Quasi-Einstein hypersurfa
es were studied among others in [14℄, [17℄, and[19℄, see also referen
es therein. We refer to [3℄ for a review of results on quasi-Einsteinmanifolds. We mention that the problem of equivalen
e of the 
onditions of semisymmetry2000 Mathemati
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134 M. GŁOGOWSKA(R·R = 0, [27℄) and Ri

i-semisymmetry (R·S = 0), on hypersurfa
es in Eu
lidean spa
es,named the problem of P. J. Ryan, leads to 
onsideration of quasi-Einstein hypersurfa
es(see e.g. [1℄, [12℄ and [18℄).A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetri
 ([3℄, [10℄)if, at every point of M , the tensors R · R and Q(g, R) are linearly dependent. This isequivalent to
R · R = LRQ(g, R)(3)on UR = {x ∈ M |R− κ

(n−1)nG 6= 0 at x}, where LR is some fun
tion on UR. The 
lass ofpseudosymmetri
 manifolds is an extension of the 
lass of semisymmetri
 manifolds (seee.g. [3℄, se
tions 3 and 4). In [25℄ (see also [26℄) a spe
ial sub
lass of pseudosymmetri
manifolds was introdu
ed. Namely, a

ording to [25℄, a pseudosymmetri
 manifold is
alled a pseudo-symmetri
 spa
e of 
onstant type if the fun
tion LR is 
onstant.A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ri

i-pseudosymmetri
 ([3℄,[10℄) if, at every point of M , the tensors R · S and Q(g, S) are linearly dependent. Thisis equivalent to
R · S = LSQ(g, S)(4)on US = {x ∈ M |S − κ

n
g 6= 0 at x}, where LS is some fun
tion on US . The 
lassof Ri

i-pseudosymmetri
 manifolds is an extension of the 
lass of Ri

i-semisymmetri
manifolds, as well as of the 
lass of pseudosymmetri
 manifolds (see [3℄ and [10℄). ARi

i-pseudosymmetri
 manifold is 
alled a Ri

i-pseudosymmetri
 manifold of 
onstanttype if the fun
tion LS is 
onstant. The Cartan hypersurfa
es of dimension ≥ 6 areRi

i-pseudosymmetri
 manifolds of 
onstant type whi
h are non-pseudosymmetri
 (seeSe
tion 2). Another example of a Ri

i-pseudosymmetri
 manifold of 
onstant type whi
his non-pseudosymmetri
 is given in Se
tion 4 of [19℄.Let (M, g), n ≥ 4, be a semi-Riemannian manifold su
h that its 
urvature tensor Rsatis�es on UC ∩ US ⊂ M the equation

R = φS + µg ∧ S + ηG,(5)where φ, µ and η are some fun
tions on this set and UC = {x ∈ M |C 6= 0 at x}. A

ordingto [11℄, (5) is 
alled the Roter type equation. Consequently, a manifold (M, g), n ≥ 4, sat-isfying (5) on UC ∩US ⊂ M , will be 
alled a Roter type manifold. Obviously, we 
onsidermanifolds (M, g) with nonempty set UC ∩ US ⊂ M . We mention that the de
ompositionof R on UC ∩US in terms S, g ∧ S and G is unique ([17℄, Lemma 3.2). If (5) holds on anopen set U ⊂ UC ∩US then we say that the Roter type equation is satis�ed on U . Rotertype manifolds were re
ently de�ned in [11℄, although investigations on these manifoldswere initiated earlier in [16℄. Examples of su
h manifolds are presented in [11℄ and [20℄.It is easy to prove that every Roter type manifold is a non-Einstein and non-
onfor-mally �at semi-Riemannian manifold of dimension ≥ 4. The 
lass of Roter type manifoldsforms an essential sub
lass of the 
lass of pseudosymmetri
 manifolds. Roter type mani-folds satisfy also other 
urvature 
onditions of pseudosymmetry type (see Se
tion 2). Fora survey of results on manifolds satisfying pseudosymmetry type 
urvature 
onditions werefer to [3℄ and [15℄. A hypersurfa
e whi
h is a Roter type manifold is 
alled a Roter type



CURVATURE CONDITIONS ON HYPERSURFACES 135hypersurfa
e. We 
an prove that every Roter type manifold satis�es
S · R = L1S + L2g ∧ S + L3G,(6)

R · R − Q(S, R) = L4Q(g, C),(7)
S2 = L5S + L6g,(8)where L1, . . . , L6 are some fun
tions on UC ∩ US .A

ording to [11℄, a semi-Riemannian manifold (M, g), n ≥ 4, is said to be an Akivis-Goldberg type manifold if (6), (7) and (8) hold on UC∩US ⊂ M . Every Roter type manifoldis an Akivis-Goldberg type manifold. The 
onverse statement is not true ([11℄). We referto [11℄ for a survey of results on Akivis-Goldberg type manifolds. Again, investigationson these manifolds were initiated in earlier papers: [8℄ and [23℄ (see also [2℄).Investigations of 
urvature properties of Ri

i-pseudosymmetri
 hypersurfa
es, and inparti
ular, of the Cartan hypersurfa
es of dimension ≥ 6 (see [13℄ and referen
es therein),as well as the 
onsiderations presented above lead to the de�nition of the 
lass of Cartantype manifolds. A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold ofCartan type if on UC ∩ US ⊂ M we have (7), (8) and

S · R = L0R + L1S + L2g ∧ S + L3G,(9)where L0, . . . , L6 are some fun
tions on UC ∩ US . Every Akivis-Goldberg type manifoldis a Cartan type manifold. The 
onverse statement is not true (see Theorem 3.4).Hypersurfa
es whi
h are Akivis-Goldberg type manifolds and hypersurfa
es whi
hare Cartan type manifolds will be 
alled Akivis-Goldberg type hypersurfa
es and Cartantype hypersurfa
es, respe
tively. In Se
tion 3 we prove that every Cartan hypersurfa
eof dimension ≥ 6 is a Cartan type hypersurfa
e whi
h is not an Akivis-Goldberg typehypersurfa
e.In [22℄ (Theorem 1), among other things, it was proved that if the minimal polynomialof the se
ond fundamental tensor H of a hypersurfa
e immersed isometri
ally in a semi-Riemannian spa
e of 
onstant 
urvature is of se
ond degree then su
h a hypersurfa
e is apseudosymmetri
 manifold. In this paper we improve that result. Namely, we prove thatsu
h a hypersurfa
e is a Roter type hypersurfa
e (see Theorem 3.1). As an immediate
onsequen
e of Theorem 3.1 we haveTheorem 1.1. Let M be a hypersurfa
e in a Riemannian spa
e of 
onstant 
urvature
Nn+1(c), n ≥ 4. If at every point of UC ∩ US there are exa
tly two distin
t prin
ipal
urvatures then M is a Roter type hypersurfa
e.The 
onverse statement is not true. Namely, we 
an prove that the hypersurfa
e 
on-sidered in [17℄(Example 5.2) is a Roter type hypersurfa
e with three distin
t prin
ipal
urvatures. We mention that quasi-umbili
al hypersurfa
es of dimension ≥ 4 in Rieman-nian spa
es of 
onstant 
urvature are non-Roter type pseudosymmetri
 hypersurfa
es(see Remark 3.1). But on the other hand, every non-Einstein and non-
onformally �atCli�ord torus of dimension ≥ 4 is a Roter type hypersurfa
e (see Corollary 3.2). It iswell-known that every Cli�ord torus is a semisymmetri
 manifold. Furthermore in Ex-ample 3.1 we present an example of a warped produ
t Roter type manifold whi
h 
an belo
ally realized as a hypersurfa
e in a semi-Eu
lidean spa
e.



136 M. GŁOGOWSKAThe author would like to express her thanks to the referee for his hints, remarks and
omments.2. Preliminaries. It is easy to 
he
k that (2) implies
S2 = (κ − (n − 2)α)S + α((n − 1)α − κ)g.Thus we haveProposition 2.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (2).Then (8), with L5 = κ− (n−2)α and L6 = α((n−1)α−κ), is satis�ed on M . Moreover,if (6) and (7) hold on UC ∩ US ⊂ M then (M, g) is an Akivis-Goldberg type manifold.Further, we haveProposition 2.2. Let (M, g), n ≥ 4, be a semi-Riemannian manifold. The following
onditions: (2) and

S = αg ∧ S − α2G = α2G + αǫg ∧ (w ⊗ w)(10)are equivalent on US ⊂ M .Proof. Our assertion is an immediate 
onsequen
e of Lemma 3.1 of [24℄ and (2).We 
an also prove the followingProposition 2.3. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (9).Let V be a set of all points of UC ∩ US ⊂ M at whi
h (2) or (5) is ful�lled. Then thede
omposition of the tensor S ·R in terms R, S, g∧S and G is unique on (UC ∩US)\V .Proof. Let x ∈ (UC ∩ US) \ V and let
S · R = L′

0R + L′

1S + L′

2g ∧ S + L′

3G(11)at x, where L′

0, . . . , L
′

3 ∈ R. We suppose that at x we have L0−L′

0 6= 0. Now (9) and (11)imply (5), a 
ontradi
tion. Thus at x we have L0 = L′

0. Further, we suppose that at x wehave L1 − L′

1 6= 0. Now (9) and (11) imply (10). This, in view of Lemma 3.1 [24℄, turnsinto (2), a 
ontradi
tion. Thus at x we have L1 = L′

1. Similarly, we prove that L2 = L′

2and L3 = L′

3 at x. Our proposition is thus proved.We 
an 
he
k that (5) implies (3) with LR = (n− 2)(µ
φ
(µ− 1

n−2 )− η) ([16℄, Theorem4.2) and
R · R − Q(S, R) =

(
LR +

µ

φ

)
Q(g, C),(12)

S2 = αS + βg,(13)
S · R = −4(αφ + µ)S − 2(αµ + η + βφ)g ∧ S − 4βµG,(14)

α = κ +
(n − 2)µ − 1

φ
, β =

µκ + (n − 1)η

φ
.Furthermore, we have C · C = LCQ(g, C) and C · R = LCQ(g, R), where LC = LR +

1
n−2( κ

n−1 − α). We haveTheorem 2.1 ([11℄, Theorem 3.1). Every Roter type semi-Riemannian manifold (M, g),
n ≥ 4, is an Akivis-Goldberg type manifold.



CURVATURE CONDITIONS ON HYPERSURFACES 137Proposition 2.4. On every semi-Riemannian Einstein manifold (M, g), n ≥ 4, (8) and(9) are satis�ed on M . Moreover, if (M, g) is pseudosymmetri
 then (7) holds on M .Proof. Our proposition is an immediate 
onsequen
e of (11) of [28℄ and (1), (8) and (9).From Propositions 2.3 and 2.4 it follows that 
onsideration of Einstein manifolds,as well as of 
onformally �at manifolds, satisfying (6) (or (9)), (7) and (8) is ratheruninteresting.Using Propositions 2.1 and 2.3 and Theorems 3.3 and 3.4 of [9℄ we 
an prove thefollowingProposition 2.5. If (7) is satis�ed on a 
onformally �at semi-Riemannian manifold
(M, g), n ≥ 4, then (8) and (9) hold on M .3. Ri

i-pseudosymmetri
 hypersurfa
es. Let M be a hypersurfa
e immersed iso-metri
ally in a semi-Riemannian manifold (N, gN ). If (5), resp. (6), (7) and (8) or (7),(8) and (9), hold on UC ∩ US ⊂ M then M is said to be a Roter type hypersurfa
e, resp.an Akivis-Goldberg type hypersurfa
e ([11℄) or a Cartan type hypersurfa
e.Let Nn+1

s (c), n ≥ 4, denote a semi-Riemannian spa
e of 
onstant 
urvature, withsignature (s, n + 1 − s), where c = κ̃
n(n+1) and κ̃ being its s
alar 
urvature. Further, let

M be a hypersurfa
e immersed isometri
ally in Nn+1
s (c). The Gauss equation of M in

Nn+1
s (c) reads (see e.g. [15℄, [28℄)

Rhijk = ε(HhkHij − HhjHik) +
κ̃

n(n + 1)
Ghijk,(15)where Rhijk, Ghijk and Hij denote the lo
al 
omponents of the 
urvature tensor R, thetensor G and the se
ond fundamental tensor H of M . Contra
ting (15) with gij and gkh,respe
tively, we obtain

Shk = ε(tr(H)Hhk − H2
hk) +

(n − 1)κ̃

n(n + 1)
ghk,(16)

κ = ε((tr(H))2 − tr(H2)) +
(n − 1)κ̃

n + 1
,respe
tively, where κ is the s
alar 
urvature of M , tr(H) = ghkHhk, tr(H2) = ghkH2

hkand Shk are the lo
al 
omponents of the Ri

i tensor S of M . For the de�nition of thetensor H2 see e.g. [28℄ (Se
tion 1). Further, we denote by UH the set of all points of Mat whi
h the tensor H2 is not a linear 
ombination of the metri
 tensor g and the se
ondfundamental tensor H of M . Using (16) and Theorem 4.1 of [21℄ we 
an dedu
e that
UH ⊂ UC ∩ US ⊂ M . Evidently, on (UC ∩ US) \ UH we have

H2 = αH + βg,(17)where α and β are some fun
tions on (UC ∩ US) \ UH .We re
all that a Cartan hypersurfa
e in the sphere Sn+1(c) is a 
ompa
t minimal hy-persurfa
e with 
onstant prin
ipal 
urvatures −(3c)
1

2 , 0, (3c)
1

2 of the same multipli
ity n
3 .It is known that the Cartan hypersurfa
es are tubes of 
onstant radius over the standardVeronese embeddings i : EP 2 → S3d+1(c) → E3d+2, d = 1, 2, 4, 8, of the proje
tive plane

EP 2 into the sphere S3d+1(c) in a Eu
lidean spa
e E3d+2, where E = R (real numbers),
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C (
omplex numbers), Q (quaternions) or O (Cayley numbers), respe
tively ([4℄). EveryCartan hypersurfa
e satis�es (4). Pre
isely, we have (see e.g. [13℄, Theorem 4.3)
R · S =

κ̃

n(n + 1)
Q(g, S).(18)Thus su
h a hypersurfa
e is a Ri

i-pseudosymmetri
 manifold of 
onstant type. In ad-dition, the Cartan hypersurfa
e in S4(c) is a pseudosymmetri
 manifold satisfying ([22℄,Example 2)

R · R =
κ̃

12
Q(g, R).If on the set UH of a hypersurfa
e M in Nn+1

s (c), n ≥ 3, we have H3 = tr(H)H2 + λH,for some fun
tion λ, then (18) holds on UH ([7℄, Proposition 3.2). It is also known thatif rankH = 2 at every point of a hypersurfa
e M in Nn+1
s (c), n ≥ 3, then it is a pseudo-symmetri
 spa
e of 
onstant type ([7℄, Theorem 4.2). Pre
isely, on su
h a hypersurfa
ewe have

R · R =
κ̃

n(n + 1)
Q(g, R).On every hypersurfa
e M in Nn+1

s (c), n ≥ 4, we have ([21℄)
R · R − Q(S, R) = −

(n − 2)κ̃

n(n + 1)
Q(g, C).(19)Thus on UC ∩ US ⊂ M we have (8) with L4 = − (n−2)κ̃

n(n+1) . Clearly, if (6) and (8), resp. (8)and (9), hold on UC ∩US ⊂ M then M is an Akivis-Goldberg type hypersurfa
e, resp. aCartan type hypersurfa
e.Theorem 4.3 of [13℄ states that every Cartan hypersurfa
e of dimension n ≥ 6 isa Cartan type hypersurf
e. They are non-pseudosymmetri
 Ri

i-pseudosymmetri
 hy-persurfa
es. Further, (9), with L1 = 0, is satis�ed on UH ⊂ UC ∩ US ⊂ M for everyRi

i-pseudosymmetri
 hypersurfa
e M in Nn+1
s (c), n ≥ 4, ([13℄, Theorem 3.2). In otherwords, on UH we have (8) and

S · R = L0R + L2g ∧ S + L3G.In this se
tion we prove that su
h hypersurfa
es are Cartan type hypersurfa
es. We alsomention that examples of quasi-Einstein Ri

i-pseudosymmetri
 hypersurfa
es were foundre
ently in [17℄ and [19℄.Sin
e (19) is a relation of the form (7), we haveProposition 3.1. Let M be a hypersurfa
e in Nn+1
s (c), n ≥ 4.(i) The relation (7) is satis�ed on M .(ii) If (6) and (8) hold on UC ∩US ⊂ M then M is an Akivis-Goldberg type hypersurfa
e.Propositions 2.1 and 3.1 implyProposition 3.2. If M is a hypersurfa
e in Nn+1

s (c), n ≥ 4, satisfying (2) and (6) on
UC ∩ US ⊂ M then M is an Akivis-Goldberg type hypersurfa
e.



CURVATURE CONDITIONS ON HYPERSURFACES 139Proposition 3.3. Let M be a hypersurfa
e in Nn+1
s (c), n ≥ 4. Then on (UC∩US)\UH ⊂

M we have
R = ε(tr(H) − α)−2

(
S −

(
(n − 1)κ̃

n(n + 1)
− εβ

)
g ∧ S

)(20)
+

(
ε(tr(H) − α)−2

(
(n − 1)κ̃

n(n + 1)
− εβ

)2

+
κ̃

n(n + 1)

)
G,where α and β are de�ned by (17).Proof. First of all, we note that (16) and (17) yield

S = ε(tr(H) − α)H + (
(n − 1)κ̃

n(n + 1)
− εβ)g.(21)Thus we see that tr(H) − α 6= 0 at every point of (UC ∩ US) \ UH . Further, using (15)and (21) we get (20), 
ompleting the proof.Proposition 3.3 impliesTheorem 3.1. Let M be a hypersurfa
e in Nn+1

s (c), n ≥ 4, and let (UC ∩US)\UH ⊂ Mbe nonempty. Then the Roter type equation holds on this set. Moreover, if UH ⊂ M isempty then M is a Roter type hypersurfa
e.It is easy to see that the last theorem implies Theorem 1.1.Remark 3.1. Let M be a hypersurfa
e in a Riemannian spa
e of 
onstant 
urvature
Nn+1(c), n ≥ 4. Using the well-known Cartan-S
houten result (see e.g. [5℄, Se
tion13.1.1.) we 
an easily dedu
e that if at a point of UC ⊂ M there are exa
tly two distin
tprin
ipal 
urvatures then the multipli
ity of ea
h prin
ipal 
urvature is ≥ 2, i.e. M 
an-not be quasi-umbili
al at this point. More generally, if M is a hypersurfa
e in Nn+1

s (c),
n ≥ 4, and if (17) is satis�ed at a point of UC ⊂ M then M is not quasi-umbili
al at thispoint ([21℄, Theorem 4.1).Theorem 3.2 ([13℄, Theorem 3.2). If M is a Ri

i-pseudosymmetri
 hypersurfa
e in
Nn+1

s (c), n ≥ 4, then (8) and (9) hold on UH ⊂ M .Theorems 3.1 and 3.2 yieldTheorem 3.3. Every Ri

i-pseudosymmetri
 hypersurfa
e in Nn+1
s (c), n ≥ 4, is a Car-tan type hypersurfa
e.Theorem 3.4. The Cartan hypersurfa
e M in Sn+1(c), n = 6, 12 or 24 is a Cartan typehypersurfa
e whi
h is not an Akivis-Goldberg type hypersurfa
e.Proof. First of all we note that M is a non-pseudosymmetri
 Ri

i-pseudosymmetri
hypersurfa
e (e.g. see [13℄, se
tion 2). From the de�nition of the Cartan hypersurfa
eit follows that UC ∩ US = M . We suppose now that M is an Akivis-Goldberg typehypersurfa
e. Thus on M we have S ·R = L′

1S +L′

2g∧S +L′

3G, where L′

1, L
′

2 and L′

3 aresome fun
tions on M . The last relation, together with the equation (53) of [13℄, yields(5). But (5) implies (3) (see se
tion 2), a 
ontradi
tion. Thus our theorem is proved.Example 3.1. Let M1, resp. M2, be a nonempty open 
onne
ted subset of Rp, resp.
Rn−p, 2 ≤ p ≤ n− 2, equipped with the standard metri
 g1, g1ab = εaδab, εa = ±1, resp.
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g2, g2αβ = εαδαβ, εα = ±1, where a, b, c, d, e, f ∈ {1, . . . , p}, α, β, γ, δ ∈ {p+1, . . . , n} and
h, i, j, k ∈ {1, . . . , n}. We set F = F (x1, . . . , xp) = k exp(ξaxa), where k, ξ1, . . . , ξp ∈ R,
ξ2
1 + . . . + ξ2

p > 0, k > 0 and g
ef

1 ξeξf 6= 0. We 
onsider the warped produ
t M1 ×F M2.Let τ be a fun
tion on M ×F Ñ de�ned by (
f. [8℄, Se
tion 4)
τ2 = −

ε

4
g

ef
1 ξeξf , ε = ±1.(22)It is 
lear that there exist 
onstants ε, εa, and ξa su
h that the right-hand side of (22) ispositive at every point x of M ×F Ñ . Using now (44) of [8℄ and (22) we �nd

Sab = −
n − p

4
ξaξb, Sαβ = (n − p)ετ2gαβ ,

S2 =
κ

n − p + 1
S, κ = (n − p)(n − p + 1)ετ2.

(23)
In Se
tion 4 of [8℄ it was shown that the 
onditions: R · R = Q(S, R) and S · R = 0are satis�ed on M ×F Ñ . Further, we have (see [8℄, se
tion 4) R = εH , where H is asymmetri
 (0, 2)-tensor with the lo
al 
omponents

Hab = −
1

4τ
ξaξb, Haα = 0, Hαβ = ετgαβ .(24)The tensor H is a Codazzi tensor. Therefore M1 ×F M2 lo
ally 
an be realized as ahypersurfa
e in a semi-Eu
lidean spa
e En+1

s . From (23) and (24) it follows thattrH = −
1

4τ
g1efξeξf + (n − p)ετ = (n − p + 1)ετ, H2 = ετH.Applying this and (23) into (16) and (15), on M1 ×F M2 we get

S = (n − p)τH, R =
n − p + 1

(n − p)κ
S,respe
tively. Thus we see that M1 ×F M2 is a Roter type manifold whi
h lo
ally 
an berealized as a hypersurfa
e in a semi-Eu
lidean spa
e En+1

s .Remark 3.2. (i) An example of a hypersurfa
e M in Nn+1
s (c), c 6= 0, n ≥ 4, satisfyingthe Roter type equation on the set (UC ∩US)\UH ⊂ M , is given in [20℄. We also mentionthat warped produ
ts satisfying (5) were investigated in [20℄.(ii) The warped produ
t de�ned in Example 4.1 of [14℄ is a Ri

i-simple Akivis-Goldbergtype manifold. Clearly, su
h manifold is not a Roter type manifold. That warped produ
tlo
ally 
an be realized as a hypersurfa
e in a semi-Eu
lidean spa
e En+1

s ([14℄, Example5.1).(iii) Examples of Ri

i-pseudosymmetri
 quasi-Einstein hypersurfa
es in spa
es of 
on-stant 
urvature are given in [17℄ and [19℄.We 
onsider the Cartesian produ
t Np
s1

(c1)×Nn−p
s2

(c2) of two semi-Riemannian spa
esof 
onstant 
urvature Np
s1

(c1) and Nn−p
s2

(c2), 2 ≤ p ≤ n − 2, where c1 = κ1

(p−1)p ,
c2 = κ2

(n−p−1)(n−p) and κ1 and κ2 are the s
alar 
urvatures of Np
s1

(c1) and Nn−p
s2

(c2),respe
tively. This produ
t is a semisymmetri
 manifold ([27℄, Theorem 4.5). Further, it isknown that the lo
al 
omponents Rhijk of the 
urvature tensor and the lo
al 
omponents
Shk of the Ri

i tensor S of Np

s1
(c1) × Nn−p

s2
(c2) whi
h might not vanish identi
ally, are
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Rabcd = c1(gadgbc − gacgbd),

Rαβγδ = c2(gαδgβγ − gαγgβδ),

Sad = (p − 1)c1gad,

Sαδ = (n − p − 1)c2gαδ,

(25)
where ghk are the lo
al 
omponents of the metri
 tensor of Np

s1
(c1)×Nn−p

s2
(c2), a, b, c, d ∈

{1, 2, . . . , p} and α, β, γ, δ ∈ {p + 1, p + 2, . . . , n}. The s
alar 
urvature κ of Np
s1

(c1) ×

Nn−p
s2

(c2) is given by
κ = p(p − 1)c1 + (n − p)(n − p − 1)c2.(26)In addition, we assume that the 
onsidered produ
t satis�es

(a) c1 + c2 6= 0 and (b) (p − 1)c1 6= (n − p − 1)c2.(27)Using (25) and (27) we 
an 
on
lude that Np
s1

(c1) × Nn−p
s2

(c2), 2 ≤ p ≤ n − 2, is anon-
onformally �at and non-Einstein manifold. Further, from (25) it follows that also(5) is satis�ed with
φ = τ (c1 + c2),

µ = −(n − 2)τc1c2,

η = τc1c2((p − 1)2c1 + (n − p − 1)2c2),

τ = ((p − 1)c1 − (n − p − 1)c2)
−2.Moreover, (26) and (27) yield

φκ

n − 1
+ µ −

1

n − 2
=

(p − 1)(n − p − 1)

(n − 2)(n − 1)
τ (c1 + c2)

2.(28)The above 
onsiderations yieldProposition 3.4. The Cartesian produ
t Np
s1

(c1)×Nn−p
s2

(c2), 2 ≤ p ≤ n− 2, is a Rotertype manifold, provided that (27) is satis�ed.Example 3.2. Let Sp(r) be p-dimensional standard sphere of radius r in Ep+1. We notethat r−2 = κ
(p−1)p , where κ is the s
alar 
urvature of the given sphere. From the above
onsiderations it follows that the Cartesian produ
t Sp(r1) × Sn−p(r2), 2 ≤ p ≤ n − 2,of two spheres Sp(r1) and Sn−p(r2) is a Roter type manifold, provided that (27)(b), orequivalently, (n − p − 1)r2

1 6= (p − 1)r2
2 is satis�ed. From Theorem 5.1 of [30℄ (
f. [6℄) itfollows that M = Sp(r1)×Sn−p(r2), r1 =

√
p
n
, r2 =

√
n−p

n
, 2 ≤ p ≤ n−2, 
an be realizedas a minimal hypersurfa
e immersed isometri
ally in the sphere Sn+1(1) having at everypoint exa
tly two distin
t prin
ipal 
urvatures ρ1 and ρ2 of multipli
ity p and n − p,respe
tively. It is known that ρ1ρ2 + 1 = 0 and ρ2

i = r−2
i − 1, i = 1, 2. The hypersurfa
e

M is 
alled the Cli�ord torus.Corollary 3.1. The Cli�ord torus Sp(
√

p
n
) × Sn−p(

√
n−p

n
), 2 ≤ p ≤ n − 2, n 6= 2p, isa Roter type hypersurfa
e.We �nish this se
tion with the following



142 M. GŁOGOWSKARemark 3.3. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying
C =

L

2

(
S −

κ

n − 1
g

)
∧

(
S −

κ

n − 1
g

)(29)on UC ∩ US ⊂ M , where L is some fun
tion on UC ∩ US . Manifolds satisfying (29) wereinvestigated in [24℄. Evidently, (29) is equivalent to (5) with φ = L, µ = 1
n−2 − Lκ

n−1 and
η = κ

n−1 ( Lκ
n−1 − 1

n−2 ). It is easy to see that on UC ∩ US we have φκ
n−1 + µ − 1

n−2 = 0.Comparing this with (28) we 
an 
on
lude that a semi-Riemannian manifold (M, g),
n ≥ 4, satisfying (29) on UC ∩ US ⊂ M , and Np

s1
(c1) × Nn−p

s2
(c2), 2 ≤ p ≤ n − 2,satisfying (27), are not isometri
.
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