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1. Introdution. The aim of the artile is to present su�ient onditions for an uppersemiontinuous multivalued exess demand, guaranteeing the existene of some globallystable prie mehanism. We onsider two di�erent prie mehanisms: sign-ompatibleand angle-ompatible with the exess demand. Our onditions depend on vetors fromthe exess demand sets and orresponding prie systems, with respet to the equilibriumprie system. We show that there exist adequate prie mehanisms in Sarf's example(when the exess demand is single-valued) and in examples with upper semiontinuousmultivalued exess demand.2. Model. Consider a model of pure exhange with a multivalued exess demand E :

R
n
+  R

n (where R+ = (0,+∞)) satisfying the following natural hypothesis:(a0) E has nonempty, losed and onvex values;(a1) E is upper semiontinuous;(a2) E satis�es Walras' Law: 〈

u, p〉 = 0 for all u ∈ E(p) (where 〈

·, ·〉 denotes the innerprodut);(a3) E is positive homogeneous of degree zero, i.e. E(tp) = E(p) for t > 0;(a4) E satis�es boundary ondition: if pk k→∞
−→ p, where p is suh that pi = 0 for some

i = 1, . . . , n, then d(E(pk),0)
k→∞
−→ ∞, where d(A,0) = sup{|a| : a ∈ A}.The exess demand sets onsist of di�erenes between the total demand and the totalsupply of ommodities, whih are exhanged on the market. We assume that this mapdepends only on ommodity bundle's prie vetor. The hypotheses (a0)�(a4) guarantee2000 Mathematis Subjet Classi�ation: Primary 91B50.The paper is in �nal form and no version of it will be published elsewhere.
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16 A. ARKITthe existene of at least one Walrasian equilibrium, i.e. a point p∗, suh that 0 ∈ E(p∗)(ompare [De℄). Following Samuelson ([Sa℄), we assume that the path of pries, whihstarts at �xed p0, is a solution of the di�erential equation
dp

dt
= g(p), p(0) = p0.(1)The ontinuous funtion g : R

n
+ → R

n on the right hand side of Eq. (1) is alled a priemehanism if it satis�es (when substituted for E) (a2)�(a4) and the ondition: g(p∗) = 0if and only if p∗ ∈ PE = {p ∈ R
n
+ : 0 ∈ E(p)}. We say that a prie mehanism is globallyasymptotially stable if any prie trajetory p(t), whih is a solution of Eq. (1) for anyinitial point p0, onverges to some p∗ ∈ PE , when t tends to in�nity and for any ε > 0there exist t0 ≥ 0 and δ > 0 suh that for every solution p(t) of Eq. (1) if |p(t0)− p∗| < δthen |p(t) − p∗| < ε for all t > t0.Let us reall that every prie trajetory for the prie mehanism g is loated on thenonnegative part of the sphere S+(|p0|) = {p ∈ R

n
+ : |p| = |p0|} (beause of (a2) and(a4)). Sine g satis�es (a3) we an regard suh prie adjustment proess as a ontinuoustangent vetor �eld on S+ = {p ∈ R

n
+ : |p| = 1}. This is the reason why we an restrita domain of prie mehanisms to S+.3. Problem. One an onsider di�erent kinds of prie mehanisms. Let F be a givenmultivalued map from S+ into 2R

n

\ {∅}. We say that a prie mehanism g is spei�edby F if g(p) ∈ F (p) for all p ∈ S+. Sine g has to have zeros at equilibrium points p∗we impose on F the following ondition: F (p∗) = {0} if and only if 0 ∈ E(p∗). We aregoing to give su�ient onditions for the exess demand, guaranteeing the existene ofsome globally asymptotially stable prie mehanism g spei�ed by F , whih in turn isderived from E by sign- or angle-ompatibility rule.4. Stability. First, we ask when there exists the ontinuous seletion g of the multi-valued map F , suh that any trajetory of an autonomous equation x′(t) = g(x(t)),
x(0) = x0 ∈ Q, is onvergent to some equilibrium point x∗ ∈ Q.Let

TQ(x) =
⋂

ε>0

⋂

η>0

⋃

0<h<η

(

1

h
(Q− x) + εB(0, 1)

)

denote the ontingent one to Q at x.Theorem 1 (Nagumo). Let Q denote a ompat subset of R
n. Let g : Q → R

n be theontinuous funtion suh that
g(x) ∈ TQ(x), for all x ∈ Q.(2)Then for any x0 ∈ Q there exists a solution x : [0,∞) → R

n of the equation x′(t) = g(x(t))with the initial ondition x(0) = x0 suh that x(t) ∈ Q for all t ≥ 0.Let H−
0 (y) = {u ∈ R

n : 〈u, y〉 < 0} and H+
0 (y) = {u ∈ R

n : 〈u, y〉 > 0} for
y ∈ R

n \ {0}.



GLOBALLY STABLE PRICE MECHANISMS 17Theorem 2. Let Q denote an open subset of R
n. Let g : Q→ R

n be a funtion with x∗ ∈

Q being the only point suh that g(x∗) = 0. If there exists a ontinuously di�erentiablefuntion V : Q→ [0,∞) suh that V (x) = 0 if and only if x = x∗ and
g(x) ∈ H−

0 (∇V (x)) for all x ∈ Q \ {x∗}(3)then for any ε > 0 there exist t0 ≥ 0 and δ > 0 suh that for every solution x(t) ofthe equation x′(t) = g(x(t)) if |x(t0) − x∗| < δ then |x(t) − x∗| < ε for all t > t0 and
lim

t→∞
x(t) = x∗.Proof. Aording to Lyapunov Theorem (see for instane [Ha, Theorem 8.2℄) we have toshow that 〈g(x),∇V (x)〉 < 0 for all x ∈ Q\{x∗}. Indeed, by de�nition of H−

0 (y) we have
〈g(x),∇V (x)〉 < 0 if and only if g(x) ∈ H−

0 (∇V (x)).Remark 1. If the funtion g satis�es ondition (3) for all x 6= x∗ then g(x) ∈ TLV (x)(x)for all x 6= x∗, where LV (x) = {y : V (y) ≤ V (x)}.Let B = {u ∈ R
n : |u| < 1}.Theorem 3. Let Q denote a ompat subset of R

n. Let F : Q → R
n be the lower semi-ontinuous map with only one point x∗ ∈ Q suh that F (x∗) = {0} and let F (x) be alosed, onvex one for every x ∈ Q. If there exists a ontinuously di�erentiable funtion

V : R
n → [0,∞) suh that V (x) = 0 if and only if x = x∗ and

F (x) ∩H−
0 (∇V (x)) 6= ∅ for all x ∈ Q \ {x∗}(4)then the multivalued map

x 7→

{

F (x) ∩H−
0 (∇V (x)), if x ∈ Q \ {x∗},

{0}, if x = x∗
(5)has a ontinuous and bounded in Q seletion.Proof. Sine all assumptions of Corollary [1.11.1, AuCe℄ are satis�ed (indeed x 7→ F (x)is lower semiontinuous with losed, onvex values and x 7→ H−

0 (∇V (x)) has open graph)then there exists a ontinuous seletion f of the multivalued map x 7→ F (x)∩H−
0 (∇V (x))de�ned on Q \ {x∗} with values in R

n \ {0}. Let δ(x) = |x−x∗|
1+|x−x∗| . Sine the sets F (x)and H−

0 (∇V (x)) are ones and δ(x) ∈ (0, 1) then δ(x)f(x) ∈ F (x) ∩H−
0 (∇V (x)) for all

x ∈ Q \ {x∗}. Then the funtion
x 7→

{

δ(x) f(x)
|f(x)| , if x ∈ Q \ {x∗},

0, if x = x∗is a ontinuous seletion of (5), bounded in Q.Theorem 2 onerns dynami systems in R
n. Sine we are going to use it in analysisof dynami systems on the nononvex set S+ we projet onformally trajetories of priedynamis haraterized by some prie mehanism g on a hyperplane orthogonal to thevetor p∗ ∈ S+: H0(p

∗) = {u ∈ R
n : 〈u, p∗〉 = 0}. Let us reall the de�nition of onformal(stereographi) projetion.



18 A. ARKITDefinition 1. A one-to-one smooth mapping ω of S \ {−p∗} onto H0(p
∗) de�ned by

ω(p) = ϕ(p)(p+ p∗) − 2p∗, where ϕ(p) =
2

1 + 〈p∗, p〉
, p ∈ S \ {−p∗}(6)we all the onformal projetion.The matrix of derivatives of the onformal projetion is given by:

Dp(ω(p)) = −
1

2
ϕ(p)2(p∗)T(p+ p∗) + ϕ(p)1,where pT denotes the transpose of the vetor p, and 1 denotes the identity matrix.The inverse map to ω, i.e. the funtion ω−1 : H0(p

∗) → S \ {−p∗} is de�ned by
ω−1(x) = ψ(x)(x+ 2p∗) − p∗, where ψ(x) =

4

4 + |x|2
, x ∈ H0(p

∗).It is easy to hek that ψ(ω(p)) · ϕ(p) = 1. The matrix of derivatives of the inverse mapto the onformal projetion is given by:
Dx(ω−1(x)) = −

1

2
ψ(x)2(x)T(x+ 2p∗) + ψ(x)1.For all p ∈ S+ let

Φp(u) = u ·Dp(ω(p)) =

[

−
1

2
ϕ(p)2〈p∗, u〉

]

(p+ p∗) + ϕ(p)u.The map Φp is a linear operator de�ned on R
n for all p ∈ S+. Let us observe that

ker Φp = {λ(p+ p∗) : λ ∈ R}. Thus Φp is a one-to-one linear operator in R
n \ (Rn

+ ∪R
n
−),for all p ∈ S+.For all x ∈ ω(S+) let

Ψx(û) = û ·Dx(ω−1(x)) =

[

−
1

2
ψ(x)2〈x, û〉

]

(x+ 2p∗) + ψ(x)û.The map Ψx is a linear operator de�ned on R
n for all x ∈ ω(S+).Easy omputations show that the maps Φp i Ψx have the following properties.Lemma 4. Let u ∈ H0(p) and û ∈ H0(p

∗) for p ∈ S+.(i) Φp(u) ∈ H0(p
∗).(ii) 〈ω(p),Φp(u)〉 = −ϕ(p)2〈p∗, u〉.(iii) Ψω(p)(Φp(u)) = u.(iv) 〈Ψω(p)(û),Φp(u)〉 = 〈û, u〉.The linear operator Ψω(p) is inverse to the linear operator Φp restrited to H0(p), forall p ∈ S+, sine H0(p) ⊂ (Rn \ (Rn

+ ∪ R
n
−)) and by property (iii) of Lemma 4.It is lear that for any ontinuously di�erentiable on [0,∞) trajetory p(t) ∈ S+ thereexists the only trajetory x(t) = ω(p(t)) in ω(S+) (for t ≥ 0). It is easy to hek that

dx(t)

dt
=
dω(p(t))

dt
=
dp(t)

dt
·Dp(ω(p(t))) = Φp(t)

(

dp(t)

dt

)

.In partiular, if p(t) is a solution of the di�erential equation ṗ = e(p), then x(t) is asolution of the di�erential equation ẋ = ê(x), where ê(x) = Φω−1(x)(e(ω
−1(x))).



GLOBALLY STABLE PRICE MECHANISMS 19Similarly, for every ontinuously di�erentiable on [0,∞) trajetory x(t) ∈ ω(S+) thereexists a trajetory p(t) in S+, given by: p(t) = ω−1(x(t)) (for all t ≥ 0). We have then
dp(t)

dt
=
dω−1(x(t))

dt
=
dx(t)

dt
·Dx(ω−1(x(t))) = Ψx(t)

(

dx(t)

dt

)

.Now we an formulate our main result.Theorem 5. Let F : S+ → R
n be a lower semiontinuous multifuntion with nonempty,losed and onvex values. Let F (p) be a one for all p ∈ S+ and F (p∗) = {0} at only onepoint p∗ ∈ S+. Moreover, let F (p) ⊂ H0(p) for all p ∈ S+. If for all p ∈ S+ \ {p∗}

F (p) ∩H+
0 (ξ(p)) 6= ∅, where ξ(p) =

(

(p∗1)
2

p1
,
(p∗2)

2

p2
, . . . ,

(p∗n)2

pn

)

,then there exists a ontinuous seletion g of the map F suh that for any p0 ∈ S+ thereexists a solution p : [0,∞) → S+ of the equation p′(t) = g(p(t)) with the initial ondition
p(0) = p0 suh that limt→∞ p(t) = p∗.Moreover, for any ε > 0 there exist t0 ≥ 0 and δ > 0 suh that all solutions of theequation p′(t) = g(p(t)) satisfy the ondition: if |p(t0) − p∗| < δ then |p(t) − p∗| < ε forall t > t0.Proof. Let V : R

n
+ → R be de�ned by:

V (p) = v −
n

∏

i=1

p
(p∗

i
)2

i , where v =

n
∏

i=1

(p∗i )
(p∗

i
)2 .

Sine the funtion p 7→
∏n

i=1 p
(p∗

i
)2

i (for p∗i < 1) is inreasing and onave on R
n
+,the funtion V is dereasing and onvex. Thus the following system of equations is aneessary and su�ient ondition for the minimum of the funtion V in S+:

∇ (V (p) + λ(1 − |p|)) = 0, 1 − |p| = 0, λ ∈ R.We have
∇V (p) = −

( n
∏

i=1

p
(p∗

i
)2

i

(p∗j )
2

pj

)

j=1...n

= −
n

∏

i=1

p
(p∗

i
)2

i ξ(p) = (V (p) − v)ξ(p).Hene, we obtain
{

(V (p) − v)
(p∗

i
)2

pi
− λpi = 0, for i = 1, . . . , n,

∑n
i=1 p

2
i = 1.For all i = 1, . . . , n and λ 6= 0 we have p2

i =
(V (p)−v)(p∗

i
)2

λ
. Substituting this into the lastequation we obtain

n
∑

i=1

(V (p) − v)(p∗i )
2

λ
= 1.Hene λ = V (p)−v. Then p = p∗ is a solution and the minimum of the funtion V equals

0. Moreover, V (p) > 0 for all p ∈ S+ \ {p∗}.It is not di�ult to hek that V (S+) = [0, v). Let ε ∈ (0, 1√
n
) be suh that p∗ ∈ Sε

+ =

{p ∈ S+ : pi > ε for all i = 1, . . . , n} and let Σ = LV S(ε) = {p ∈ S+ : V (p) ≤ v − ε}. It



20 A. ARKITis easy to verify that Σ is a ompat set. Let us observe that for all p ∈ Sε
+ = {p ∈ S+ :

pi ≥ ε for all i = 1, . . . , n} we have
V (p) = v −

n
∏

i=1

p
(p∗

i
)2

i ≤ v −
n

∏

i=1

ε(p
∗

i
)2 = v − ε

∑

n

i=1
(p∗

i
)2 = v − ε.Thus we onlude that Sε

+ ⊂ Σ ⊂ S+.Let us observe that the ondition F (p) ∩H−
0 (∇V (p)) 6= ∅ for all p ∈ Σ \ {p∗} holdssine F (p) ∩H+

0 (ξ(p)) 6= ∅ implies that there exists u ∈ F (p) suh that
〈u,∇V (p)〉 = 〈u, (V (p) − v)ξ(p)〉 = (V (p) − v)〈u, ξ(p)〉 < 0.Hene, all assumptions of the Theorem 3 are satis�ed. Thus the multivalued map

p 7→

{

F (p) ∩H−
0 (∇V (p)), if p ∈ Σ \ {p∗},

{0}, if p = p∗de�ned on Σ, has a ontinuous and bounded seletion g. The proof will be ompletedby showing that di�eomorphi image ĝ(·) of the seletion g, whih is de�ned by ĝ(x) =

Φω−1(x)(g(ω
−1(x))), ful�lls the assumptions of Theorems 2 and 1. Let Q = ω(Σ). We willshow that the funtion V̂ (x) = V (ω−1(x)) satis�es the assumptions of Theorem 2. Weknow that V (Σ) ⊂ [0, v). For all x ∈ Q we have ω−1(x) ∈ Σ. Thus V̂ (x) = V (ω−1(x)) ∈

[0, v). Moreover V̂ (0) = V (ω−1(0)) = V (p∗) = 0. We also have
∇V̂ (x) = ∇V (ω−1(x)) ·Dx(ω−1(x)) = Ψx(∇V (ω−1(x))).Using (iv) of Lemma 4 (with p = ω−1(x)) we have
〈∇V̂ (x), ĝ(x)〉 = 〈Ψx(∇V (ω−1(x))),Φω−1(x)(g(ω

−1(x)))〉 =

= 〈∇V (ω−1(x)), g(ω−1(x))〉 = 〈∇V (p), g(p)〉 < 0.Hene, ĝ(x) ∈ H−
0 (∇V̂ (x)) for all x ∈ Q \ {0}. By Remark 1, ĝ(x) ∈ TL

V̂
(x)(x) for all

x ∈ Q \ {0}. Therefore we have ĝ(x) ∈ TQ(x) for all x ∈ Q \ {0}. Thus, by Theorem 1,for any x0 ∈ Q there exists a solution x : [0,∞) → R
n−1 of the equation x′(t) = ĝ(x(t))with the initial ondition x(0) = x0 suh that x(t) ∈ Q for all t ≥ 0. Moreover, byTheorem 2, we onlude that x(t) is onvergent to 0. Then there exists a solution p(t) =

ω−1(x(t)) ∈ Σ of the equation p′(t) = g(p(t)) with the initial ondition p(0) = ω−1(x0),where g(p) = Ψω(p)(ĝ(ω(p))), and this p(t) is onvergent to p∗.Moreover, by Theorem 2, we know that for any ε > 0 there exist t0 ≥ 0 and δ > 0 suhthat all solutions of the equation x′(t) = ĝ(x(t)) satisfy a ondition: if |x(t0)| < δ then
|x(t)| < ε for all t > t0. It is easy to hek that |p(t0)−p∗| < |x(t0)| and |p(t)−p∗| < |x(t)|and this ompletes the proof.5. The sign-ompatibility ondition. A prie mehanism g desribes a lassial prieadjustment proess if it is ompatible with the exess demand in the following sense. Ifat some prie system p the i-th oordinates of all u ∈ E(p) are positive then gi(p) ≥ 0. Ifthe i-th oordinates of all u ∈ E(p) are negative then gi(p) ≤ 0. If there exists u ∈ E(p)suh that its i-th oordinate is zero then gi(p) = 0. Thus, g is spei�ed by F de�ned by

F (p) = C↑[E(p)] =
⋂

v∈E(p)

{u ∈ R
n : if vi 6= 0 thenuivi ≥ 0, if vi = 0 thenui = 0}.



GLOBALLY STABLE PRICE MECHANISMS 21We all suh a prie mehanism g sign-ompatible with the exess demand. Observe thatfor any nonempty onvex set A the set C↑[A] is nonempty, losed and onvex one.Theorem 6. Let E be an exess demand multifuntion of some pure exhange eonomy,ful�lling (a0)�(a3), with only one equilibrium point p∗ ∈ S+. Let
C↑[E(p)] ∩H0(p) = {0} if and only if 0 ∈ E(p).(7)If for all p ∈ S+ \ {p∗} we have

C↑[E(p)] ∩H0(p) ∩H
+
0 (ξ(p)) 6= ∅,(8)where ξ(p) = (

(p∗

1)2

p1
,

(p∗

2)2

p2
, . . . ,

(p∗

n
)2

pn

), then there exists a globally asymptotially stableprie mehanism whih is sign-ompatible with the exess demand E.Proof. Aording to Theorem 5, it is su�ient to show that the multivalued map p 7→

C↑[E(p)]∩H0(p) is lower semiontinuous on S+, with nonempty, losed and onvex values.The set C↑[E(p)] ∩H0(p) is a losed, onvex one for all p ∈ S+ (as an intersetionof two losed, onvex ones in R
n). This set is nonempty sine 0 ∈ C↑[E(p)] ∩H0(p) forall p ∈ S+. Fix p0 ∈ S+.Let y0 ∈ C↑[E(p0)]∩H0(p

0). Take any sequene (pk)∞k=1 ⊂ S+ whih is onvergent to
p0 and a sequene (yk)∞k=1 suh that yk = (

p0
1

pk

1

y0
1 ,

p0
2

pk

2

y0
2 , . . . ,

p0
n

pk
n

y0
n). It is easy to hek that

yk ∈ H0(p
k). Moreover, yk ∈ C↑[E(p0)] sine sign (

p0
i

pk

i

y0
i ) = sign y0

i for all i = 1, . . . , n.We will show now that for every p0 ∈ R
n there exists a neighbourhood V suh that forall p ∈ V we have C↑[E(p0)] ⊆ C↑[E(p)]. If 0 ∈ E(p0) then C↑[E(p0)] = {0} ⊂ C↑[E(p)].Assume that 0 /∈ E(p0). An easy veri�ation shows that for any nonempty, onvex sets

A, B we have(a) A ⊆ B ⇒ C↑[B] ⊆ C↑[A],(b) there exists an open and onvex set U suh that A ⊂ U and C↑[A] = C↑[U ].Let U denote the open and onvex set suh that E(p0) ⊂ U and C↑[E(p0)] = C↑[U ].Sine E is upper semiontinuous, there exists a neighbourhood V of p0 suh that for all
p ∈ V we have E(p) ⊂ U . Applying (a) we have C↑[U ] ⊆ C↑[E(p)] and we an onludethat C↑[E(p0)] ⊆ C↑[E(p)].Then there exists K > 0 suh that for all k > K we have C↑[E(p0)] ⊆ C↑[E(pk)].Hene yk ∈ C↑[E(pk)] for all k > K. Let us hek that the sequene (yk)∞k=1 is onvergentto y0. Indeed,

|yk − y0| =

√

√

√

√

n
∑

i=1

(

p0
i

pk
i

− 1

)2

(y0
i )2 =

√

√

√

√

n
∑

i=1

(p0
i − pk

i )2
(

y0
i

pk
i

)2

≤

√

√

√

√

n
∑

i=1

(p0
i − pk

i )2
(

maxi y0
i

mini pk
i

)2

≤ |pk − p0|
|y0|

mini pk
i

k→∞
−→ 0.Hene we onlude that the map p 7→ C↑[E(p)] ∩H0(p) is lower semiontinuous.Remark 2. The ondition (7) is a neessary ondition of the existene of globally asymp-totially stable prie mehanism whih is sign-ompatible with the exess demand.



22 A. ARKIT6. The angle-ompatibility ondition. When the prie mehanism is sign-ompat-ible with the exess demand, we know that a prie hange vetor and all exess demandvetors from E(p) have to be in the same orthant of R
n. In speial ases, it permits thesituation when these diretions are relatively divergent (the angle between these vetorsould be nearly π

2 ). This motivates onsidering a prie mehanism g where g(p) formswith all exess demand vetors from E(p) an aute angle and not neessarily g(p) has tohave the same signs as all exess demands from E(p) (see [Ar℄). Let α ∈ [0, π
2 ]. We saythat a prie mehanism g is α-ompatible with the exess demand E if g(p) forms withall vetors u ∈ E(p) an angle less than or equal to α. Thus, g is spei�ed by F de�ned by

F (p) = Cα[E(p)] with Cα[A] =
⋂

y∈A

Cα(y),where Cα(y) = {u ∈ R
n : 〈u, y〉 ≥ |u||y| cosα} for y ∈ R

n \ {0} and Cα(0) = {0}.Below are some properties of Cα[A] whih are presented without proof.Lemma 7. Let α, β ∈ [0, π
2 ] and A,B be nonempty, losed and onvex sets. Then(i) if u ∈ Cα(y) and v ∈ Cβ(y) and α+ β < π

2 then u ∈ Cα+β(v);(ii) Cα[A] is nonempty, losed and onvex one;(iii) if α < β then Cα[A] ⊂ Cβ[A];(iv) if A ⊂ B then Cα[B] ⊂ Cα[A];(v) v ∈ Cα[A] if and only if A ⊂ Cα(v);(vi) let A be ompat and β(A) = inf{β ∈ [0, π
2 ] : Cβ [A] 6= {0}}, if 0 /∈ A then

Cβ(A)[A] = {λz : λ ≥ 0} for some z ∈ A.Theorem 8. Let E be an exess demand multifuntion of some pure exhange eonomy,ful�lling (a0)�(a3), with only one equilibrium point p∗ ∈ S+. Let
ᾱ = sup

p∈S+\{p∗}
inf{β ≥ 0 : Cβ[E(p)] 6= {0}} <

π

2
.(9)If for α ∈

(

ᾱ, π
2

] and for all p ∈ S+ \ {p∗} we have
Cα[E(p)] ∩H0(p) ∩H

+
0 (ξ(p)) 6= ∅,(10)where ξ(p) = (

(p∗

1)2

p1
,

(p∗

2)2

p2
, . . . ,

(p∗

n
)2

pn
), then there exists a globally asymptotially stableprie mehanism whih is α-ompatible with the exess demand E.Proof. Aording to Theorem 5, it is su�ient to show that the multivalued map p 7→

Cα[E(p)]∩H0(p) is lower semiontinuous on S+, with nonempty, losed and onvex values.The set Cα[E(p)] ∩ H0(p) is a losed, onvex one for all p ∈ S+ (as an intersetion oftwo losed, onvex ones in R
n). This set is nonempty sine 0 ∈ Cα[E(p)]∩H0(p) for all

p ∈ S+.Fix p0 ∈ S+ \ {p∗} and v0 ∈ Cα[E(p0)]. Hene, by (v) of Lemma 7, E(p0) ⊂ Cα(v0).Let β(E(p0)) = inf{β ≥ 0 : Cβ[E(p0)] 6= {0}}. Let z denote the nonzero vetor from
E(p0) suh that {λz : λ ≥ 0} = Cβ(E(p0))[E(p0)]. Then E(p0) ⊂ Cβ(E(p0))(z). Letus take any sequene (pk)∞k=1 ⊂ S+ \ {p∗} whih is onvergent to p0. Sine E is uppersemiontinuous then there existsK1 > 0 suh that for all k > K1 we have E(pk) ⊂ E(p0)+

rkB(0, 1) = Fk, where rk ց 0 for k → ∞. Sine 0 /∈ E(p0), for any θ ∈ (0, α− β(E(p0)))



GLOBALLY STABLE PRICE MECHANISMS 23there exists K2 > 0 suh that for all k > K2 we have Fk ⊂ Cβ(E(p0))+θ(z) and hene
z ∈ Cβ(E(p0))+θ[Fk] ⊂ Cα[Fk] ⊂ Cα[E(p0)].(11)Let K = max{K1,K2}. Observe that the segment [v0, z] has a nonempty intersetionwith Cα[Fk] for all k > K. Let
tk = sup{t ∈ [0, 1] : tv0 + (1 − t)z ∈ Cα[Fk]}.Let vk = tkv

0 + (1 − tk)z ∈ Cα[Fk] ⊂ Cα[E(p0)]. The sequene (tk)∞k=1 is bounded andinreasing. Assume that limk→∞ tk = t′ < 1. Let t′′ ∈ (t′, 1) and v′′ = t′′v0 + (1 − t′′)z.Then v′′ /∈ Cα[Fk] for all k > K. This means that for all k > K there exists yk ∈ Fksuh that yk /∈ Cα(v′′). The subsequene (ykm)∞m=1 is onvergent to some y ∈ E(p0)(sine the map E has ompat values). Hene, 〈ykm , v′′〉 < |ykm ||v′′| cosα, and then
〈y, v′′〉 ≤ |y||v′′| cosα. On the other hand v′′ ∈ Cα[E(p0)], so for all y ∈ E(p0) we have
y ∈ Cα(v′′). Hene, 〈y, v′′〉 ≥ |y||v′′| cosα. Then we onlude that the angle between thevetors y and v′′ is α. But this ontradits the fat that the segment [v0, z] ⊂ Cα(y),beause z belongs to the interior of Cα(y) and v0 ∈ Cα(y). Thus the sequene (vk)∞k=1onverges to v. Hene, the map p 7→ Cα[E(p)] is lower semiontinuous. Moreover, the map
p 7→ H0(p) is ontinuous in Wijsman topology on S+ and it has nonempty, losed, onvexvalues. We will verify that H0(p) ∩ intCα[E(p)] 6= ∅. Aording to (vi) of Lemma 7, forevery p ∈ S+ there exists a nonzero vetor z ∈ Cᾱ[E(p)] whih belongs to E(p). Hene
E(p) ⊂ Cᾱ(z). For θ ∈ (0, α−ᾱ) let us take any u ∈ Cθ(z). Then for all y ∈ E(p) we have
u ∈ Cᾱ+θ(y) (by (i) of Lemma 7). Hene Cθ(z) ⊂ Cᾱ+θ(y) ⊂ Cα(y) for all y ∈ E(p).Moreover, sine θ > 0, there exists γ > 0 suh that z + γB(0, 1) ⊂ Cθ(z) ⊂ Cα[E(p)].Thus z ∈ E(p)∩ intCα[E(p)]. By Walras' Law E(p) ⊂ H0(p) for all p ∈ S+ therefore wehave H0(p) ∩ intCα[E(p)] 6= ∅. By Proposition [2.54, HuPa℄ we onlude that the map
p 7→ Cα[E(p)] ∩H0(p) is lower semiontinuous.Remark 3. The ondition (9) is a neessary ondition of the existene of globally asymp-totially stable prie mehanism whih is angle-ompatible with the exess demand. ᾱis the minimal angle suh that the sets Cα[E(p)] ontain nonzero vetors at all priesystems di�erent from equilibrium point.Remark 4. Theorem 8 is true for α ≥ ᾱ∗ = β(E(p∗)) if we have β(E(p)) < ᾱ∗ for all
p ∈ S+ \ {p∗}.7. Examples7.1. Sarf's example. This example onerns the pure exhange model with the single-valued exess demand, i.e. E(p) = {e(p)} (for details see [S℄).If we take the prie mehanism g = e, the prie trajetories are losed urves on thepositive part of the unit sphere S+. The sets C↑[e(p)] are presented in the plane H0(p

∗)in the following way (Fig. 1): if some oordinate of all vetors from onsidered set isnonnegative then we have plus. If some oordinate of all vetors from the onsideredset is nonpositive then we have minus. On the lines AC', B'C, BA' one oordinate ofall vetors from the orresponding set is zero. The equilibrium point p∗ = 1√
3
(1, 1, 1) isdenoted by O.
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B’Fig. 1. Sarf's example: prie trajetories and the sets C↑[e(p)]

The boundary ondition does not hold (see Fig. 1). In the set ABO (along the urveAB) the third oordinate should be positive. In the set ACO (along the urve AC) theseond oordinate should be positive. In the set BCO (along the urve BC) the �rstoordinate should be positive.We annot use Theorem 6 sine the ondition (8) does not hold. At p ∈ BA' ∪ AC'
∪ CB' we have C↑[e(p)] = {λe(p) : λ ≥ 0} and e(p) ∈ H0(ξ(p)).Let sk(p) be the metri projetion of the exess demand vetor e(p) on the intersetionof the k-th wall of the one C↑[e(p)] and the set H0(p):

sk(p) = Π(e(p);C↑[e(p)] ∩H0(p) ∩ {u ∈ R
n : uk = 0}) ∈ C↑[e(p)] ∩H0(p).It is easy to show that s1(p) ∈ H+

0 (ξ(p)) at p ∈ AA'O ∪ BC'O, s2(p) ∈ H+
0 (ξ(p)) at p ∈BB'O ∪ A'CO, s3(p) ∈ H+

0 (ξ(p)) at p ∈ AB'O ∪ CC'O. The map g : S+ → R
n de�nedby

g(p) =

{

δ(p)s(p) + (1 − δ(p))e(p), if p ∈ S+ \ (BA′ ∪ AC′ ∪ CB′),
e(p), if p ∈ BA′ ∪ AC′ ∪ CB′,where

s(p) =







s1(p), if p ∈ AA′O ∪ BC′O,
s2(p), if p ∈ BB′O ∪ A′CO,

s3(p), if p ∈ AB′O ∪ CC′O,and
δ(p) =







6
√

2(p2−p1)
2[(p2−p1)

2−(2p3−p2−p1)
2]2

(3+
√

3(p1+p2+p3))[(p2−p1)2+
1
3
(2p3−p2−p1)2]

5
2

, if p ∈ S+ \ {p∗},

0, if p = p∗is a ontinuously di�erentiable seletion of C↑[e(p)] ∩ H0(p) and g(p) ∈ H+
0 (ξ(p)) for

p 6= p∗.Moreover, the funtion V , de�ned in the proof of Theorem 5, is a stritly dereasingfuntion along any solution of the di�erential equation p′(t) = g(p(t)). Analysis similar



GLOBALLY STABLE PRICE MECHANISMS 25to that in the proof of Theorem 5 shows that V̂ is a global Lyapunov funtion for thedi�erential equation x′(t) = ĝ(x(t)). Thus, by Barbashin�Krasovski Theorem ([Kr℄, [Gl℄),we onlude that there exists a globally asymptotially stable prie mehanism in Sarf'sexample whih is sign-ompatible with the exess demand.In the ase of angle-ompatibility rule we an obtain the existene of globally asymp-totially stable prie mehanism whih is α-ompatible with the exess demand for all
α > 0 by Theorem 8 using only arguments of geometri nature. It is su�ient to notiethat e(p) ∈ H0(ξ(p)) for all p ∈ S+.7.2. Example with multivalued exess demand (1). The seond example onerns thepure exhange model with a multivalued exess demand whih is onstruted from thefollowing utility funtions and initial resoures: u1(x1, x2, x3) = min{x1 + x2, x1 + x3},
w1 = (1, 1, 1), u2(x1, x2, x3) = x

1
2

1 x
1
2

3 , w2 = (1, 2, 1), u3(x1, x2, x3) = x
1
2

1 x
1
2

2 , w3 = (1, 1, 2).The exess demand is de�ned by E(p) = {e(p, t) : t ∈ [0, 1]} where� for p ∈ I = {p ∈ S+ : p2

p1
+ p3

p1
> 1} we have

e(p, t) =

(

5

2

p2

p1
+

5

2

p3

p1
− 1,

1

2

p1

p2
+
p3

p2
−

7

2
,
1

2

p1

p3
+
p2

p3
−

7

2

)

,� for p ∈ II = {p ∈ S+ : p2

p1
+ p3

p1
= 1} we have

e(p, t) =

(

3

2
− 2t,

3

2

p3

p2
+ 2t− 3,

3

2

p2

p3
+ 2t− 3

)

,� for p ∈ III = {p ∈ S+ : p2

p1
+ p3

p1
< 1} we have e(p, t) =

(

3

2

p2

p1
+

3

2

p3

p1
− 2,

1

2

p1

p2
+

p1

p2 + p3
+
p3

p2
−

5

2
,
1

2

p1

p3
+

p1

p2 + p3
+
p2

p3
−

5

2

)

.This exess demand is single-valued at suh prie systems whih belong to I or III. Thesesets are presented in the �rst diagram (Fig. 2). The exess demand is multivalued at suhprie systems whih belong to II. This set is denoted by the line DI.In the next diagram (Fig. 2) there are presented the sets C↑[E(p)] at prie systemsfrom the sets I and III. It is not di�ult to observe that the boundary ondition issatis�ed. Along the urve AB the third oordinate is positive. Along the urve AC theseond oordinate is positive. Along the urve BC the �rst oordinate is positive. Theompetitive equilibrium p∗ = 1√
6
(2, 1, 1) (for p3

p2
= 1, p1

p3
= 2, t = 3

4 ) is denoted by O.The sets C↑[E(p)], when the exess demand is multivalued, are presented in the table.
p3

p2
(0, 1

2 ) [ 12 ,
2
3 ) [ 23 ,

3
2 ] ( 3

2 , 2] (2,∞)

u1, (u ∈ C↑[E(p)]) 0 0 0 0 0
u2, (u ∈ C↑[E(p)]) - - 0 0 +
u3, (u ∈ C↑[E(p)]) + 0 0 - -II HI GH FG EF DELet us observe that C↑[E(p)] = {0} at p ∈ FG. It means that the exess demandfor all goods is both negative and positive at given prie system from the line FG. At



26 A. ARKITevery prie system from the segments EF and GH the intersetion of C↑[E(p)] and H0(p)onsists of only zero as well. In this ase the exess demand (from C↑[E(p)]) is negativefor one good. Thus we onlude that ondition (7) is not satis�ed and there does notexist a globally asymptotially stable prie mehanism whih is sign-ompatible with theexess demand. The neessary ondition (7) is satis�ed if at all prie systems, di�erentfrom ompetitive equilibrium, the exess demand (from C↑[E(p)]) for at least one goodis positive and for at least one good is negative.
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Fig. 2. The sets I, II, III and C↑[E(p)]In the ase of angle-ompatibility rule ᾱ∗ is equal to π
2 and the ondition (10) issatis�ed by the exess demand vetors in I ∪ III and by the vetor e(p, 0) + e(p, 1) ∈

C
π

2 [E(p)] in II. Thus, by Theorem 8, there exists a globally asymptotially stable priemehanism whih is π
2 -ompatible with the multivalued exess demand E.7.3. Example with multivaled exess demand (2). The third example onerns the pureexhange model with a multivalued exess demand whih is onstruted from the fol-lowing utility funtions and initial resoures: u1(x1, x2, x3) = x2 + x3, w1 = (2, 0, 0),

u2(x1, x2, x3) = x
1
2

1 x
1
2

3 , w2 = (2, 2, 0), u3(x1, x2, x3) = x
1
2

1 x
1
2

2 , w3 = (0, 2, 2). The exessdemand is de�ned by E(p) = {e(p, t) : t ∈ [0, 2p1

p2
]} where� for p ∈ I = {p ∈ S+ : p3

p2
< 1} we have

e(p, t) =

(

2
p2

p1
+
p3

p1
− 3,

p3

p2
− 3, 3

p1

p3
+
p2

p3
− 2

)

,� for p ∈ II = {p ∈ S+ : p3

p2
= 1} we have

e(p, t) =

(

3
p2

p1
− 3, t− 2, 3

p1

p2
− t− 1

)

,
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p2
> 1} we have

e(p, t) =

(

2
p2

p1
+
p3

p1
− 3, 2

p1

p2
+
p3

p2
− 3,

p1

p3
+
p2

p3
− 2

)

.
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Fig. 3. The sets I, II, III and C↑[E(p)]This exess demand is single-valued at suh prie systems whih belong to I or III.These sets are presented in the �rst diagram (Fig. 3). The exess demand is multivaluedat suh prie systems whih belong to II. This set is denoted by the line AE.In the next diagram (Fig. 3) there are presented the sets C↑[E(p)] at prie systemsfrom the sets I and III. It is not di�ult to observe that the boundary ondition issatis�ed. The ompetitive equilibrium p∗ = 1√
3
(1, 1, 1) (for p3

p2
= 1, p2

p1
= 1, t = 2) isdenoted by O. The sets C↑[E(p)], when the exess demand is multivalued, are presentedin the table.

p1

p2
(0, 1

3 )
[

1
3 , 1

)

1 (1,∞)

u1, (u ∈ C↑[E(p)]) + + 0 -
u2, (u ∈ C↑[E(p)]) - - 0 0
u3, (u ∈ C↑[E(p)]) - 0 0 +II DE OD O AO

The neessary ondition (7) is satis�ed. C↑[E(p)] = {0} only at ompetitive equilib-rium. The intersetion of C↑[E(p)] and H0(p) onsists of nonzero vetors at all p di�erentfrom p∗. The ondition (8) is satis�ed by the exess demand vetors in I ∪ III ∪ DEand by any vetor from the set C↑[E(p)] in AO ∪ OD. Thus, by Theorem 6, there ex-ists a globally asymptotially stable prie mehanism whih is sign-ompatible with themultivalued exess demand E.



28 A. ARKITIn the ase of angle-ompatibility rule ᾱ is equal to 0.285π and the ondition (10) issatis�ed by the exess demand vetors in I ∪ III and by the vetor e(p, 0) + e(p, 2p1

p2
) ∈

Cα[E(p)] for p ∈ II. Thus, by Theorem 8, there exists a globally asymptotially stableprie mehanism whih is α-ompatible with the multivalued exess demand E for α >
0.285π.Aknowledgements. The author is greatly indebted to L. E. Rybi«ski and K. Prze-sªawski for many helpful omments and stimulating onversations.
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