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Abstract. We investigate curvature properties of hypersurfaces in semi-Riemannian spaces of
constant curvature with the minimal polynomial of the second fundamental tensor of second
degree. We present suitable examples of hypersurfaces.

1. Introduction. A semi-Riemannian manifold (M, g), n = dim M > 3, is said to be
an Finstein manifold if

(1) S:gg

on M. The Einstein manifolds form a natural subclass of the class of quasi-Einstein
manifolds. A semi-Riemannian manifold (M, g), n > 3, is called a quasi-Finstein manifold
if at every « € M its Ricci tensor S has the form

(2) S=ag+ew®@w, e==1,

where w € TyM and o € R. For precise definitions of the symbols used we refer to
Sections 2 and 3 of [28] (see also [3] and [15]). Another subclass of quasi-Einstein manifolds
form Ricci-simple manifolds, i.e. semi-Riemannian manifolds having the Ricci tensor of
rank at most one. Quasi-Einstein manifolds arose in the study of exact solutions of the
Einstein field equations and in the study of quasi-umbilical hypersurfaces of conformally
flat spaces. Quasi-Einstein hypersurfaces were studied among others in [14], [17], and
[19], see also references therein. We refer to [3] for a review of results on quasi-Einstein
manifolds. We mention that the problem of equivalence of the conditions of semisymmetry
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(R-R = 0, [27]) and Ricci-semisymmetry (R-S = 0), on hypersurfaces in Euclidean spaces,
named the problem of P. J. Ryan, leads to consideration of quasi-Einstein hypersurfaces
(see e.g. [1], [12] and [18]).

A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric (|3], [10])
if, at every point of M, the tensors R - R and (g, R) are linearly dependent. This is
equivalent to

(3) R-R = LgrQ(g,R)
on Up = {x € M|R— —£+G # 0 at x}, where Lg is some function on Ug. The class of

pseudosymmetric mangrflolii);lis an extension of the class of semisymmetric manifolds (see
e.g. [3], sections 3 and 4). In [25] (see also [26]) a special subclass of pseudosymmetric
manifolds was introduced. Namely, according to [25], a pseudosymmetric manifold is
called a pseudo-symmetric space of constant type if the function Ly is constant.

A semi-Riemannian manifold (M, g), n > 3, is said to be Ricci-pseudosymmetric ([3],
[10]) if, at every point of M, the tensors R - S and Q(g,.S) are linearly dependent. This

is equivalent to
(4) R-S=LsQ(g,S)

on Us = {x € M|S — Zg # 0 at x}, where Lg is some function on Us. The class
of Ricci-pseudosymmetric manifolds is an extension of the class of Ricci-semisymmetric
manifolds, as well as of the class of pseudosymmetric manifolds (see [3] and [10]). A
Ricci-pseudosymmetric manifold is called a Ricci-pseudosymmetric manifold of constant
type if the function Lg is constant. The Cartan hypersurfaces of dimension > 6 are
Ricci-pseudosymmetric manifolds of constant type which are non-pseudosymmetric (see
Section 2). Another example of a Ricci-pseudosymmetric manifold of constant type which
is non-pseudosymmetric is given in Section 4 of [19].

Let (M,g), n > 4, be a semi-Riemannian manifold such that its curvature tensor R
satisfies on Uc N Ug C M the equation

(5) R=¢S+pgAS+nG,

where ¢, 1 and 1 are some functions on this set and Ue = { € M|C # 0 at 2}. According
to [11], (5) is called the Roter type equation. Consequently, a manifold (M, g), n > 4, sat-
isfying (5) on Uo NUg C M, will be called a Roter type manifold. Obviously, we consider
manifolds (M, g) with nonempty set Uc N Ug C M. We mention that the decomposition
of R on Uc NUg in terms S, g A S and G is unique ([17], Lemma 3.2). If (5) holds on an
open set U C Ugo NUg then we say that the Roter type equation is satisfied on U. Roter
type manifolds were recently defined in [11], although investigations on these manifolds
were initiated earlier in [16]. Examples of such manifolds are presented in [11] and [20].
It is easy to prove that every Roter type manifold is a non-Einstein and non-confor-
mally flat semi-Riemannian manifold of dimension > 4. The class of Roter type manifolds
forms an essential subclass of the class of pseudosymmetric manifolds. Roter type mani-
folds satisfy also other curvature conditions of pseudosymmetry type (see Section 2). For
a survey of results on manifolds satisfying pseudosymmetry type curvature conditions we
refer to [3] and [15]. A hypersurface which is a Roter type manifold is called a Roter type
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hypersurface. We can prove that every Roter type manifold satisfies

(6) S R=1L1S+ Lag NS+ LsG,
(7) R-R—Q(S,R) = LiQ(g, 0),

(8) S? = LsS + Ly,

where Lq,..., Lg are some functions on Ugs N Ug.

According to [11], a semi-Riemannian manifold (M, g), n > 4, is said to be an Akivis-
Goldberg type manifoldif (6), (7) and (8) hold on UsNUg C M. Every Roter type manifold
is an Akivis-Goldberg type manifold. The converse statement is not true ([11]). We refer
to [11] for a survey of results on Akivis-Goldberg type manifolds. Again, investigations
on these manifolds were initiated in earlier papers: [8] and [23] (see also [2]).

Investigations of curvature properties of Ricci-pseudosymmetric hypersurfaces, and in
particular, of the Cartan hypersurfaces of dimension > 6 (see [13] and references therein),
as well as the considerations presented above lead to the definition of the class of Cartan
type manifolds. A semi-Riemannian manifold (M, g), n > 4, is said to be a manifold of
Cartan type if on Uc N Us C M we have (7), (8) and

(9) S-R=LoR+ LS+ Lag A\ S+ L3G,

where Ly, ..., Lg are some functions on Ugx N Ug. Every Akivis-Goldberg type manifold
is a Cartan type manifold. The converse statement is not true (see Theorem 3.4).

Hypersurfaces which are Akivis-Goldberg type manifolds and hypersurfaces which
are Cartan type manifolds will be called Akivis-Goldberg type hypersurfaces and Cartan
type hypersurfaces, respectively. In Section 3 we prove that every Cartan hypersurface
of dimension > 6 is a Cartan type hypersurface which is not an Akivis-Goldberg type
hypersurface.

In [22] (Theorem 1), among other things, it was proved that if the minimal polynomial
of the second fundamental tensor H of a hypersurface immersed isometrically in a semi-
Riemannian space of constant curvature is of second degree then such a hypersurface is a
pseudosymmetric manifold. In this paper we improve that result. Namely, we prove that
such a hypersurface is a Roter type hypersurface (see Theorem 3.1). As an immediate
consequence of Theorem 3.1 we have

THEOREM 1.1. Let M be a hypersurface in a Riemannian space of constant curvature
N"tL(e), n > 4. If at every point of Uc N Us there are exactly two distinct principal
curvatures then M is a Roter type hypersurface.

The converse statement is not true. Namely, we can prove that the hypersurface con-
sidered in [17](Example 5.2) is a Roter type hypersurface with three distinct principal
curvatures. We mention that quasi-umbilical hypersurfaces of dimension > 4 in Rieman-
nian spaces of constant curvature are non-Roter type pseudosymmetric hypersurfaces
(see Remark 3.1). But on the other hand, every non-Einstein and non-conformally flat
Clifford torus of dimension > 4 is a Roter type hypersurface (see Corollary 3.2). It is
well-known that every Clifford torus is a semisymmetric manifold. Furthermore in Ex-
ample 3.1 we present an example of a warped product Roter type manifold which can be
locally realized as a hypersurface in a semi-Euclidean space.
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2. Preliminaries. It is easy to check that (2) implies
S% = (k—(n—2)a)S +al(n —1)a —k)g.
Thus we have

PROPOSITION 2.1. Let (M,g), n > 4, be a semi-Riemannian manifold satisfying (2).
Then (8), with Ly = k — (n—2)a and Lg = a((n—1)a — k), is satisfied on M. Moreover,
if (6) and (7) hold on Uc NUg C M then (M, g) is an Akivis-Goldberg type manifold.

Further, we have

PROPOSITION 2.2. Let (M,g), n > 4, be a semi-Riemannian manifold. The following
conditions: (2) and

(10) S=agAS—a’G=0a’G+aeg A (wew)

are equivalent on Ug C M.

Proof. Our assertion is an immediate consequence of Lemma 3.1 of [24] and (2).
We can also prove the following

PROPOSITION 2.3. Let (M,g), n > 4, be a semi-Riemannian manifold satisfying (9).
Let V be a set of all points of Uc N Us C M at which (2) or (5) is fulfilled. Then the
decomposition of the tensor S- R in terms R, S, gA S and G is unique on (Uc NUg)\ V.

Proof. Let x € (UcNUg)\ 'V and let
(11) S-R=LyR+ LS+ LigNS+ LG

at z, where L, ..., Ly € R. We suppose that at x we have Lo — L{, # 0. Now (9) and (11)
imply (5), a contradiction. Thus at © we have Ly = Lj,. Further, we suppose that at = we
have Ly — L} # 0. Now (9) and (11) imply (10). This, in view of Lemma 3.1 [24], turns
into (2), a contradiction. Thus at  we have L; = L. Similarly, we prove that L, = L,
and Ls = L} at . Our proposition is thus proved.

We can check that (5) implies (3) with Lr = (n—2)(5 (1 — —-)—n) ([16], Theorem
4.2) and

(12) R-R—Q(S,R) = (LR+ g)cz@,c»
(14) SR = —d(ad+ 1)S — 2au+n+ B6)g A S — ABuC,
a:,H(n*?)u*l’ 5:m+(nf1)n.

¢ ¢
Furthermore, we have C' - C = LcQ(g,C) and C' - R = LcQ(g, R), where Lo = Lp +
L (-5 — a). We have

n—2\n—1
THEOREM 2.1 (|11], Theorem 3.1). Ewvery Roter type semi-Riemannian manifold (M, g),
n >4, 1s an Akivis-Goldberg type manifold.
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PROPOSITION 2.4. On every semi-Riemannian Einstein manifold (M, g), n > 4, (8) and
(9) are satisfied on M. Moreover, if (M, g) is pseudosymmetric then (7) holds on M.

Proof. Our proposition is an immediate consequence of (11) of [28] and (1), (8) and (9).

From Propositions 2.3 and 2.4 it follows that consideration of Einstein manifolds,
as well as of conformally flat manifolds, satisfying (6) (or (9)), (7) and (8) is rather
uninteresting.

Using Propositions 2.1 and 2.3 and Theorems 3.3 and 3.4 of [9] we can prove the
following

PROPOSITION 2.5. If (7) is satisfied on a conformally flat semi-Riemannian manifold
(M,g), n >4, then (8) and (9) hold on M.

3. Ricci-pseudosymmetric hypersurfaces. Let M be a hypersurface immersed iso-
metrically in a semi-Riemannian manifold (N, g™). If (5), resp. (6), (7) and (8) or (7),
(8) and (9), hold on Uc N Ug C M then M is said to be a Roter type hypersurface, resp.
an Akivis-Goldberg type hypersurface ([11]) or a Cartan type hypersurface.

Let N'"1(c), n > 4, denote a semi-Riemannian space of constant curvature, with
signature (s,n 4+ 1 — s), where ¢ = ﬁ and K being its scalar curvature. Further, let
M be a hypersurface immersed isometrically in N**!(c). The Gauss equation of M in
NIF1(c) reads (see e.g. [15], [28])

K
(15) Rpiji = e(HpHij — HpjHi) + mGhijka

where Rpiji, Ghijr and H;; denote the local components of the curvature tensor R, the
tensor G and the second fundamental tensor H of M. Contracting (15) with g*/ and g*",

respectively, we obtain

(16) Shr = E(t?“(H)Hhk - Hﬁk> + thh
= ((er(E)? — tr(B2)) +

respectively, where x is the scalar curvature of M, tr(H) = g"*Hyy, tr(H?) = gth%k
and Sy are the local components of the Ricci tensor S of M. For the definition of the
tensor H? see e.g. [28] (Section 1). Further, we denote by Uy the set of all points of M
at which the tensor H? is not a linear combination of the metric tensor g and the second
fundamental tensor H of M. Using (16) and Theorem 4.1 of [21] we can deduce that
Ug CUcNUg C M. Evidently, on (Uc NUg) \ Uy we have

(17) H? = oH + By,

where a and (3 are some functions on (Uc NUg) \ Up.

We recall that a Cartan hypersurface in the sphere S"1(¢) is a compact minimal hy-
persurface with constant principal curvatures 7(30)%, 0, (36)% of the same multiplicity 7.
It is known that the Cartan hypersurfaces are tubes of constant radius over the standard
Veronese embeddings i : EP? — S39+1(c) — E39+2 d = 1,2,4,8, of the projective plane
EP? into the sphere S3¥*1(c) in a Euclidean space E3¢*+2 where E = R (real numbers),
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C (complex numbers), Q (quaternions) or O (Cayley numbers), respectively ([4]). Every
Cartan hypersurface satisfies (4). Precisely, we have (see e.g. [13], Theorem 4.3)

K
18 R-S=———+ S).
(18) T Q.)
Thus such a hypersurface is a Ricci-pseudosymmetric manifold of constant type. In ad-
dition, the Cartan hypersurface in S%(c) is a pseudosymmetric manifold satisfying (|22],

Example 2)

K

If on the set Uy of a hypersurface M in N"*1(c), n > 3, we have H® = tr(H)H? + \H,
for some function A, then (18) holds on Uy ([7], Proposition 3.2). It is also known that
if rank H = 2 at every point of a hypersurface M in N**!(c), n > 3, then it is a pseudo-
symmetric space of constant type ([7], Theorem 4.2). Precisely, on such a hypersurface

we have
R
R-R= m@(ng)-
On every hypersurface M in N*1(c), n > 4, we have ([21])
(n—2)k
19 R __(n=2F _
(19) R-R=Q(5. ) = 7 =20000.0)

Thus on Us NUs C M we have (8) with Ly = —%. Clearly, if (6) and (8), resp. (8)
and (9), hold on Uc NUs C M then M is an Akivis-Goldberg type hypersurface, resp. a
Cartan type hypersurface.

Theorem 4.3 of [13] states that every Cartan hypersurface of dimension n > 6 is
a Cartan type hypersurfce. They are non-pseudosymmetric Ricci-pseudosymmetric hy-
persurfaces. Further, (9), with L; = 0, is satisfied on Uy C Ugc NUg C M for every
Ricci-pseudosymmetric hypersurface M in N**1(c), n > 4, (|13], Theorem 3.2). In other

words, on Uy we have (8) and
S-R= L0R+ng/\S+L3G.
In this section we prove that such hypersurfaces are Cartan type hypersurfaces. We also
mention that examples of quasi-Einstein Ricci-pseudosymmetric hypersurfaces were found
recently in [17] and [19].
Since (19) is a relation of the form (7), we have
PROPOSITION 3.1. Let M be a hypersurface in N'Tt(c), n > 4.
(i) The relation (7) is satisfied on M.
(i) If (6) and (8) hold on UcNUg C M then M is an Akivis-Goldberg type hypersurface.
Propositions 2.1 and 3.1 imply

PROPOSITION 3.2. If M is a hypersurface in N""1(c), n > 4, satisfying (2) and (6) on
UcNUgs C M then M is an Akivis-Goldberg type hypersurface.



CURVATURE CONDITIONS ON HYPERSURFACES 139

PROPOSITION 3.3. Let M be a hypersurface in N***1(c), n > 4. Then on (UcNUs)\Ugy C
M we have

— -1

20 - H —a) 25 (= VE
(20) R=c¢(tr(H)—a) <S (n(n—i—l) 8ﬁ)gAS)

+( e(tr(H) —a)? (n = DF —e i + _k G

n(n+1) nn+1)) "’

where « and B are defined by (17).
Proof. First of all, we note that (16) and (17) yield
(n—1k
n(n+1) eh)g-
Thus we see that ¢tr(H) — «a # 0 at every point of (Uc NUg) \ Ug. Further, using (15)
and (21) we get (20), completing the proof.

(21) S=e(tr(H)—a)H + (

Proposition 3.3 implies

THEOREM 3.1. Let M be a hypersurface in N 1(c), n >4, and let (UcNUg)\Uy C M
be nonempty. Then the Roter type equation holds on this set. Moreover, if Uy C M is
empty then M is a Roter type hypersurface.

It is easy to see that the last theorem implies Theorem 1.1.

REMARK 3.1. Let M be a hypersurface in a Riemannian space of constant curvature
N"t1(¢), n > 4. Using the well-known Cartan-Schouten result (see e.g. |5|, Section
13.1.1.) we can easily deduce that if at a point of Us C M there are exactly two distinct
principal curvatures then the multiplicity of each principal curvature is > 2, i.e. M can-
not be quasi-umbilical at this point. More generally, if M is a hypersurface in N 1(c),
n > 4, and if (17) is satisfied at a point of Uc C M then M is not quasi-umbilical at this
point (|21], Theorem 4.1).

THEOREM 3.2 (|13], Theorem 3.2). If M is a Ricci-pseudosymmetric hypersurface in
Ntt1(e), n >4, then (8) and (9) hold on Uy C M.

Theorems 3.1 and 3.2 yield

THEOREM 3.3. Every Ricci-pseudosymmetric hypersurface in N™"1(c), n > 4, is a Car-
tan type hypersurface.

THEOREM 3.4. The Cartan hypersurface M in S"T1(c), n = 6,12 or 24 is a Cartan type
hypersurface which is not an Akivis-Goldberg type hypersurface.

Proof. First of all we note that M is a non-pseudosymmetric Ricci-pseudosymmetric
hypersurface (e.g. see [13], section 2). From the definition of the Cartan hypersurface
it follows that Uo N Ug = M. We suppose now that M is an Akivis-Goldberg type
hypersurface. Thus on M we have S- R = LS+ Lyg A S+ L4G, where L), L, and L} are
some functions on M. The last relation, together with the equation (53) of [13], yields
(5). But (5) implies (3) (see section 2), a contradiction. Thus our theorem is proved.

EXAMPLE 3.1. Let Mj, resp. M5, be a nonempty open connected subset of RP, resp.
R™"™P 2 < p<n-—2, equipped with the standard metric g1, g1a6 = €40ab, € = £1, resp.
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92: 9208 = €alap, Ea = £1, where a,b,c,d,e, f € {1,...,p}, o, B3,7,0 € {p+1,...,n} and
hyi,j k€ {1,...,n}. We set F = F(z',...,2P) = kexp({,z®), where k,&1,...,&, € R,
...+ 512, >0, k> 0 and gleffeff # 0. We consider the warped product M; X g Ms.
Let 7 be a function on M Xz N defined by (cf. [8], Section 4)

€ €
(22) =10 Tetr, &=+l

It is clear that there exist constants ¢, €,, and &, such that the right-hand side of (22) is
positive at every point x of M xz N. Using now (44) of [8] and (22) we find

n—
Sab: *Tpfafb; Saﬂ: (n*p)57—2gaﬁa

29) 2= " g 1)er?

= i1 k=n—-p)(n—p+1er”.

In Section 4 of [8] it was shown that the conditions: R- R = Q(S,R) and S-R =0
are satisfied on M xp N. Further, we have (see [8], section 4) R = ¢H, where H is a
symmetric (0, 2)-tensor with the local components

1
(24) Hy, = —Efaﬁb, Hyo = 0, Hocﬁ = ETGap-

The tensor H is a Codazzi tensor. Therefore My x g Ms locally can be realized as a
hypersurface in a semi-Euclidean space E?*!. From (23) and (24) it follows that

1
trH = ——g'f¢.&p + (n—pler = (n—p+1)er, H? =erH.

4T
Applying this and (23) into (16) and (15), on My X g My we get
_ 1—
S=(n-prH, R=""LT'g
(n—p)r

respectively. Thus we see that M; x g M5 is a Roter type manifold which locally can be
realized as a hypersurface in a semi-Euclidean space E?*1,

REMARK 3.2. (i) An example of a hypersurface M in N"*1(c), ¢ # 0, n > 4, satisfying
the Roter type equation on the set (UcNUg)\ Uy C M, is given in [20]. We also mention
that warped products satisfying (5) were investigated in [20].

(ii) The warped product defined in Example 4.1 of [14] is a Ricci-simple Akivis-Goldberg
type manifold. Clearly, such manifold is not a Roter type manifold. That warped product
locally can be realized as a hypersurface in a semi-Euclidean space E?*! (|14], Example
5.1).

(iii) Examples of Ricci-pseudosymmetric quasi-Einstein hypersurfaces in spaces of con-
stant curvature are given in [17] and [19].

We consider the Cartesian product NP (c1) x N2 7P(cz) of two semi-Riemannian spaces
of constant curvature N? (c;) and NI 7P(c2), 2 < p < n — 2, where ¢; = (pf—ll)p,
m—p and k1 and ky are the scalar curvatures of NP (c1) and N27P(ca2),
respectively. This product is a semisymmetric manifold ([27], Theorem 4.5). Further, it is

Cy =

known that the local components [ of the curvature tensor and the local components
Shi of the Ricci tensor S of NP (c1) x N2 7P(cz) which might not vanish identically, are
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the following:
Raped = €1(gadgbe — Jacvd)
Rapys = c2(9as9py — Jar98s)s
Sad = (p — 1)¢19ad;
Sas = (0 —p —1)c2gas,

(25)

where gy, are the local components of the metric tensor of N (c1) x NI\ 7P(c2), a,b,c,d €
{1,2,...,p} and «,B,7,6 € {p +1,p+2,...,n}. The scalar curvature x of NP (c1) x
NI7P(cp) is given by

(26) k=plp—1)ci+ (n—p)(n—p—1)ca.
In addition, we assume that the considered product satisfies
(27) (@) c1+c2#0 and (b)) (p—1)ey # (n—p—1)co.

Using (25) and (27) we can conclude that NP (c1) x N7P(c2), 2 < p < n—2, is a
non-conformally flat and non-Einstein manifold. Further, from (25) it follows that also
(5) is satisfied with

¢ = T(Cl + CQ);

p=—(n—2)Tecica,

n=rcica((p — 1)201 +(n—p-— 1)202),

T=(p—1c1—(n—p—1)ez) 2
Moreover, (26) and (27) yield
(28) n(b_ﬁl +p- niQ = (p(; i)g;(;ﬁz)l)ﬂﬁ +C2)2'

The above considerations yield

PROPOSITION 3.4. The Cartesian product NP (c1) X N2 7P(cz), 2 <p <n—2, is a Roter
type manifold, provided that (27) is satisfied.

EXAMPLE 3.2. Let SP(r) be p-dimensional standard sphere of radius r in EP*1. We note
that r—2 = ﬁ, where k is the scalar curvature of the given sphere. From the above
considerations it follows that the Cartesian product SP(r1) x S" P(rz), 2 < p <n — 2,
of two spheres SP(r;) and S™"P(ry) is a Roter type manifold, provided that (27)(b), or
equivalently, (n — p — 1)r? # (p — 1)r3 is satisfied. From Theorem 5.1 of [30] (cf. [6]) it
follows that M = SP(r1) X S™" P(rq), r1 = \/g, re = 1/ "2, 2 < p <n—2, can be realized
as a minimal hypersurface immersed isometrically in the sphere S"*1(1) having at every
point exactly two distinct principal curvatures p; and py of multiplicity p and n — p,

respectively. It is known that pjps +1 =0 and p? = r;Q — 1,4 =1,2. The hypersurface
M is called the Clifford torus.

COROLLARY 3.1. The Clifford torus Sp(\/g) x SPTP(\/*E), 2 <p<n—2,n#2p,is
a Roter type hypersurface.

We finish this section with the following



142 M. GROGOWSKA

REMARK 3.3. Let (M, g), n > 4, be a semi-Riemannian manifold satisfying

(29) ng(S—nﬁlg)/\<S—%g)

on Us NUs C M, where L is some function on U N Ug. Manifolds satisfying (29) were
investigated in [24]. Evidently, (29) is equivalent to (5) with ¢ = L, u = —15 — L% and

n—2 n—1
n = %(% - ﬁ) It is easy to see that on Ug N Ug we have % +p— 15 =0

Comparing this with (28) we can conclude that a semi-Riemannian manifold (M, g),
n > 4, satisfying (29) on Uc N Us C M, and NP (c1) x N7P(c2), 2 < p < n—2,
satisfying (27), are not isometric.
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