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Abstrat. The problem of existene of a foreast (or planning) horizon has been onsideredin many speial models, more or less preisely. We speify and investigate this problem forfamilies of heapest paths in networks with weakly ordered nodes. In a disrete network, thestandard forward algorithm �nds the subnetwork generated by optimal paths. The proposed for-ward proedure redues subnetworks suh that the foreast horizon remains unhanged. Basedon the �nal subnetwork, we have an answer to the foreast horizon questions. In partiular,we show that many questions about rationality of initial deisions beome NP-hard. To im-prove the performane of heuristis, we introdue the notion of potentially rational initial dei-sions.1. Introdution. The idea of a foreast horizon ame from pratial management prob-lems when the dynami parameters are not known for the future. In some ases, a fewinitial deisions are not a�eted by future data (beyond a ertain period). We onsideroptimal solutions for a long time horizon with a given foreast window of data. Thedeisions in the �rst or �rst few periods are usually those of immediate importane tomanagers. Horizon researh attempts to quantify the diminishing e�et of foreast forfuture data on initial deisions. The onept of foreast and planning horizons have beenformalized in �o± [1967℄ for a dynami programming environment. The paper by Lundinand Morton [1975℄ initiated researh in this diretion through the introdution of ompu-tational aspet. We refer to Rempaªa [1991℄ for the formalization of the horizon oneptin the more general settings.The notion of foreast horizon is losely onneted with performane heuristis fornearly optimal solution in a wide variety of dynami deision problems; see e.g. rolling2000 Mathematis Subjet Classi�ation: 90B50, 90B10, 93C41.Key words and phrases: heapest paths problem, foreast and planning horizons, dynamilot sizing, heuristis.The paper is in �nal form and no version of it will be published elsewhere.
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64 S. BYLKAhorizon proedure (Lee and Denardo [1986℄), reeding horizon ontrol (Mayne and Mihal-ska [1990℄), repetitive ontrol (Krawzyk and Karaaoglu [1993℄) and moving horizonontrol (Van den Broek [2002℄).The literature on omputational results of a foreast horizon proedures is ratherlimited. Chand and Morton [1986℄ were the �rst to develop proedures for determiningminimal regeneration sets and minimal foreast horizon (for dynami lot�size problems).For a given value of T, the proedure establishes whether or not T is a foreast horizon.One the minimal regeneration set has been identi�ed, it only remains to test whether allthe adequate optimization problems have a ommon �rst period prodution quantity forat least one optimal solution. In this paper, our exploration goes in the two diretions:(1) we onentrate on planning�foreast horizon proedures in more general setting (wedon't take into aount the nature of the regeneration sets), and (2) we formulate someknown and new haraterizations for the horizons taking into aount the set of deisionsredued by regeneration sets.Deterministi dynami optimization problems an be formulated as shortest (heap-est) path problems in a network. Among all lasses of problems in network optimization,shortest-path problems have been one of the most extensively studied; see e.g. the mono-graph of Evans and Minieka [1992℄, and see also Pohet and Wolsey [1995℄ for lot sizingproblems.For many problems, depending on available information (a foreast window), there isa "small" set of nodes (a regeneration set) whih is visited by optimal paths ended behindthe window. At best, suh set has only one element, a ut node. In this ase, optimalpaths end behind the window (longer than a foreast horizon) extending an optimal pathto the ut node. As a generalization of these notions, we de�ne a (planning) horizon pathwith respet to the foreast horizon of a given family of paths in the network. In anyase, a foreast window leads to a set of "rational" initial deisions.The purpose of this paper is to show that the struture of a sub-network generatedby the family of optimal paths together with a given regeneration set determinates theexistene of a foreast horizon and planning horizon paths.When we verify the length of a foreast horizon (with respet to our knowledge), wefae two problems of a di�erent nature: to �nd a (minimal) regeneration set and to takepotentially rational initial deisions. The �rst problem is spei� for every partiularmodel. The seond one an be investigated as a ombinatorial problem of a network.Proedures for �nding regeneration sets and horizons typially onsist of solving problemswith inreased length until some stopping riterion is satis�ed. We refer to Chand andMorton [1986℄, Bylka, Sethi and Sorger [1992℄ and Federgruen and Tzur [1995℄ for adetailed literature review of algorithms in partiular dynami models.The artile is organized as follows. The next setion introdues the notation andexplains the foundation of the time-indexed networks. In Setion 2 we also de�ne thebasi notions with respet to subnetworks generated by families of paths. Some proper-ties, whih are su�ient for existene of a horizon path with adequate algorithm (alsofor �nding a set of rational initial deisions with respet to the foreast window), arepresented in Setions 3 and 4.



FORECAST HORIZON AND PLANNING HORIZON PATHS 652. Time-indexed networks (t.i.n.'s)2.1. The de�nition and notation. We use the standard notions of graph theory. ℜ+denotes the set of all nonnegative real numbers. The ardinality of a set S will be denotedby |S|.By a network we mean a direted graph with a valuation funtion�the length�onars (sometimes also a ost). In a natural way we extend suh funtions to paths. Forour investigation it is onvenient to represent a direted graph by the adjaent list�themultifuntion F whih lists all predeessors nodes
F : V → 2V ,where V is the set of nodes. We say that the graph F has V (written also as V (F )) asthe set of nodes and

E(F ) = {(u, v) | v ∈ V (F ), u ∈ F (v)}as the set of ars. Therefore, for eah node u ∈ F (v), the pair (u, v) is an ar of the graph
F. The multifuntion

F−1(v) = {u | v ∈ F (u)}lists all nodes that are attained by an ar from the node v.A graph F is said to be a rooted graph if there exists exatly one node, say u0, alledthe root, suh that F (u0) = ∅ and F−1(u0) 6= ∅. Therefore, we assume:if F (u) = ∅ then F−1(u) = ∅ if only u 6= u0.In fat, suh a graph onsists of a onneted graph and a set of isolated nodes.A funtion τ : V (F ) → ℜ+ suh that
τ (v) − τ (u) ≥ 0 for every (u, v) ∈ E(F )is alled a time index of the verties of the graph F. We may think of the length of an ar

l((u, v)) = τ (v) − τ (u) (1)as of the "time distane" between its initial and terminal nodes.Definition 1. We all (F, τ ) the time-indexed network (t.i.n. for short) if1. F is a rooted graph and τ a time index of its nodes;2. For every x ∈ ℜ+ the set {v ∈ V (F ) | τ (v) = x} is �nite.3. There is a lower bound l∗ > 0 of the lengths of ars, i.e. for every ar(u, v)either l((u, v)) ≥ l∗ or l((u, v)) = 0.

F is a loally �nite t.i.n. if additionally:4. F (v) is a �nite set for every node v.Time-indexed networks have nodes weakly ordered by "time" (there is a possibilityof existene of di�erent nodes with the same time indies). (F, τ ) is a disrete network if
V (F ) is a disrete set. Without loss of generality, we an assume that τ (u0) = 0 (if not,one an transform the time indies into τ (v) − τ (u0) for every node v).By a path in F we mean a sequene of nodes

s = (s1, . . . , sn), n ≥ 2, suh that si−1 ∈ F (si) for eah i = 2, . . . , n.



66 S. BYLKAThe length of s is equal to the sum of the lengths of all its ars. Therefore l(s) =

τ (sn) − τ (s1) by (1).For a t.i.n. F we will denote by
VT (F ) � the set of nodes {v ∈ V (F ) | τ (v) > T and F (v) 6= ∅};
Pu(F ) � the set of all paths starting from the node u;
~P (F ) � the set of all paths from the root, i.e. ~P (F ) = Pu0

(F );

PW (F ) � the set of all paths from the root to a node v ∈ W ⊂ V ; P v ≡ P {v};
~PT (F ) � the set of all paths from the root and longer than T, i.e.

~PT (F ) = PVT (F )(F ) = {s ∈ ~P (F ) |l(s) > T}.We say that (A, τ ) is a subnetwork of (F, τ ), denoted A ⊂ F, i�
V (A) ⊂ V (F ) and A(v) ⊂ F (v) ∩ V (A) for eah node v.We will denote by F |T the subnetwork with all ars whih terminate at nodes having thetime indies not greater than the number T.We write A ⊂T F i� A ⊂ F and we have the following impliation:if τ (v) > T and P v(F ) 6= ∅ then P v(A) 6= ∅.We say that S ⊂ F is a seletion from F i� F (v) 6= ∅ implies |S(v)| = 1.Property 1. Let F be a t.i.n. If A ⊂T F is a t.i.n., then every seletion S from A isalso a t.i.n. and S ⊂T F.2.2. Subnetworks generated by families of paths. Families of paths in a t.i.n. an be givenarbitrary or onstruted by a proedure. For a set P of paths in a network F, the minimalsubnetwork A ⊂ F suh that, every path in P is a path in A (the network generated by

P) will be denoted by ωP . Therefore,
ωP(v) = {u ∈ F (v) | (u, v) forms an ar of a path from P}and for every l∗ < T < T ′ we have

ω~P T ′ (F ) ⊂T ′ ω~P T (F ) ⊂T F.Of ourse, if F is a onneted network then F = ω~P (F ).Example 1. Now we think of time-indexed networks as networks with two valuationfuntions (the length and the ost of ars). We look for strutural properties of t.i.n.'sgenerated by the sets of optimal (heapest) paths.Let (F, τ ) be a loally �nite t.i.n. and c : E(F ) → ℜ+ be a ost funtion on the ars(and thus on all paths, too). We extend this ost on paths whih is the sum of osts ofall its ars.We deal with problems of �nding all c-heapest paths from the root. A simple op-timization problem states: Find all paths s ∈ P v(F ) having minimal ost c(s). We willdenote by
P̃ v(F, c) � the subset of all heapest paths in P v(F ) and
Ωc � the subnetwork generated by the family of all c-heapest paths.
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Fig. 1. Exemplifying t.i.n. Ωc|7 with possible 7-regeneration set R (nodes in dark olours) andadequate subnetwork A ⊂5 Ωc (bold ars).
Therefore,

Ωc = ωΠc(F ), where Πc(F ) =
⋃

v∈V

P̃ v(F, c)and for eah node v we have:
Ωc(v) = {u ∈ F (v) | (u, v) forms the last ar of a path s ∈ P̃ v(F, c)}.Aording to the above notation, onsider the following disrete t.i.n.:

F (v) = {0, . . . , v − 1} for v = 1, 2, . . . and F (0) = ∅,with τ (v) = v and a ost funtion c given on F |7. If, for example, the set of optimalpaths Πc(F |7) is given by
v : 1 2 3 4 5 6 7

P v(F ) : {(0, 1)} {(0, 2)} {(0, 3)} {(0, 2, 4)} {(0, 2, 5)} {(0, 3, 6)} {(0, 2, 5, 7)}then the indued subnetwork is (see Figure 1) of the form:
v : 0 1 2 3 4 5 6 7

Ωc(v) : ∅ {0} {0} {0} {2} {2} {3} {5}Of ourse, the subnetwork Ωc generated by all optimal paths in t.i.n. (F, τ, c) is alsot.i.n.�a subnetwork of F. Knowing c only on ars of F |T we an onstrut Ωc|T step bystep using standard forward proedure.Let γc(u, v) be the minimal ost of a path, that begins at the root, ends at vertex vwith the restrition, that (u, v) is the last ar of the path. Our fous will be the "lassial"reurrent equation for the minimal total ost funtion Ψc de�ned on the set of nodes:
Ψc(uo) = 0 for the root and for other nodes

Ψc(v) = min
u∈F (v)

γc((u, v)) = min
u∈F (v)

[Ψc(u) + c((u, v))]and so on
Ωc(v) = {u ∈ F (v) | Ψc(v) = γc((u, v))}.In the ase of loally �nite network, to �nd Ωc|T , this algorithm requires no more than

O(ρ2
T ) omputations, where ρT = |V (F |T )|. See also the disussion in Federgruen andTzur [1995℄ for a more general ase.Usually, families of optimal (heapest) paths are hereditary in the following sense. Wesay that a set of paths P is hereditary if both:



68 S. BYLKA1. Together with a path (s1, . . . , sn) it ontains (s1, . . . , si) for eah 1 < i < n;2. Together with rossing paths (s1, . . . , si, . . . , si+k) and (s′1, . . . , s
′
j , . . . , s

′
j+k′) suhthat si = s′j for some i > 1, it ontains eah path of the form

(s1, . . . , si, s
′
j+1 . . . , s′j+k′) or ( s′1, . . . , s

′
j , si+1 . . . , si+k).Property 2. If w ∈ V (F ) and P ⊂ Pw(F ) then ωP is a t.i.n. with the root w. If,additionally, P is hereditary, then Pw(ωP) = P and

ωP(v) = {u ∈ F (v) | (u, v) forms the last ar of a path from P}.From now on, we think of a hereditary family of paths as being a time indexedsubnetwork of F, say A = ωP for some P ⊂ ~P (F ).2.3. Regeneration sets and planning paths. If a path s′ = (s1, . . . , sn, . . . , sn+k), k ≥ 0,then we say that s′ extends s = (s1, . . . , sn) to sn+k or, if only k > 0, that (sn, . . . , sn+k)is a ontinuation of s to sn+k. The set Psn
(F ) is exatly the set of all ontinuations of sin F.We say that a path s = (s1, . . . , sn) visits a set of nodes W ⊂ V (F ) if it has a node

si, i > 1, at W. We all two paths alternative if both start and terminate at the samenodes.Definition 2. We say that a set R ⊂ V (F | T ) is a T -regeneration set of F if everypath s ∈ ~PT (F ) (i.e. longer than T ) has an alternative one whih visits R. It is minimalif R \ {r} is not a T -regeneration set for eah r ∈ R.Let us de�ne another two useful notions: planning set and planning path:Definition 3. A set of nodes U ⊂ F−1(u0) is alled a planning set to a set of nodes Win F if for eah v ∈ W there exists a path in P v(F ) whih visits U and for every u ∈ Uthere is a path from u to a vertex in W.A path s = (s1, . . . , sn) from the root is said to be a planning path to a set of nodes
W in F if there exists U ⊂ F−1(sn) whih is a planning set to W, in the subnetwork
ωPsn

(F ).We will denote by
psR(F ) = {U ⊂ F−1(u0) | U is a minimal planning set to R in F}.It is easy to see the following relationships between planning sets and regenerationsets.Property 3. Assume that T is large enough, i.e. there is no v ∈ VT (F ) suh that (u0, v)is the only one path to v in F. Then

(i) If U is a planning set to VT (F ) then U is a T -regeneration set of F (alled alsoa "planning" T -regeneration set);
(ii) If R is a T -regeneration set of F then every planning set to R in F is also a

T -regeneration set of F ;

(iii) If A ⊂T F and R is a T -regeneration set of A, then R is a T -regeneration setof F.



FORECAST HORIZON AND PLANNING HORIZON PATHS 69These are some general properties of the notion introdued above.Property 4. Assume that A ⊂H F are t.i.n's, H ∈ ℜ+ is large enouh and s∗ =

(s∗1, . . . , s
∗
n) ∈ ~P (A|H) (or s∗ ∈ ~P (F |H)). Let us formulate the following statements:1.a Every path s ∈ ~PH(A) has an alternative path whih extends s∗ in A.1.b Every path s ∈ ~PH(F ) has an alternative path whih extends s∗ in F.2.a The path s∗ is a planning path to the set of nodes VH(A) in A.2.b The path s∗ is a planning path to the set of nodes VH(F ) in F.3.a Eah singleton {s∗i }, i = 2, . . . , n is an H-regeneration set of A.3.b Eah singleton {s∗i }, i = 2, . . . , n is an H-regeneration set of F.4.a The path s∗ is a planning path to an H-regeneration set of A.4.b The path s∗ is a planning path to an H-regeneration set of F.The statements satisfy:4.a ⇒ 1.a ⇔ 2.a ⇔ 3a,4.b ⇒ 1.b ⇔ 2.b ⇔ 3b,and eah k.a ⇒ k.b, for k = 1, . . . , 4.Proof. We have s∗ ∈ P {sn}(A). From the de�nitions, it follows immediately that 1.a ⇒2.a ⇒ {sn} is an H-regeneration set of A ⇔ 3.a.On the other hand, if {sn} is an H-regeneration set of A, then 1.a, beause ~PT (A) ishereditary.Assume 4.a. Let R be an H-regeneration set of A suh that s∗ is a planning path to

R. Let sr ∈ P r(A) be a path whih extends s∗, r ∈ R. For every v ∈ VH(A), there existsa path pv ∈ P v(A) whih visits R, say pv = (pv
1, . . . , p

v
nv

) and pv
kv

= rv ∈ R, for some
kv < nv. The path (srv , pv

kv+1, . . . , p
v
nv

) ∈ P v beause P v(A) is hereditary. It extends s∗.This establishes the statement 1.a.The same proof works for analogous impliations for k.b, k = 1, . . . , 4.We have k.a ⇒ k.b, for k = 1, . . . , 4, beause A ⊂H F and Property 3.2.4. Planning and foreast horizons. The notion of foreast horizon was given for fami-lies of optimal solutions of dynami programs in �o± [1967℄ and Blikle, �o± [1967℄ (andindependently, for optimization problems in more spei� models, in Lundin and Morton[1975℄, as well in Bensoussan, Crouhy and Proth [1983℄). In this paper we will de�ne thenotions of horizons for t.i.n's, only. For an example of the ase of �nite networks withyles with positive lengths see Bylka and Sethi [1992℄.Our de�nition is onsistent with mentioned above, if optimal solutions in a model areinterpreted as heapest paths.Definition 4. Let (F, τ ) be a t.i.n. A number H ∈ ℜ+ is a foreast horizon of a familyof paths P ⊂ Pu(F ), u ∈ V (F ), if there exists a path s∗ ∈ Pu(F |H + τ (u)), alled an
H-horizon planning path of P, suh that every path s ∈ P, l(s) > H + τ (u), has analternative path s′ ∈ P whih extends s∗.The length l(s∗) = h is de�ned to be a planning horizon of the family P. Then (h, H)is its adequate horizon pair.If P = ~P (F ), we say that s∗ is an H-horizon planning path of the t.i.n. F.



70 S. BYLKAOf ourse, if s∗ is an H-horizon planning path, then s∗ is an H ′-horizon planningpath for every H ′ ≥ H. If additionally P is hereditary, s̃ is an H-horizon planning pathfor every s̃ whih is alternative to s∗.Immediately from the de�nitions given above we have the following properties of
H-horizon planning paths:Property 5. (i) s∗ is an H-horizon planning path of F if and only if s∗ is a planningpath to the set of nodes VH(F ) in F (i.e. 2.b of Property 4).

(ii) If s∗ is an H-horizon planning path of P, then s∗ is an H-horizon planning pathof ωP . The reverse impliation is also true for hereditary P.If, additionally, u is the root of F and ωP ⊂H F, then s∗ is an H-horizon planningpath of F.�o± de�nes the planning path as a single ar path. The Lundin and Morton de�nitionuses arbitrary paths as above. If P is a set of paths, whih extend s∗, then l(s∗) = h = His a foreast as well as a planning horizon (see Bensoussan, Crouhy and Proth [1983℄ forthis speial ase) of P.2.5. Horizons of subnetworks generated by regeneration sets. A subnetwork F reduedby a regeneration set R, denoted by RF, is de�ned as the subnetwork generated by theset of all paths from the root going through R and longer than T, i.e.:
RF = ωP where P = {s ∈ ~PT (F )| s visits R}. (2)Property 6. Let R be a T -regeneration set of a t.i.n. F. We have

RF ⊂T Fand
psR(F ) = psR(F |T ) = psR(RF |T ).Additionally, eah element of psR(F ) is a planning T -regeneration set of F.For a T -regeneration set of F, by Property 4, if a singleton {q} ∈ psRF, then the onear path s∗ = (u0, q) is a T -horizon planning path of F. For more general ase we havethe following theorem.Theorem 1. Let A ⊂H F and s∗ be a path from the root in A|H, say s∗ ∈ P {q}(A). Thefollowing statements are equivalent:

(i) s∗ is an H-horizon planning path of A;

(ii) The singleton {q} forms an H-regeneration set of A;
(iii) There exists a seletion S from A suh that s∗ is an H-horizon planning path of S.Eah of (i) − (iii) is a onsequene of:
(iv) R is an H-regeneration set of A and s∗ is a planning path to R.Additionally, eah of (i) − (iii) implies
(v) s∗ is an H-horizon planning path of F.



FORECAST HORIZON AND PLANNING HORIZON PATHS 71Proof. We see at one that (i) ⇔ (ii) ⇒ (v) and (iv) ⇒ (i), whih is lear from Property4 (beause (i) ⇔ 1 .a and (iv) ⇔ 4 .a).Assume (i). We onstrut the seletion S whih satis�es (iii). Consider the set ofpaths
P = {s ∈ ~PH(A)|s extends s∗}.Let S be a seletion from the network ωP . S is a seletion from A and s∗ is an H-horizonplanning path of the family of paths ~P (S). Hene, S = ω~P (S) and, by Property 5(ii), wehave (iii).Assume (iii). The statement (i) follows from Property 4 beause s∗ is an H-horizonplanning path of S ⊂H A.From (iii) of Theorem 1, we onlude that:Corollary 1. The problem of the existene of a planning�foreast horizon pair (or an

H-horizon planning path) of a time indexed network is NP hard, even of the t.i.n. isloally �nite and disrete.We investigate the lass of optimization problems with limited information aboutthe future. To verify if our knowledge leads to a "good" initial deision, we ask aboutexistene of a planning�foreast horizon pair. In partiular, one looks for the minimalforeast horizon of families of solutions of optimization problems in a onsidered model(see Chand and Morton [1986℄, Federgruen, Tzur [1995℄ and Bylka, Sethi [1992℄).In a partiular model we ask about a olletion of assumptions whih guarantee theexistene of optimal plans as well as regeneration sets. In the presented general setting, wesimply assume the existene of optimal plans�heapest paths. Additionally, we assumethat the set of all optimal paths is hereditary.3. Algorithm for horizon planning paths. In this setion it is required that onsid-ered networks are loally �nite.3.1. Some spei� regeneration sets. The notion of T -regeneration set of a t.i.n. wasgiven in De�nition 2 with a spei�ation in Properties 3 and 6 given as a planning
T -regeneration set. In fat, we are interested in other more spei� T -regeneration sets.We all a T -regeneration set R to be T -ut if every path longer than T visits R.Let us denote:

CutT F = F (VT (F )) \ VT (F ) = {u ∈ V (F | T )|u ∈ F (v) for some v ∈ VT (F )}.It is the "over-T" minimal ut of F. If the root u0 6∈ CutT F then it is a T -regenerationset of F.Definition 5. A T -regeneration set R of F is alled an over-T regeneration set if R ⊂
CutT F. It is alled adequate if, additionally,

F−1(R) ∩ VT (F ) = F−1(CutT RF ) ∩ VT (F ). (3)Of ourse, every T -regeneration set R of F is a ut of the t.i.n. RF (i.e. of the subnetwork
F redued by R). On the other hand, the set CutT RF is an over-T regeneration set of F.



72 S. BYLKAGenerally, we have
R ⊂ CutT RF ⊂ CutT F for any over-T regeneration set R of F.For suitable networks we have

RF ⊂T (CutT RF )F for any T -regeneration set R of F.In partiular, if R is a T -ut set of F then
RF (v) = F (v) for any v ∈ VT (F ). (4)Property 7. Let R be an over-T ut set of a t.i.n. F. Then

(i) R is a T -regeneration set of A for any t.i.n. A ⊂T F ;

(ii) For every T ′ > T and T ′-regeneration set R′ ⊂ R ∪ VT (F ) we have
R′F = R′RF.Additionally, for every seletion S from RF

F̃ (v) =

{

S(v) if τ (v) ≤ T ,
F (v) ∩ (VT (F ) ∪ R) otherwise.is a t.i.n. and

R′ is a T ′-regeneration set of F ⇔ R′ is a T ′-regeneration set of F̃ .It is desired, in spei� models, that a sequene of T -ut sets should be done (on thebasis of our knowledge about the future). In this aspet, Property 7(ii) an be utilizedstep by step.For relations between foreast horizons and regeneration sets, we have the followinguseful orollary of Theorem 1 and Property 7.Corollary 2. Let R be an H-regeneration set of a t.i.n. F. The following three state-ments are equivalent:
(i) H is a foreast horizon of RF ;

(ii) There exist an over-H regeneration set R̃ of RF and a set U ∈ psR̃(RF ) suh that
|U | = 1;

(iii) There exists a seletion S from RF suh that H is a foreast horizon of S.Additionally, if R is an H-ut set of F, then (i) takes a more general form:
(i′) H is a foreast horizon of any t.i.n. A ⊂H F.Remark 1. In order to verify whether T is a foreast horizon of a t.i.n. F, we an verifyit on a subnetwork RF through its seletions. If R is a T -ut of F, then this redution isperfet, i.e. the answer with respet to existene is the same for F and for RF.3.2. The anelling operators. Let F be a t.i.n. and R be a set of nodes of F |T. Wewill onsider the behaviour of the "anelling" operator ΦT,R, whih applied to F yieldsa subnetwork of F. We de�ne them in the following way.Denote

ZT,R(F ) = {v ∈ V (F |T ) | v 6∈ R}.
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φT,RF (v) =







∅ if (F |T )−1(v) = ∅ and v ∈ ZT,R(F ),

F (v) \ ZT,R(F ) if τ (v) > T,

F (v) otherwise. (5)The operator φT,R eliminates all ars of F |T whih terminate at �dead ends� (i.e. at nodesfrom whih no ar starts and whih do not belong to R). The m-th iteration of φT,R willbe denoted by φm
T,R. It is lear that

φm+1
T,R F ⊂T φm

T,RF.Finally, we obtain the operator
ΦT,RF = lim

m→∞
φm

T,RF.In the loally �nite t.i.n. ase we have the equality for some m̄, i.e.
ΦT,RF = φm̄+1

T,R F = φm̄
T,RF.Property 8. Let R be a T -regeneration set of a t.i.n. F. Then ΦT,R(F )(v) 6= ∅ if andonly if either there exists a path from v to R in F or there exists s = (s1, . . . , sn) ∈ Sv(F )suh that si ∈ R and τ (si+1) > T for some i ≤ n. We have

ΦT,R(F )(v) = F (v) \ ZT,R(F ) if only ΦT,R(v) 6= ∅.3.3. The main properties of the anelling oneptsLemma 1. If R is a T -regeneration set of a t.i.n. F, then ΦT,R(F |T ) is a t.i.n. Addi-tionally, if R is an adequate over-T regeneration set, then ΦT,RF is a t.i.n. suh that
ΦT,R(F |T ) = (ΦT,RF ) | T.Proof. Assume ΦT,RF−1(v) 6= ∅ for a vertex v ∈ V (RF ).If τ (v) ≤ T, then ΦT,RF (v) = F (v) 6= ∅ by the de�nition of the operator ΦT,R.Therefore ΦT,R(F |T ) is a t.i.n.Suppose ontrary to our laim that τ (v) > T and ΦT,RF (v) = ∅. Then F (v) ⊂ ZRand so on v 6∈ F−1(R) in spite of (3). Therefore, ΦT,RF is a t.i.n., also.Assume τ (v) ≤ T. If there exists a path from v to R in F then ΦT,R(F )(v) =

F (v) = ΦT,R(F |T )(v), by Property 8. In the opposite ase ΦT,R(F )(v) = ∅ as well as
ΦT,R(F |T )(v) = ∅.Theorem 2. If R is an adequate over-T regeneration set, then ΦT,RF is a t.i.n. suhthat

ΦT,RF ⊂T RF with equality if, additionally, R = CutT RF.Proof. By Lemma 1, ΦT,RF is a t.i.n.If u ∈ ΦT,R(F )(v) then u ∈ RF (v), by Property 8.Assume u ∈ RF (v). It follows that (u, v) forms the last ar in a path whih visits
R. From (3) and Property 8, it follows that ΦT,R(F )(v) 6= ∅. If τ (u) > T then u ∈
ΦT,R(F )(v), beause u 6∈ ZT,R(F ) and by Property 8.If τ (u) ≤ T and R = CutT (RF ) then u ∈ ΦT,R(F )(v). In the opposite ase, by (3),there exists r ∈ R suh that v ∈ F−1(r). Therefore, ΦT,R(F )(v) 6= ∅ and the proof isomplete.



74 S. BYLKATheorem 3. Let R be a T -regeneration set of a t.i.n. F. We have
psRF ⊂ {B−1(u0) | B ∈ ϕRF},where

ϕRF = {ΦT,RS | S is a seletion from ΦT,R(F |T )}.Proof. Assume U ∈ psR(F ). Thus, U ⊂ F−1(u0) and U is a minimal planning set to R.Let us de�ne the following sets of paths:
P = {s ∈ ~PT (RF ) | s visits U}.and denote A = ωP . We have A ⊂T RF, beause U is a T -regeneration set of RF. Thislearly fores

A ⊂T F and ΦT,RA|T ⊂ ΦT,RF |T.From the onstrution of A we obtain (A|T )−1(u0) = U. From minimality of U we have
(ΦT,RW̃ )−1(u0) = U (6)for every seletion W̃ from A|T.Let W̃ be a seletion from ΦT,RA|T. It an be improved to a seletion S from ΦT,RF |Tsuh that S̃(v) = S(v) if only S̃(v) 6= ∅. We have ΦT,RS = ΦT,RS̃. From (6), we have thedesired inlusion.3.4. The algorithm. Here and subsequently the symbol T |F |T ′, for T ′ > T, denotes themultifuntion F restrited to the set of nodes V (T |F |T ′) = {v ∈ V (F ) | T < τ (v) ≤ T ′}.The following properties (onsequenes of Property 7 and Corollary 2) of the anellingoperators are useful from omputational point of view.Property 9. Let R be a T -ut set of F and R′ ⊂ R ∪ V (T |F |T ′) be a T ′-regenerationset of F, where T ′ > T. Then

(i) ΦT ′,R′ΦT,RF = ΦT ′,R′F.

(ii) If U ∈ psR(F ), then there exists U ′ ⊂ U suh that U ′ ∈ psR′(ΦT,RF ) ⊂ psR′(F ).

(iii) If S̃ ∈ ϕR(F ), S′ is a seletion from T |F |T ′ and
S(v) =

{

S̃(v) if τ (v) ≤ T ,
S′(v) otherwise,then S is a t.i.n. and ΦR′S ∈ ϕR′(F ).In fat instead of the assumption "R be a T -ut set of F", we an take R being anadequate over-T regeneration set of F (for some restritions see Remark 1).The properties of the anelling operators suggest the following proedure for hoosinga potentially rational initial ar (possibly planning horizon ar).Proedure SeletStep 0. We start with a subnetwork F |T having the root u0 and with a T -ut (or anover-T regeneration set) R.Step 1. Use the anelling operator to �nd the subnetwork ΦT,R(F |T ). If the set

[ΦT,R(F |T )]−1(u0) is a singleton, say {u1}, take s∗ = (u0, u1) and go to End. Otherwise,go to Step 2.



FORECAST HORIZON AND PLANNING HORIZON PATHS 75Step 2. Look for a seletion S from ΦT,R(F |T ) suh that (ΦT,RS)−1(u0) is a single-ton. We may exploit Property 9(iii) in the ase given t-regeneration set Rt and ϕRt
(F )for some t < T . If suh a seletion, say S∗, is found, then take s∗ = (u0, u1, . . . , uk) suhthat

[ΦT,R(S∗)]−1(ui−1) = {ui} for i = 1, . . . , k and |[ΦT,R(S∗)]−1(uk)| > 1,and go to End. In the other ase, omplete ϕR(F |T ) and go to End.End.We onstruted ΦR,T (F |T ) and either s∗ = (u0, u1, . . . , uk), k ≥ 1 given expli-itly together with an adequate seletion S∗ or ϕR(F ). In the last ase we an onstrut
psR(F ) (the family of planning sets to R) and S∗ ∈ ϕR(F ).Consider the ase where the output of the proedure is a family ϕR(F ) withoutsingletons in psR(F ). We an hoose S∗ ∈ ϕR(F ) suh that

|S∗−1(s0)| = min
U∈psR(F )

|U |,or by any other proedure. If the �rst deision has to be hosen, de�ne s∗ = (u0, u1) with
u1 ∈ S∗−1(s0). It will be potentially rational.If we obtain a new information as a T ′-regeneration set, then we ought to ask aboutan initial deision in an updated network. Suppose that in a onseutive period T ′ > Twe obtain an extension of the subnetwork as T |F |T ′ and an over�T ′-regeneration set
R′ ⊂ R ∪ V (T |F |T ′) (with respet to new information). We onsider two possibilities:either an initial deision was taken or it wasn't. In eah ase we use Proedure Updateand replay Proedure Selet with updated subnetwork F ′|T ′ and R′.Proedure UpdateStep 0. We start with an output of Proedure Selet; a subnetwork ΦT,RF |T and anextension of the subnetwork T |F |T ′ for some T ′ > T. If an initial deision was taken, goto Step 1. Otherwise, go to End.Step 1. We have S∗ and s∗ = (u0, u1, . . . , uk) with k ≥ 1. We improve S∗ by taking

S̃(v) =

{{u1} if v ∈ S∗−1(S∗−1(u0)),

S(v) otherwise.It hanges S∗ in the ase k = 1 and S∗−1(u0) has more than one element.The node uk beomes the root of F ′, suh that F ′(uk) = ∅ and for other nodes
F ′(v) =

{

S̃(v) if τ (uk) ≤ τ (v) ≤ T ,
F (v) \ ZT,R otherwise.De�ne

u′
0 = uk and τ ′(v) = τ (v) − τ (uk) for v ∈ V (F ′)and go to End.End. We have F ′|T ′ obtained in Step 1. Otherwise, de�ne F ′|T ′ = F |T ′.The algorithm is a generalization of the solution proedures given by Chand andMorton [1986℄ for the Wagner�Whitin model and Bylka, Sethi and Sorger [1992℄ for anequipment replaement model. It yields a horizon pair if there exists a foreast horizon.



76 S. BYLKAIn eah ase, the algorithm onstruts a set of potentially rational initial deisions withrespet to the foreast window.4. Examples. The example given below illustrates a possibility how optimization prob-lems in a dynami model an be transformed into equivalent heapest path problems ina t.i.n.Example 2. Consider the following inventory model with ontinuous demand and dis-rete replenishment. The demand appears with a given rate D(t) at ontinuous time t, andall demand must be met. Every sequene (t0, . . . , tn) where 0 = t0 ≤ t1 ≤ . . . ≤ tn = Trepresents a replenishment shedule on [0, T ] suh that in eah ti−1, i = 1, . . . , n, the sizeof the replenishment is equal to the umulative demands in the time interval [ti−1, ti], i.e.
W ti

ti−1
=

∫ ti

ti−1

D(t)dt.For a given �xed ost of replenishment K > 0 and stok holding ost per item per time
h, the ost of the shedule is equal to

c(t0, . . . , tn) = nK + h

n
∑

i=1

Zti

ti−1
,where

Zv
u =

∫ v

u

(W v
u − W t

u)dtis the umulative holding inventory in the time interval [u, v]. For any given T, we wantto determine a replenishment shedule with the minimal ost. It is easy to see that if Tis not too small than we have the ondition 3 of De�nition 1, i.e. there is a l∗ suh that
ti − ti−1 ≥ l∗.Consider a t.i.n. F with ℜ+ as the set of nodes and

E = {(u, v) ∈ ℜ+ ×ℜ+ | v − u ≥ l∗ and ether u = 0 or u ≥ l∗}as the set of ars. We have F (v) = {u ∈ ℜ+ | u ≤ v − l∗ either u = 0 or u ≥ l∗}, withtime indies τ (v) = v and ar osts c(u, v) = K + hZv
u.Every path (t0, . . . , tn) from the root t0 = 0 to tn = T represents a replenishmentshedule having the ost

c(t0, . . . , tn) =
n

∑

i=1

c(ti−1, ti).For a given T we look for all heapest path of the length T (optimal paths from the root
0 to the node T ) in F.The ase of pieewise onstant demand rate D is presented in Bylka and Rempaªa[2004℄.Aording to (more general) Example 1, we an investigate families of optimizationproblems. The limited information means that instead of c from C we know c|T i.e. theosts of all ars in the subnetwork F |T. Suh a ost is alled a T -foreast ost. The



FORECAST HORIZON AND PLANNING HORIZON PATHS 77additional information is ontained in the set of all possible extensions of c|T to ostfuntions from C, i.e.:
c|T |C = {d ∈ C | d((u, v)) = c((u, v)) if only τ (v) ≤ T}.For families of optimization problems, given by c ∈ C in F, we ask if c|T onstitutes asu�ient knowledge to �nd a foreast horizon and horizon planning path (see De�nition4). The same sytuation we have for every family of optimal paths Πd(F ) for d ∈ c|T |C.Definition 6. Consider a family of optimization problems c|H|C in F.(i) We say that a path s∗ is an H-horizon planning path for the family c|H|C if it isan H-horizon planning path of Ωd for every d ∈ c|H|C.(ii) An ar from the root is said to be a potentially rational initial deision if it is the�rst ar of a d�heapest longer than H path for a ost d ∈ c|H|C.A set U0 ⊂ F−1(u0) is said to be a su�ient planning set for c|H|C, if it is aplanning set to VH(Ωd) in any Ωd, if only d ∈ c|H|C. Additionally, U0 ought to beminimal.The seond onept given above is a "rationality" of initial deision with respet toour knowledge. Of ourse, we shall be interested to �nd suh sets U0 as small as possible.In partiular, if U0 = {q} then the one ar path s∗ = (u0, q) is an H-horizon planningpath of the family of optimization problems.The information about the network F and the ost funtion given by c|T |C withrespet to the future, an be transformed to T -regeneration sets. The main question is,to �nd a spei�al T -regeneration set R of the t.i.n. Ωc|T |C , where

Ωc|T |C(v) =
⋃

d∈c|T |C

Ωd(v). (7)Namely, R ought to be a T -regeneration set of
Ωd ⊂T Ωc|T |C for every d ∈ c|H|C.A ut of Ωc|T |C an be used as suh ommon regeneration set.Example 2 (ontinued). We are onerned with a onstant demand rate

D(t) = a for some a > 0, K > 0 and h = 1.There is the ase where C = {c}. The foreast window as well as the family of optimizationproblems are determined by its length only.We have: Zu
0 = 1

2au2 and for osts
c(v, v + t) = c(0, t) = K +

1

2
at2.There is exatly one ar, say (0, t∗), from the root with minimal average ost. Furthermore,

t∗ =
√

2K
a
, with average ost √2Ka and c(0, t∗) = 2K.All replenishment problems of the length T = nt∗ or T = ∞ have average ost √2Kaand optimal paths ontain only ars of length t∗. Let us denote suh a path with nars by (0, t∗)n. It is easy to hek that, in general, in optimal paths all ars have thesame length. Additionally, for every T = nt∗ + α, where n > 0 and 0 ≤ α < t∗, there



78 S. BYLKAis exatly one optimal path. From Theorem 1 in Bylka and Rempaªa [2004℄ we have
P̃ {T}(F, c) = {s(T )}, with

s(T ) =

{

(0, t∗ + α
n
)n if α ≤ rnt∗,

(0, t∗ − t∗−α
n+1 )n+1 if α ≤ rnt∗,where rn =

√
n2 + n − n. In this ase Ωc = Ωc|T |C and |Ωc(v)| = 1 for every node v ∈ ℜ+.For every T = nt∗ + α, as above, the interval

RT =

(

T − t∗ − max

{

α

n
,
t∗ − α

n + 1

}

, T

]

is a T -regeneration set of Ωc. There is exatly one seletion from Ωc. Therefore, with re-spet to Theorem 1, there is no foreast horizon planning path for this family of problems.The set
U0 =

(

t∗
√

1 − 1

n + 1
, t∗

√

1 +
1

n

)

is a planning set to VT (Ωc) su�ient for potentially rational initial deisions.Remark 2. In disrete networks, we have ommon T -regeneration sets for Ωd, d ∈ c|T |C,in eah of the following two ases:
• Every ar of Ωc|T |C has the length not greater than a number, say k∗, and T > k∗.Then the set

RT = {v ∈ V (Ωc|T |C) | T − k∗ < τ (v) ≤ T}is a ut of Ωc|T |C (as in Example 2);
• There are no two ars (u′, v′) and (u′′, v′′) in Ωc|T |C suh that τ (u′′) < τ (u′) <

τ (v′) < τ (v′′) and u ∈ Ωc|T |C(v) with τ (v) = T then the set
RT = {w ∈ V (Ωc|T |C) | τ (u) ≤ τ (w) ≤ T}is a ut of Ωc|T |C .The last ase is typial for models of Wagner and Whitin type. Generally, in models whihadmitted apaity for produtions or stoks, the subnetworks generated by families ofoptimal paths do not satisfy onditions given above.A sequene of T -regeneration sets for T = t0, t0 + 1, . . . , say (Rt0 , Rt0+1, . . .) is alledmonotoni i� for every t ≥ t0 we have

Rt+1 ⊂ Rt ∪ {v | τ (v) = t + 1}. (8)In models without apaities, monotoni sequenes of minimal ut sets Rt for t = t0, t0 +

1, . . . (with t0 as small as possible) are algorithmially onstruted in Chand and Morton[1986℄ and Bylka, Sethi and Sorger [1992℄. The perfet lot-size proedure given by Bastian[1992℄ onstruts the sequene of minimal ut-regeneration sets to obtain the minimalforeast horizon. In every ase, suh sequene makes a possibility to de�ne a perfetproedure for �nding planning and foreast horizons.Aording to De�nition 6(ii), the relation between sets of potentially rational initialdeisions and regeneration sets is established by the following theorem.



FORECAST HORIZON AND PLANNING HORIZON PATHS 79Theorem 4. Consider a family of optimization problems c|H|C in F. Let R be an ade-quate over H-regeneration set of Ωc|H|C .

(i) There exists a seletion S from Ωc|H suh that (ΦH,RS)−1(u0) is a su�ient plan-ning set for (c|H|C).

(ii) If there exists a seletion S from Ωc|H suh that any path to R in ΦH,RS is anextension of s∗ ∈ ~P (Ωc|H), then s∗ is an H-horizon planning path for the family
c|H|C. If R is a ut set of Ωc|H|C , then we have the opposite impliation also.Proof. Property 7(i) now shows that R is an adequate over H-regeneration set of Ωdfor eah d ∈ c|H|C. The �rst statement of the theorem is a onsequene of Theorem 3,beause Ωd|H = Ωc|H.The seond statement of the theorem is a simpli�ation of the impliation (iv) ⇒ (i)in Theorem 1, beause the same {q} is an H-regeneration set of eah Ωd.Let s∗ ∈ Sq(Ωc|H). If R is a ut set of Ωc|H|C , then s∗ ∈ ~P (RΩc|H|C) and we may �ndappropriate S.Example 3. Consider the problem of determination of the shedule that minimizes thetotal operating ost in a disrete equipment replaement model with multiple tehnolo-gies. A replaement poliy determines when to sale an old mahine and hange it toanother one from a set of tehnologial possibilities M = {1, . . . , m̄}.We look at t.i.n. F with the set of nodes V = M ×N , time index τ (m, t) = t and

F (m, t) =

{{(m, t′) | t′ < t} ∪ {(m′, t) | m′ 6= m} if m > 0,

{(m′, t) | m′ 6= m} if m = 0.
• An ar of the form e = ((m, t′), (m, t)) represents the deision to buy mahine oftehnology m at the beginning of period t′ +1, to utilize it and to sale at the end ofperiod t. The ost c(e) onsists of the purhase ost minus the salvage value resalemahine and the sum of operation osts in periods t′ + 1, . . . , t.

• An ar of the form ((m′, t), (m, t)), m > 0, is related to swith between di�erenttehnologies with adequate ost at period t.

• The node u0 = (0, 0) is the root of the t.i.n. F. An ar of the form ((0, 0), (m, 0)) isrelated to the beginning of the program-deision with respet to tehnology of themahine buying at the beginning of the �rst period. Ar of the form ((m, t), (0, t))for t > 0, is related to the end of the program (we have F−1(0, t) = ∅). Eah suhar e has the ost c(e) = 0.The prodution plant under onsideration starts its business in period 1 and goes outof business at the end of period T. Eah path from the root (0, 0) to the node (0, T ) de�nesa possible replaement plan. The problem of minimizing this ost over all admissible plansis equivalent to the problem of heapest path. Bylka, Sethi and Sorger [1992℄ developmethods that an be used to hek whether a foreast horizon exists in a ertain familyof "monotoni" osts M. Their numerial example leads to the t.i.n. Ωc|8, presented inFig. 2, with over 8-regeneration set R8 (nodes in dark olours) adequate to the family ofsubnetworks Ωd, d ∈ c|8|M.
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Fig. 2. The t.i.n. Ωc|8 with over8-regeneration set R8 (nodes in dark olours) adequate for thefamily of subnetworks in Example 3.

Fig. 3. The subnetworks S and Φ8,R8
S (illustrated by bold ars)

We use the Algorithm to verify the existene of horizon planning paths searhed sele-tions from the t.i.n. Ωc|8. Look at S presented in Fig. 3. It is easy to hek that eah pathin Φ8,R8
S (illustrated by bold ars) is an extension of the path s∗ = ((0, 0), (3, 0), (3, 3)).Therefore, by Theorem 3 (ii), H = 8 is a foreast horizon with s∗ as a horizon planningpath.The algorithm is a generalization of the solution proedures given by Chand andMorton [1986℄ for the Wagner�Whitin model and Bylka, Sethi and Sorger [1992℄ for anequipment replaement model. It obtains a horizon pair if there exists a foreast horizon.In eah ase, the algorithm onstruts a set of potentially rational initial deisions withrespet to the foreast window.



FORECAST HORIZON AND PLANNING HORIZON PATHS 815. Conluding remarks. The results an be used to improve known heuristis in se-leting lot size quantities. Eah heuristi has its own formula for hoosing a deision�anar from A−1(u0). The general idea is to start with a hosen heuristi and improve it inthe following way (see Bylka [1999℄):
• For a given foreast window, say up to the period T, �nd a T -ut set R and onstrutthe su�ient planning set U , of potentially rational initial deisions with respet to

R (see De�nition 6 and Theorem 4).
• Use a given heuristi for hoosing a deision from U.It is still an open problem when the improved heuristis have a narrower error band. Thealgorithm looks for a minimal foreast horizon. Proedures to detet a maximal planninghorizon for a given foreast window in a family of inventory ontrol problems have beenreently developed by Bensoussan et al. [1983℄. The presented proedure an be easilyimproved to obtain a maximal horizon planning path.
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