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Abstract. We formulate sufficient conditions for regularity up to the boundary of a weak solution

v in a subdomain Ω× (t1, t2) of the time-space cylinder Ω× (0, T ) by means of requirements on

one of the eigenvalues of the rate of deformation tensor. We assume that Ω is a cube.

1. Introduction and auxiliary lemmas. We assume that Ω is a cube (−π, π)3 in this

paper.

We have already shown in our two previous papers [9] and [10] that the interior

regularity of a so called suitable weak solution v to the Navier–Stokes equation can be

guaranteed by certain assumptions on only one of the eigenvalues of the rate of deforma-

tion tensor (= the symmetrized gradient of velocity). The main reason why we studied

only the interior regularity in [9] and [10] was that we assumed that v satisfied a Dirichlet

boundary condition on ∂Ω and we were not able to perform all necessary integrations by

parts and to derive a fundamental estimate of ∇v on the whole domain Ω.

In this paper, instead of the usual Dirichlet boundary condition, we assume that

the considered weak solution v satisfies so called “vorticity boundary conditions” (4)

introduced in the paper [1] by H. Bellout, J. Neustupa and P. Penel. Using a special and

fine treatment of the boundary integrals, we show that a similar procedure as in [10]
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enables us to obtain a desired estimate of ∇v. Thus, we derive a result on the regularity

which is valid up to the boundary of Ω in Section 3.

In Section 2, as an auxiliary result, we prove a theorem on local in time existence of

a strong solution—see Theorem 5. A similar theorem is well known in the case of the

Dirichlet boundary condition. The theorem, valid in the case of the boundary conditions

(4), is also cited without proof in our paper [1]. However, in our opinion, the situation

when the boundary of Ω is not smooth requires a special attention. Theorem 5 further

enables to derive an important information on the structure of a weak solution that

satisfies a so called strong energy inequality—see Theorem 6.

The advantage of Ω being the cube is that we know the explicit form of eigenfunctions

of certain operator A (coinciding with curl)—see Lemma 2. It enables to prove Lemma 3

and Lemma 4 whose conclusions play an important role in the paper. The other advantage

is that we can show that the surface integral in (39) equals zero—see Section 3. We believe

that the main result of the paper (Theorem 7) is also valid if Ω is e.g. a convex polyhedron,

at least we are also able to show formally that the surface integral in (39) is zero in this

case. However we are actually not able to verify whether Lemmas 3 and 4 are also valid

on the convex polyhedron.

Let T be a positive number and QT = Ω × (0, T ). We deal with the Navier–Stokes

initial-boundary value problem which is defined by the equations

∂v

∂t
+ (v · ∇)v = −∇p + ν ∆v in QT ,(1)

div v = 0 in QT ,(2)

by the initial condition

v|t=0 = v0(3)

and by the vorticity boundary conditions

curlkv · n = 0 (k = 0, 1, 2) on ∂Ω × (0, T ).(4)

v = (v1, v2, v3) denotes the velocity, p denotes the pressure and ν > 0 is the viscosity

coefficient. Throughout the paper, we shall use the usual notation:

• n = (n1, n2, n3) is the outer normal vector on ∂Ω.

• ‖ . ‖r, respectively ‖ . ‖m,r, is the norm of a scalar- or vector- or tensor-valued function

with its components in Lr(Ω), respectively in Wm,r(Ω).

• L2
σ(Ω)3 is the closure of {u ∈ C∞

0 (Ω)3; div u = 0 in Ω} in L2(Ω)3. L2
σ(Ω)3 coincides

with the set {u ∈ L2(Ω)3; div u = 0 in Ω in the sense of distributions and (u ·n)|∂Ω = 0

in the sense of traces}.
• (. , .)2 denotes the scalar product in L2(Ω)3 and in L2

σ(Ω)3.

• Pσ is the orthogonal projection of L2(Ω)3 onto L2
σ(Ω)3.

The notion of a weak solution to the problem (1)–(3) with the Dirichlet boundary

condition

v = 0 on ∂Ω × (0, T ).(5)

is well known. The existence of a weak solution to the problem (1)–(3), (5) is a classical
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result of J. Leray [7] and E. Hopf [5]. (See also O. A. Ladyzhenskaya [6], R. Temam [11],

M. Feistauer [3] and G. P. Galdi [4].) The weak solution v, unlike others, belongs to

L2(0, T ; W 1,2
0 (Ω)3) ∩ L∞(0, T ; L2

σ(Ω)3). If v is a so called “suitable weak solution” then

the set of singular points of v in QT has the 1–dimensional Hausdorff measure equal to

zero (see L. Caffarelli, R. Kohn and L. Nirenberg [2]).

We denote by σ the symmetric part of the gradient of v, i.e. σ = 1
2 [∇v + (∇v)T ]. σ

is also called “the rate of deformation tensor”. Let us recall our result from [9] and [10]

where we were interested in the interior regularity of a suitable weak solution v.

Theorem 1. Suppose that D is a subdomain of QT and v is a suitable weak solution to

the initial-boundary value problem (1)–(3), (5) in QT . Let ζ1 ≤ ζ2 ≤ ζ3 be the eigenvalues

of the rate of deformation tensor σ. Suppose that

(i) one of the functions ζ1, (ζ2)+, ζ3 belongs to Lr,s
loc(D) for some real numbers r, s such

that 1 ≤ r ≤ +∞, 3
2 < s ≤ +∞ and 2/r + 3/s ≤ 2.

((ζ2)+ denotes the positive part of ζ2.) Then the solution v is regular in D.

σ, as a symmetric 3 × 3 tensor, has at most three real eigenvalues. The eigenvalues

are functions of x and t. However, they can be denoted in a.a. points (x, t) ∈ D so that

the least is ζ1(x, t), the middle is ζ2(x, t) and the greatest is ζ3(x, t). In fact, the theorem

can also be reformulated in such a way that instead of assumption (i), we can define a

function which coincides at a.a. points (x, t) with one of the eigenvalues, no matter with

which of them, and make an analogous assumption on this function.

Let us note that even if the domain D has for example the form Ω × (t1, t2) (where

0 ≤ t1 < t2 ≤ T ) then the statement of Theorem 1 only says that v has no singular points

in D, but it does not provide a new information on v as an element of a function space

on Ω × (t1, t2). This is exactly the point which will be improved in Section 3, however v

will be supposed to satisfy the boundary conditions (4) instead of (5).

The Navier–Stokes equation with the boundary conditions (4) was treated in [1]. Let

us recall some notation and facts from [1]:

• D1 = {u ∈ W 1,2(Ω)3 ∩ L2
σ(Ω)3; (curlu · n)|∂Ω = 0 in the sense of traces}

• A = curl |D1

• The equation Au = f (for f ∈ L2
σ(Ω)3) has a unique solution u ∈ D1 such that

‖u‖1,2 ≤ c1 ‖f‖2(6)

(where constant c1 is independent of f).

• There exist constants c2, c3 > 0 such that

c2 ‖Aw‖2 ≤ ‖w‖1,2 ≤ c3 ‖Aw‖2 for all w ∈ D1.(7)

• D1 can be described in this way:

D1 = {u = u0 + ∇ϕ; u0 ∈ W 1,2
0 (Ω)3, ∆ϕ = −∇ · u0 in Ω and ∂ϕ/∂n|∂Ω = 0}.(8)

• A is a selfadjoint operator in L2
σ(Ω)3 and the resolvent operator (λI − A)−1 is

compact in L2
σ(Ω)3 for all λ from the resolvent set of A.

• The spectrum σ(A) consists of countably many isolated real eigenvalues {λi; i ∈
Z∗} (Z∗ = Z−{0}). Each of the eigenvalues has the same finite algebraic and geometric
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multiplicity. The eigenvalues can be ordered so that λi < 0 if i < 0, λi > 0 if i > 0

and λi ≤ λj if i < j. The corresponding eigenfunctions ei can be chosen so that they

form a complete orthonormal system in L2
σ(Ω)3.

We shall denote by D2 the domain of A2, i.e. the space D(A2). Z∗
n will denote the set of

the integers {−n, . . . ,−1, 1, . . . , n}, V n will be the space spanned by the eigenfunctions

ei for i ∈ Z∗
n and Πn will denote the orthogonal projection of L2

σ(Ω)3 onto V n.

Lemma 2. The eigenfunctions ei (i ∈ Z∗) of operator A satisfy

(∇2ei,∇2ej)2 = λ2
i λ

2
j (ei, ej)2 = λ2

i λ
2
j δij(9)

where δij is Kronecker’s symbol.

Proof. One can deduce from the equations Aei = λie
i and A ej = λje

j that the eigen-

functions ei and ej must have the form

ei(x) =
∑

|k|=λ2

i

ci
k exp(ix · k), ej(x) =

∑

|l|=λ2

j

c
j
l exp(ix · k)(10)

where k = (k1, k2, k3) ∈ Z3, l = (l1, l2, l3) ∈ Z3, ci
k ∈ R

3 and c
j
l ∈ R

3. (See [1], example

3.1.) Thus, λi and λj must also necessarily have the special forms λi = ±
√

k2
1 + k2

2 + k2
3

and λj = ±
√

l21 + l22 + l23. The coefficients ci
k must be chosen so that function ei expressed

by (10) satisfies the equation curl ei = λie
i and the boundary condition ei · n = 0

a.e. on ∂Ω. The same holds on the coefficients c
j
l . As an example, the exact form of an

eigenfunction corresponding to λi =
√

12 + 22 + 32 =
√

14 is shown in [1]. We have:

(∇2ei,∇2ej)2 =

∫

Ω

∑

|k|2=λ2

i

ci
k (−krks) exp(ix · k)

∑

|l|2=λ2

j

c
j
l (−lrls) exp(−ix · l) dx

=
∑

|k|2=λ2

i

∑

|l|2=λ2

j

ci
k c

j
l krlrksls

∫

Ω

exp[ix · (k − l)] dx =
∑

|k|2=λ2

i
=λ2

j

ci
k c

j
k krkrksks

= |k|4
∑

|k|2=λ2

i
=λ2

j

ci
k c

j
k = λ2

i λ
2
j (ei, ej)2 = λ2

i λ
2
j δij .

(The integral on Ω is different from zero only if k = l.) This completes the proof.

Lemma 3. If f ∈ L2
σ(Ω)3 then the equation A2u = f has a unique solution u ∈ W 2,2(Ω)3.

The solution satisfies the estimate

‖u‖2
2,2 ≤ ‖f‖2

2 + ‖Au‖2
2 + ‖u‖2

2 .(11)

Proof. The existence of a unique solution u ∈ D(A2) can be obtained by solving succes-

sively the two problems Aw = f and Au = w. We need to show that u ∈ W 2,2(Ω)3 and

u satisfies (11). Put

un = Πnu =
∑

i∈Z∗

n

(u, ei)2 ei.

Obviously, un → u as n → +∞ in the norm {‖ . ‖2
2 + ‖A . ‖2

2 + ‖A2 . ‖2
2}1/2 which is



ESTIMATES UP TO THE BOUNDARY 189

equivalent with {‖ . ‖2
1,2 + ‖curl . ‖2

1,2}1/2. Due to Lemma 2, we have:

‖∇2un‖2
2 = ‖A2un‖2

2 =
∑

i∈Z∗

n

(u, ei)22 λ4
i ≤

∑

i∈Z∗

(u, ei)22 λ4
i = ‖A2u‖2

2 .

We can also derive a similar estimate of ‖∇un‖2. Hence the sequence {un} is bounded

in W 2,2(Ω)3 and the limit u belongs to W 2,2(Ω)3. Moreover, it satisfies

‖u‖2
2,2 = ‖∇2u‖2

2 + ‖∇u‖2
2 + ‖u‖2

2 ≤ ‖A2u‖2
2 + ‖Au‖2

2 + ‖u‖2
2 = ‖f‖2

2 + ‖Au‖2
2 + ‖u‖2

2 .

This completes the proof.

We can deduce from Lemma 3 that D2 is a subspace of W 2,2(Ω)3 and the norms

‖ . ‖2,2 and {‖ . ‖2
2 + ‖A . ‖2

2 + ‖A2 . ‖2
2}1/2 are equivalent in D2.

Lemma 4. If f ∈ L2
σ(Ω)3 then the equation A3u = f has a unique solution u ∈ W 3,2(Ω)3.

The solution satisfies the estimate

‖u‖2
3,2 ≤ ‖f‖2

2 + ‖A2u‖2
2 + ‖Au‖2

2 + ‖u‖2
2 .(12)

We do not give the proof of Lemma 4 because it could be done similarly as the proof

of Lemma 3.

Using the operator A, we can rewrite equation (1) and boundary conditions (4):

∂v

∂t
+ Av × v = −∇(p + 1

2 |v|
2) − ν A2v in QT ,(13)

Akv · n = 0 (k = 0, 1, 2) on ∂Ω × (0, T ).(14)

As we have already mentioned, the existence of a weak solution to the problem (1)–(3),

(5) is well known. Considering the boundary conditions (14) instead of (5) and assuming

that v0 ∈ L2
σ(Ω)3, we can follow the proof described in [6], [11], [3] and [4] and recover

the existence of a weak solution v of the problem (13), (2), (3) and (14) as a function

from L2(0, T ; D1) ∩ L∞(0, T ; L2
σ(Ω)3), satisfying the integral relation

∫ T

0

∫

Ω

v · φ(x) θ̇(t) dxdt −
∫ T

0

∫

Ω

[(Av × v) · φ(x) + ν Av · Aφ(x)] θ(t) dxdt(15)

+

∫

Ω

v0 · φ(x) θ(0) dx = 0

for all φ ∈ D1 and all θ ∈ C∞([0, T ]) such that θ(T ) = 0. (See also [1] for further

comments.)

v satisfies the first two conditions in (14) (corresponding to k = 0, 1) for a.a. t ∈ (0, T ),

as a function from D1. A natural question is how we can understand the third condition

in (14) which says that A2v · n = 0 on ∂Ω × (0, T ). We can offer two explanations:

◦ The definition of the weak solution already contains the third boundary condition

in itself in such a sense that if a weak solution v is smooth enough then it must already

satisfy the condition A2v ·n = 0 on ∂Ω×(0, T ). This can be shown by the same procedure

as in [1], the proof of Lemma 4.1.

◦ We shall show in Section 2 that A2v(. , t) ∈ W 1,2(Ω)3 for a.a. t ∈ (0, T ). Thus, v

satisfies the third condition in (14) in the sense of traces in a.a. times t in (0, T ).
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2. The local in time existence of a strong solution and the structure theorem

Theorem 5. Let j be either 1 or 2. If v0 ∈ Dj then there exists T ∗
j > 0 and a function

v ∈ C(0, T ∗
j ; Dj) such that Aj+1v ∈ L2(0, T ∗

j ; L2
σ(Ω)3), ∂Aj−1v/∂t ∈ L2(0, T ∗

j ; L2
σ(Ω)3)

and v satisfies (15) with T = T ∗
j . Moreover, T ∗

j is a decreasing function of ‖Ajv0‖2.

Proof. Suppose that j = 1 at first. Let n ∈ N. Let us construct approximations of the

solution v in the form

vn(x, t) =
∑

i∈Z∗

n

ai(t) ei(x)(16)

so that

∀ i ∈ Z∗
n :

d

dt

∫

Ω

vn · ei dx +

∫

Ω

(Avn × vn) · ei dx + ν

∫

Ω

Avn · Aei dx = 0,(17)

vn(. , 0) = Πnv0.(18)

(17), (18) is equivalent with the initial-value problem for the system of ordinary differ-

ential equations:

d

dt
ai(t) +

∑

j,k∈Z∗

n

λj aj(t) ak(t) bijk + ν λ2
i ai(t) = 0; i ∈ Z∗

n,(19)

ai(0) = (v0, e
i)2 ; i ∈ Z∗

n,(20)

where

bijk =

∫

Ω

ei · (ej × ek) dx.

The problem (19), (20) has a solution in certain time interval (0, T ∗). In order to derive a

lower estimate of T ∗, we multiply the i-th equation in (19) by λ2
i ai and sum over i ∈ Z∗

n.

We obtain

d

dt

1

2

∑

i∈Z∗

n

λ2
i a2

i +
∑

i,j,k∈Z∗

n

λ2
i λj ai aj ak bijk + ν

∑

i∈Z∗

n

λ4
i a2

i = 0.(21)

This is equivalent with

d

dt

1

2

∫

Ω

|Avn|2 dx +

∫

Ω

(Avn × vn) · A2vn dx + ν

∫

Ω

|A2vn|2 dx = 0.(22)

The second term on the left-hand side can be estimated as follows:
∣

∣

∣

∣

∫

Ω

(Avn × vn) · A2vn dx

∣

∣

∣

∣

≤ ν

4

∫

Ω

|A2vn|2 dx +
1

ν

∫

Ω

|Avn|2 |vn|2 dx

where

1

ν

∫

Ω

|Avn|2 |vn|2 dx ≤ 1

ν

(
∫

Ω

|Avn|6 dx

)1/6 (
∫

Ω

|Avn|2 dx

)1/2 (
∫

Ω

|vn|6 dx

)1/3

≤ δν

(
∫

Ω

|Avn|6 dx

)1/3

+
c4

ν2δ
‖vn‖4

1,2 ‖Avn‖2
2

≤ δν c4 ‖Avn‖2
1,2 +

c4c3

ν2δ
‖Avn‖6

2 ≤ δν c4 ‖A2vn‖2
2 +

c4c3

ν2δ
‖Avn‖6

2.
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(We have estimated ‖vn‖1,2 and ‖Avn‖1,2 by means of (7).) Choosing δ > 0 so small

that δ c4 < 1
4 and using the above estimates in (22), we can obtain:

d

dt

1

2
‖Avn‖2

2 +
ν

2
‖A2vn‖2

2 ≤ c4c3

ν2δ
‖Avn‖6

2.(23)

Integrating this inequality, we can show that

‖Avn(. , t)‖4
2 [ν2δ − 4tc4c3 ‖Avn(. , 0)‖4

2] ≤ ν2δ ‖Avn(. , 0)‖4
2(24)

for t ∈ (0, T ∗) where T ∗ satisfies

0 < T ∗ <
ν2δ

4c4c3 ‖Avn(. , 0)‖4
2

.(25)

Suppose further that T ∗
1 is a fixed number which is chosen so that

0 < T ∗
1 <

ν2δ

4c4c3 ‖Av0‖4
2

.(26)

Then T ∗
1 also satisfies (25) because

‖Avn(. , 0)‖2
2 =

∑

i∈Z∗

n

λ2
i a2

i (0) =
∑

i∈Z∗

n

λ2
i (v0, e

i)22 ≤
∑

i∈Z∗

λ2
i (v0, e

i)22 = ‖Av0‖2
2 .

Thus, the integration of inequality (23) provides the estimates

‖Avn(. , t)‖2 ≤ c5 for t ∈ (0, T ∗
1 ),(27)

∫ T∗

1

0

‖A2vn(. , t)‖2
2 dt ≤ c6(28)

where c5 and c6 are independent of n. The proof of the part of the lemma corresponding

to j = 1 can now be completed by a standard limit procedure.

Let us further suppose that v0 ∈ D2. Multiplying the i-th equation in (19) by λ4
i ai

and summing over i ∈ Z∗
n, we obtain the equation whose equivalent form is

d

dt

1

2

∫

Ω

|A2vn|2 dx +

∫

Ω

(Avn × vn) · A4vn dx + ν

∫

Ω

|A3vn|2 dx = 0.(29)

The second integral can be treated as follows:
∫

Ω

(Avn × vn) ·A4vn dx =

∫

∂Ω

(Avn × vn) · (n×A3vn) dS +

∫

Ω

A(Avn × vn) ·A3vn dx

Avn and vn are tangential a.e. on ∂Ω, so Avn×vn is normal. On the other hand, n×A3vn

is tangential. This means that (Avn × vn) · (n × A3vn) = 0 a.e. on ∂Ω and the surface

integral equals zero. Hence
∫

Ω

(Avn × vn) · A4vn dx =

∫

Ω

A(Avn × vn) · A3vn dx

=

∫

Ω

[(vn · ∇)Avn − (Avn · ∇)vn] · A3vn dx

≤ ν

4

∫

Ω

|A3vn|2 dx +
c7

ν

∫

Ω

(|vn|2 |∇Avn|2 + |Avn|2 |∇vn|2) dx

≤ ν

4
‖A3vn‖2

2 +
c8

ν

(
∫

Ω

|vn| dx

)1/3(∫

Ω

|∇Avn|6 dx

)1/6(∫

Ω

|∇Avn|2 dx

)1/2
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+
c8

ν

(
∫

Ω

|Avn|6 dx

)1/3(∫

Ω

|∇vn|6 dx

)1/6(∫

Ω

|∇vn|2 dx

)1/2

≤ ν

4
‖A3vn‖2

2 +
c9

ν
‖Avn‖2

2 ‖A3vn‖2 ‖A2vn‖2 +
c9

ν
‖A2vn‖3

2 ‖Avn‖2

≤ ν

2
‖A3vn‖2

2 +
c10c

4
5

ν2
‖A2vn‖2

2 +
c11c5

ν
‖A2vn‖3

2 .

(We have estimated ‖Avn‖2 by means of (27).) Substituting these estimates into (29),

we obtain:

d

dt

1

2
‖A2vn‖2

2 +
ν

2
‖A3vn‖2

2 ≤ c10c
4
5

ν2
‖A2vn‖2

2 +
c11c5

ν
‖A2vn‖3

2 .(30)

Integrating this inequality, we can show that if T ∗
2 is chosen so that 0 < T ∗

2 ≤ T ∗
1 and

T ∗
2 < c12

[

π

2
− arctan

(

1

2
‖A2v0‖2

2

)]

(31)

then

‖A2vn(. , t)‖2 ≤ c13 for t ∈ (0, T ∗
2 ),(32)

∫ T∗

1

0

‖A3vn(. , t)‖2
2 dt ≤ c14(33)

where c12, c13 and c14 are appropriate constants independent of n. A standard limit

procedure now again enables to complete the proof.

Remark 1. The inclusion Aj+1v ∈ L2(0, T ∗
j ; L2

σ(Ω)3) in Theorem 5, in the case of j = 2,

says that v(. , t) ∈ D(A3) ≡ D3 for a.a. t ∈ (0, T ∗
2 ). This means that v(. , t) satisfies not

only the three boundary conditions in (14), but also

A3v(. , t) · n = 0 on ∂Ω.(34)

This is in agreement with our result from [1] where we have shown that if v satisfies (14)

then ω = curlv also satisfies (14). Thus, A2ω(. , t) · n = −∆ω(. , t) · n = 0 on ∂Ω.

By analogy with J. Leray [7] and with G. P. Galdi [4], let us call an epoch of irregularity

of weak solution v to the problem (1)–(4) an instant of time ϑ such that v(. , t) is (after

a possible re–definition on a set of measure zero in QT ) an element of D1 continuously

depending on t on the interval (ϑ − ǫ, ϑ) for some ǫ > 0 and ‖Av(. , t)‖2 → +∞ as

t → ϑ−. Obviously, the set of all epochs of irregularity of v is at most countable. If

v(. , t) ∈ D1, denote by ϑ(t) the least epoch of irregularity of v, greater than t. Theorem

5 guarantees that either such an epoch of irregularity exists in (t, T ) or ‖Av‖2 is bounded

(as a function of time) on (t, T ). In the latter case, we put ϑ(t) = T .

Theorem 6. Suppose that v is a weak solution to the problem (1)–(4) that satisfies the

strong energy inequality, i.e.

‖v(. , t)‖2
2 + 2ν

∫ t

ξ

‖∇v(. , ξ)‖2
2 dξ ≤ ‖v(. , ξ)‖2

2(35)

for a.a. ξ ∈ (0, T ) and all t ∈ [ξ, T ). Then,

(0, T ) =
⋃

γ∈Γ

(aγ , bγ) ∪ G(36)
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where set Γ is countable, (aγ , bγ) are non-overlapping intervals and v, after a possible

re-definition on a set of measure zero, has the following properties:

1. v(. , t) is an element of D2, continuously depending on t on each of the intervals

(aγ , bγ),

2. A3v ∈ L2
loc(aγ , bγ ; L2

σ(Ω)3) for all γ ∈ Γ,

3. ∂Av/∂t ∈ L2
loc(aγ , bγ ; L2

σ(Ω)3) for all γ ∈ Γ,

4. set G has the 1
2–dimensional Hausdorff measure equal to zero,

5. the strong energy inequality (35) is satisfied for all ξ ∈ (aγ , bγ) (γ ∈ Γ) and all

t ∈ [ξ, T ),

6. each of the points bγ (for γ ∈ Γ) either coincides with T or is an epoch of irregularity

of v.

Proof. Since v ∈ L2(0, T ; D1), there exists M1 ⊂ (0, T ) such that M1 is of measure zero

and v(. , t) ∈ D1 for all t ∈ (0, T )−M1. Denote by M2 the set of such time instants from

(0, T ) that the inequality (35) is satisfied for all ξ ∈ (0, T )−M2 and all t ∈]ξ, T ). M2 is of

measure zero, too. Suppose that ξ ∈ (0, T )− (M1 ∪M2). Due to Theorem 5, the problem

(1)–(4) has a strong solution on each interval (ξ, t∗) where ξ < t∗ < ϑ(ξ). Since v is

assumed to satisfy the energy inequality (35), we can identify it with the strong solution

on the interval (ξ, t∗). (See the theorem on uniqueness in [1], Theorem 5.2.) The union

J =
⋃

t∈(0,T )−(M1∪M2)

(t, ϑ(t))(37)

consists of a countable number of disjoint open intervals (aγ , bγ); γ ∈ Γ. Denote by M3

the set of epochs of irregularity of solution v in (0, T ) and by M4 the set of time instants

aγ for γ ∈ Γ. Obviously, the measure of M3 and M4 is zero. Put G = (0, T ) − J . G can

contain only points from M1 ∪ M2 ∪ M3 ∪ M4. This implies that G is of measure zero.

The properties 1–3 of solution v on each of the intervals (aγ , bγ) easily follow from

Theorem 5 and from the steps of its proof, especially from the way how numbers T ∗
1 and

T ∗
2 could be chosen. (See (26) and (31).)

A similar statement to our statement 4 is well known from the case of the Dirichlet

boundary condition. Thus, we do not show the proof here. We refer e.g. to G. P. Galdi

[4], proof of Theorem 6.4, for the basic ideas and steps.

The statement about the strong energy inequality in item 5 can be proved in this way:

We suppose that ξ ∈ (aγ , bγ). We can construct a weak solution w on the interval (ξ, T )

which satisfies the energy inequality (35) for all t ∈ [ξ, T ) and which coincides with v at

time ξ. (See the remark below.) Due to the theorem on uniqueness, w(. , t) = v(. , t) for

t ∈ (ξ, bγ). Hence we can deduce that v also satisfies (35) for all t ∈ [ξ, T ).

Item 6 can easily be proved by contradiction.

Remark 2. It is known from the theory of the Navier–Stokes equation with the Dirich-

let boundary condition (5) that a weak solution can be constructed so that it satisfies

the strong energy inequality (35). It is not known for an arbitrary domain Ω, however

the result is true in the special case when Ω is a cube. Considering now the boundary

conditions (4) instead of (5), we can repeat all important steps of the proof (see e.g. [4])

and we can find out that the weak solution v can also be constructed so that it satisfies
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(35). Thus, the assumption about the strong energy inequality in Theorem 6 does not

represent a serious restriction.

3. Estimates up to the boundary. The initial-boundary value problem (1)–(3), (5),

localized to the interior of Ω, which was studied in our papers [9] and [10], had the

advantage that a localized velocity and all its derivatives differed from zero only in a

small cylinder C around singular point (x0, ϑ). It enabled one to perform arbitrarily the

integration by parts and not to care about the integrals on the boundary. Theorem 1

only provides the information on local regularity of solution v in C and consequently in

any subdomain D of QT , but it does not say anything about the regularity of v up to

the boundary of Ω.

In this section, we assume that v is a weak solution of the problem (13), (2), (3)

with the boundary conditions (14). We recall that Ω is the cube (−π, π)3. The following

theorem provides a similar information as Theorem 1, however on the whole domain Ω. σ

again denotes the rate of deformation tensor (i.e. σ = 1
2 [∇v + (∇v)T ]) and (ζ2)+ means

the positive part of ζ2.

Theorem 7. Let v be a weak solution to the problem (1)–(4) that satisfies the strong

energy inequality (35) for a.a. ξ ∈ (0, T ) and for all t ∈ [ξ, T ). Let ζ1 ≤ ζ2 ≤ ζ3 be the

eigenvalues of tensor σ. Suppose that 0 ≤ t1 < t2 ≤ T and

(ii) one of the functions ζ1, (ζ2)+, ζ3 belongs to Lr(t1, t2; Ls(Ω)) for some real numbers

r, s such that 1 ≤ r ≤ +∞, 3/2 < s ≤ +∞ and 2/r + 3/s ≤ 2.

Then v ∈ C(t1 + δ, t2 − δ; D2), A3v ∈ L2(t1 + δ, t2 − δ; L2
σ(Ω)3) and ∂Av/∂t ∈ L2(t1 +

δ, t2 − δ; L2
σ(Ω)3) for each δ > 0 such that t1 + δ < t2 − δ.

Proof. Suppose that an epoch of irregularity bγ (for some γ ∈ Γ) belongs to the interval

(t1, t2).

Item 4 of Theorem 6 and Lemma 4 imply that v(. , t) ∈ W 3,2(Ω)3 for t ∈ (aγ , bγ)−M5

where M5 is a set of measure zero. Suppose that t ∈ (t1, t2) ∩ (aγ , bγ) − M5. Then the

first order space partial derivatives of v(. , t) can be extended from Ω to ∂Ω as continuous

functions on Ω. (See e.g. J. Nečas [8], p. 72.) The condition A2v · n = 0 a.e. on ∂Ω

means that ∆v · n = 0 on ∂Ω and so ∆v = ∆Pσv = Pσ∆v. Thus, multiplying the

Navier–Stokes equation by ∆v, integrating on Ω and using the selfadjointness of the

operator A, we obtain:

d

dt

1

2

∫

Ω

|Av|2 dx + ν

∫

Ω

|∆v|2 dx =

∫

Ω

(v · ∇)v · ∆v dx.(38)

The integral on the right-hand side can be treated in this way:
∫

Ω

(v · ∇)v · ∆v dx =

∫

Ω

vj (∂jvi) (∂2
kvi) dx =

∫

∂Ω

vj (∂jvi) (∂kvi) nk dS(39)

−
∫

Ω

(∂jvi) (∂kvi) (∂kvj) dx.

(∂i denotes the partial derivative with respect to xi.) We are further going to show that

the integral on ∂Ω equals zero.
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∂Ω consists of 6 squares, let us denote them by S1, . . . , S6. We can assume that the

squares are numbered so that S1 = {x ≡ (x1, x2, x3); −π ≤ x1 ≤ π, −π ≤ x2 ≤ π, x3 =

−π} and S2 = {x ≡ (x1, x2, x3); −π ≤ x1 ≤ π, x2 = −π, −π ≤ x3 ≤ π}. The sides of

square S1 are four line segments—let us denote them by l11, . . . , l41 where for example l11
connects the points (−π,−π,−π) and (π,−π,−π). Then for x = (x1, x2,−π) ∈ S1, we

have: n = (0, 0,−1), v3 = 0 and ∂1v3 = ∂2v3 = 0. Moreover, if we use the fact that v

coincides with a potential vector field ∇ϕ on ∂Ω (following from (8)) then we also have:

vj = ∂jϕ and ∂jvi = ∂j∂iϕ for i, j = 1, 2. Thus,

∫

S1

vj (∂jvi) (∂kvi) nk dS = −
∫

S1

2
∑

i,j=1

(∂jϕ) (∂i∂jϕ) (∂3vi) dS = −
∫

S1

2
∑

i=1

(∂iΦ)(∂3vi) dS

where Φ = 1
2 [(∂1ϕ)2 + (∂2ϕ)2] = 1

2 |∇ϕ|2 because ∂3ϕ = v3 = 0 on S1. Denote by

ν = (ν1, ν2) the outer normal vector on the boundary of S1. We have:
∫

S1

vj (∂jvi) (∂kvi) nk dS(40)

= −
∫

∂S1

Φ [(∂3v1) ν1 + (∂3v2) ν2] dl +

∫

S1

Φ [(∂1∂3v1) + (∂2∂3v2)] dx1 dx2

= −
∫

∂S1

Φ [(∂3v1) ν1 + (∂3v2) ν2] dl = −
(

∫

l1
1

+ . . . +

∫

l4
1

)

. . .

because (∂1∂3v1) + (∂2∂3v2) = −∂2
3v3 and it is equal to zero on S1 (due to the third

boundary condition in (4)). The integral on l11 equals
∫ π

−π

[−Φ (∂3v2)] dx1(41)

because ν1 = 0, ν2 = −1 and dl = dx1 on l11. However, the edge l11 is also one of the sides

of the square S2 where v2 and ∂3v2 are equal to zero. Hence, by continuity, ∂3v2 = 0 on

l11 and the integral in (41) equals zero. By analogy, the line integrals on l21, l31 and l41 are

also equal to zero. Hence the surface integral on the left-hand side of (40) is also zero

and again by analogy, the same surface integrals on squares S2, . . . , S6 are also equal to

zero. Thus, we have shown that the surface integral in (39) equals zero.

Let us denote by τ the skew-symmetric part of ∇v. (Recall that σ is the symmetric

part.) ω ≡ (ω1, ω2, ω3) will further denote the vorticity, i.e. ω = Av. The last integral on

the right–hand side of (39) can be written in this way:
∫

Ω

(∂jvi)(∂kvi)(∂kvj) dx =

∫

Ω

σkj(∂jvi)(∂kvi) dx =

∫

Ω

σkj(σij + τij)(σik + τik) dx(42)

=

∫

Ω

σkjσijσik dx +

∫

Ω

σkjτijτik dx =

∫

Ω

σjkσkiσij dx − 1

4

∫

Ω

σkjωkωj dx.

Substituting this to (39) and (38), we get:

d

dt

1

2

∫

Ω

|Av|2 dx + ν

∫

Ω

|A2v|2 dx = −
∫

Ω

σjkσkiσij dx +
1

4

∫

Ω

σkjωkωj dx.(43)



196 J. NEUSTUPA AND P. PENEL

Applying operator curl to equation (1) and multiplying the equation by ω, we obtain:

d

dt

1

2

∫

Ω

|ω|2 dx − ν

∫

Ω

∆ω · ω dx =

∫

Ω

(ω · ∇)v · ω dx =

∫

Ω

σkjωkωj dx.(44)

Using the identities

−ν

∫

Ω

∆ω · ω dx = ν

∫

Ω

A3v · Av dx = ν

∫

Ω

A2v · A2v dx,

we can rewrite (44) in the form

d

dt

1

2

∫

Ω

|Av|2 dx + ν

∫

Ω

|∆v|2 dx =

∫

Ω

σkjωkωj dx.(45)

Multiplying (45) by 1
4 and subtracting it from (43), we obtain:

d

dt

3

8

∫

Ω

|Av|2 dx +
3ν

4

∫

Ω

|A2v|2 dx = −
∫

Ω

σjkσkiσij dx.(46)

σjkσkiσij equals tr[σ3] (the trace of σ3). The system of coordinates can be, at each point

(x, t), chosen so that σ3 has a diagonal representation with ζ3
1 , ζ3

2 and ζ3
3 on the diagonal.

Hence tr[σ3] = ζ3
1 + ζ3

2 + ζ3
3 and this equality holds independently of the choice of the

coordinate system because tr[σ3] and ζ3
1 , ζ3

2 and ζ3
3 are invariants of σ3. Moreover, using

the identity tr[σ] = ζ1 +ζ2 +ζ3 = 0 (which is nothing else than the equation of continuity

(2)), we get: tr[σ3] = 3ζ1ζ2ζ3. Thus,

d

dt

3

8

∫

Ω

|Av|2 dx +
3ν

4

∫

Ω

|A2v|2 dx = −3

∫

Ω

ζ1ζ2ζ3 dx ≤ 3

∫

Ω

(−ζ1)(ζ2)+ζ3 dx.(47)

Suppose that (ζ2)+ satisfies the assumptions of condition (ii). (The other cases men-

tioned in (ii) could be treated similarly.) Suppose further that t0, t0+ǫ ∈ (aγ , bγ)∩(t1, t2)−
M5. We shall further integrate (47) from t0 to t0 + ǫ. We shall apply the inequality

‖g‖La(α,β; Lb(Ω)) ≤ ‖g‖2/a+3/b−3/2
L∞(α,β; L2(Ω)) ‖g‖5/2−(2/a+3/b)

L2(α,β; L6(Ω))(48)

which is valid for g ∈ L∞(α, β; L2(Ω))∩L2(α, β; L6(Ω)), 2 ≤ a ≤ +∞, 2 ≤ b ≤ 6 and
3
2 ≤ 2/a + 3/b ≤ 5

2 and which can be derived by means of the Hölder inequality. We

obtain

‖Av‖2
L∞(t0,t0+ǫ; L2(Ω)3) + 2ν ‖A2v‖2

L2(t0,t0+ǫ; L2(Ω)3) ≤ 8

∫ t0+ǫ

t0

∫

Ω

(−ζ1)(ζ2)+ζ3 dxdξ

≤ c15 ‖(ζ2)+‖Lr(t0,t0+ǫ; Ls(Ω))

[
∫ t0+ǫ

t0

(
∫

Ω

|ζ1ζ3|
2s

s−1 dx

)

s−1
2s

2r
r−1

dξ

]

r−1
2r

≤ c16 ‖(ζ2)+‖Lr(t0,t0+ǫ; Ls(Ω))

·(‖Av‖2
L∞(t0,t0+ǫ; L2(Ω)3) + 2ν ‖A2v‖2

L2(t0,t0+ǫ; L2(Ω)3))
2/r+3/s

2 .

We have used the inequality −ζ1ζ3 ≤ c17 |∇v|2. If we choose t0 so close to bγ that

c16 ‖(ζ2)+‖Lr(t0,bγ ; Ls(Ω)) < 1,

we obtain

‖Av‖2
L∞(t0,t0+ǫ; L2(Ω)3) + 2ν ‖A2v‖2

L2(t0,t0+ǫ; L2(Ω)3) ≤ c18(49)
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where constant c18 is independent of ǫ. The estimate holds for t0 + ǫ being arbitrarily

close to bγ . Using Theorem 5 (on the local in time existence of a strong solution) and

the theorem on uniqueness (see [1], Theorem 5.2), we can show that solution v can be

prolonged, as a strong solution, from the interval (aγ , bγ) over bγ further to the right.

This is the contradiction with the assumption that bγ is the epoch of irregularity. The

desired regularity of v on the time interval (t1, t2) now follows from Theorem 6.
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