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Abstract. Let (Xi, i = 1, 2, . . .) be the normalized gaussian system such that Xi ∈ N(0, 1),

i = 1, 2, . . . and let the correlation matrix ρij = E(XiXj) satisfy the following hypothesis:

C = sup
i≥1

∞
∑

j=1

|ρi,j | < ∞.

We present Gebelein’s inequality and some of its consequences: Borel-Cantelli type lemma, iter-

ated log law, Levy’s norm for the gaussian sequence etc. The main result is that

f(X1) + · · · + f(Xn)

n
→ 0 a.s.

for f ∈ L1(ν) with (f, 1)ν = 0.

1. Mehler’s kernel and Gebelein’s inequality. Let (X,Y ) be a gaussian random

vector such that X,Y ∈ N(0, 1) and E(XY ) = ρ, (|ρ| < 1). Its density is equal then to

p(x, y; ρ) =
1

2π
√

1 − ρ2
exp

(

− 1

2(1 − ρ2)
(x2 + y2 − 2ρxy)

)

.

We denote by ν the normalized one-dimensional gaussian measure i.e.

ν(dx) = p(x) dx =
1√
2π

exp

(

−1

2
x2

)

dx,
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and use Lp (or Lp(ν)) for Lp(R, dν). In Lp we have the norm

‖f‖p =

(
∫

R

|f(x)|p ν(dx)

)
1
p

, 1 ≤ p ≤ ∞,

and in L2 the scalar product

(f, g)ν =

∫

R

f(x) g(x) ν(dx).

For f ∈ L2 the conditional expectation

Pρf(y) = E(f(X)|Y = y)(1.1)

can be computed. Introducing r.v. Z ∈ N(0, 1) such that Z, Y are independent, we find

that the gaussian vectors (X,Y ) and (U, Y ) with U = ρY +
√

1 − ρ2Z have the same

joint distribution. Thus, with h(y) = Ef(ρy +
√

1 − ρ2Z), we have

E(f(X)g(Y )) = E(f(U)g(Y )) = E(h(Y )g(Y )),

whence

Pρf(y) = E(f(X)|Y = y) = h(y).(1.2)

This implies that

Pρf(x) =

∫

R

K(x, y; ρ) f(y) ν(dy),(1.3)

where

K(x, y; ρ) =
p(x, y; ρ)

p(x)p(y)
=

1
√

1 − ρ2
exp

(

− 1

2(1 − ρ2)
(ρ2(x2 + y2) − 2ρxy)

)

,(1.4)

is the Mehler kernel (see [S]). It follows immediately by (1.2) that
∫

R

K(x, y; ρ) ν(dy) = 1.(1.5)

Since the kernel is symmetric and positive we obtain by Hölder’s inequality

Proposition 1.1. Given the gaussian vector (X,Y ) and f ∈ Lp, 1 ≤ p ≤ ∞, we have

‖Pρf‖p ≤ ‖f‖p.(1.6)

We now substitute ρ = e−t and set Qt = Pρ and Kt(x, y) = K(x, y; ρ). In this notation

we have

Proposition 1.2. For f ∈ L1 and t, s > 0 the semigroup property takes place i.e.

Qs+tf = Qs(Qtf) = Qt(Qsf),(1.7)

and

Ks+t(x, y) =

∫

R

Ks(x, z)Kt(z, y) ν(dz).(1.8)

Proof. Use formulas (1.1) and (1.3).

The Mehler kernel has its representation in terms of orthogonal Hermite polynomials

{Hn; n = 0, 1, . . .} which are uniquely determined by the following properties: Hn is of
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degree n and
∫

R

Hn(x) Hm(x) exp(−x2) dx = 2nn!
√

πδn,m, for n,m = 0, 1, . . .

Defining

hn(x) =
Hn(x/

√
2)√

2nn!

we obtain that

(hn, hm)ν = δn,m for n,m = 0, 1, . . . .

The orthonormal system {hn, n = 0, 1, . . .} is complete in L2 (see Natanson C.T.F, com-

pleteness is due to Steklov) and

K(x, y; ρ) =
∞
∑

0

ρnhn(x)hn(y), |ρ| < 1,(1.9)

whence in particular

Pρf =
∞
∑

0

ρn(f, hn)νhn for f ∈ L2.(1.10)

Now, the Parseval identity gives

‖Pρf‖2
2 =

∞
∑

0

ρ2n|(f, hn)ν |2.(1.11)

As a consequence from (1.11) we obtain Gebelein’s inequality (1.12) (see [G] and [DK])

Proposition 1.3. If f ∈ L2 and (f, 1)ν = 0 , then

‖Pρf‖2 ≤ |ρ| · ‖f‖2,(1.12)

or equivalently for any g ∈ L2 and f as above

|(Pρf, g)ν | ≤ |ρ| · ‖f‖2 · ‖g‖2.(1.13)

In both inequalities we have equality if and only if f(x) = c · x.

2. Applications of Gebelein’s inequality. The normalized gaussian sequence (Xi,

i = 1, 2, . . .) of random variables is given. In particular Xi ∈ N(0, 1) for each i. It is

assumed that the correlation matrix ρi,j = E(XiXj) satisfies the following hypothesis

(R) C = sup
i

∑

j

|ρi,j | < ∞.

Related formulation of the following lemma for the first time appears in [R] and the proof

is presented here for completeness.

Lemma 2.1. Under hypothesis (R) for arbitrary Borel subsets (Ai, i = 1, 2, . . .) of R we

have

E

( ∑n
i=1 IAi

(Xi)
∑n

i=1 P{Xi ∈ Ai}
− 1

)2

≤ C
∑n

i=1 P{Xi ∈ Ai}
.(2.1)
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Proof. For any two dimensional normalized gaussian vector (X,Y ) and for any f, g ∈ L2

with the property that Ef(X) = Eg(Y ) = 0 we have by (1.13)

|E(f(X)g(Y ))| = |(Pρf, g)ν | ≤ |ρ|‖f‖2‖g‖2 = |ρ|
√

E(f(X)2)
√

E(g(Y )2),

with ρ = E(XY ). This inequality applied to the functions fi(x) = IAi
(x) − P{Xi ∈ Ai}

and gj(x) = IAj
(x) − P{Xj ∈ Aj}, where IA is the indicator of the set A, gives

|P{Xi ∈ Ai,Xj ∈ Aj} − P{Xi ∈ Ai}P{Xj ∈ Aj}|

≤ |ρi,j |
√

P{Xi ∈ Ai}P{Xi /∈ Ai}P{Xj ∈ Aj}P{Xj /∈ Aj}

≤ |ρi,j |
√

P{Xi ∈ Ai}P{Xj ∈ Aj}

≤ |ρi,j |
P{Xi ∈ Ai} + P{Xj ∈ Aj}

2
.

Using this we obtain

E

( ∑n
i=1 IAi

(Xi)
∑n

i=1 P{Xi ∈ Ai}
− 1

)2

≤
∑n

i=1

∑n
j=1 |ρi,j |(P{Xi ∈ Ai} + P{Xj ∈ Aj})

2(
∑n

i=1 P{Xi ∈ Ai})2

≤ C
∑n

i=1 P{Xi ∈ Ai}
,

and the proof is complete.

Corollary 2.1 (Borel-Cantelli Lemma). Let the normalized gaussian sequence (Xi, i =

1, 2, . . .) satisfy hypothesis (R) and let (Ai, i = 1, 2, . . .) be a sequence of Borel sets in R

such that ∞
∑

i=1

P{Xi ∈ Ai} = ∞.(2.2)

then

P{Xi ∈ Ai i.o.} = 1.(2.3)

Moreover, if
∞
∑

i=1

P{Xi ∈ Ai} < ∞,(2.4)

then

P{Xi ∈ Ai i.o.} = 0.(2.5)

Corollary 2.2 (Iterated log law). Let the normalized gaussian sequence (Xi) satisfy

hypothesis (R). Then

P

{

lim sup
n

X2
n − 2 log n

log log n
= 1

}

= 1.(2.6)

Proof. Using for large a the asymptotic expansion (see [H])
∫ ∞

a

exp

(

−x2

2

)

dx =
exp(−a2

2 )

a

(

1 +

∞
∑

k=1

(−1)k (2k − 1)!!

a2k

)

(2.7)

we find that for the choice

An = An(γ) := (
√

2 log n + γ log log n,∞) ∪ (−∞,−
√

2 log n + γ log log n)
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with γ > 0 the following two series are equiconvergent:
∑

n≥10

P{Xn ∈ An(γ)} and
∑

n≥10

1

n(log n)
1+γ
2

.

Corollary 2.3 (Levy’s norm). Let the normalized gaussian sequence (Xi) satisfy hy-

pothesis (R). Then

P

{

lim sup
j

1√
j

sup
1≤k≤2j

|X2j+k| =
√

2 log 2

}

= 1.(2.8)

Proof. For η ≥ 0 and 1 ≤ k ≤ 2j , j ≥ 0 define

A2j+k(η) = R\(−
√

(2j log 2)(1 + η),
√

(2j log 2)(1 + η)).

Let X ∈ N(0, 1). Then
∑

n

P{Xn ∈ An(η)} =
∑

j

∑

1≤k≤2j

P{|X| ≥
√

(2j log 2)(1 + η)}

=
∑

j

2jP{|X| ≥
√

(2j log 2)(1 + η)}.

However, the last series equiconverges with
∞
∑

j=1

1√
j2ηj

.

Thus, in case of η > 0 this implies the easy part of the statement. In case η = 0 the series

diverges and therefore by Lemma 2.1

P

{ ∞
∑

n=1

IAn(0)(Xn) = ∞
}

= 1,

whence

P

{

∑

1≤k≤2j

I|X2j+k
|≥

√
2j log 2 ≥ 1 i.o.

}

= 1

and consequently

P

{

lim sup
j

1√
j

sup
1≤k≤2j

|X2j+k| ≥
√

2 log 2

}

= 1.

Corollary 2.4. Let (Xi, i = 1, 2, . . .) be a centered gaussian sequence with correlation

matrix (ρij) satisfying hypothesis (R). Then

∨

r>0

∞
∑

i=1

P{|Xi| > r} < ∞ ⇐⇒ P{sup
i

|Xi| < ∞} = 1,(a)

∧

r>0

∞
∑

i=1

P{|Xi| > r} < ∞ ⇐⇒ P{lim
i

Xi = 0} = 1.(b)

Proof. For i = 1, 2, . . . define Yi = Xi/σi, where σi denotes the standard deviation of

Xi. It is clear that (Yi) forms normalized gaussian sequence satisfying hypothesis (R).

Applying now Corollary 2.1 to the gaussian sequence (Yi) and to the sets Ai,r = {y :

|y| > r/σi} we obtain a proof of our statement.
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Corollary 2.5. Let X = (Xi, i = 1, 2, . . .) be as in Corollary 2.4. Then the probability

distribution of X is concentrated on the Banach space c0 if and only if

∧

r>0

∞
∑

i=1

exp

{

− r

σ2
i

}

< ∞, where σ2
i = EX2

i , i = 1, 2, . . . .(2.9)

Proof. It is well known that condition (2.9) is sufficient in the more general situation,

without the hypothesis (R) (see [VTC]). The necessity of condition (2.9) follows (us-

ing similar methods as in the independent case) from Corollary 2.4 (b) and from the

asymptotic expansion (2.7).

3. The laws of large numbers. Let us now consider the average

f(X1) + · · · + f(Xn)

n
,(3.1)

where f is a Borel function. The question is: For which functions f is the average (3.1)

convergent to Ef(X1)? In [BC] it was proved that the average (3.1) converges in L1(P )

for f ∈ L1(ν) and for f being algebraic polynomials we get a.s. convergence. It was

also conjectured that for f ∈ L1(ν) (3.1) converges a.s. In what follows we prove this

conjecture.

In sequel we need the following result (see for instance [B]):

Theorem 3.1. Let the distribution of the random variable Y be determined by its mo-

ments and let the random variables (Yn, n ≥ 1) have moments of all orders. Moreover,

let

lim
n→∞

E(Y r
n ) = E(Y r), r = 1, 2, . . . .

Then Yn ⇒ Y in distribution, as n → ∞.

Now, we can state

Theorem 3.2. Let the normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfy the hypoth-

esis (R). Moreover, let f be a bounded function and let its set of points of discontinuity

be of Lebesgue measure zero. Then

1

n

n
∑

i=1

f(Xi)−−−−→
n→∞

Ef(X1), a.s.

Proof. By Theorem 2.3 [BC] it follows that we can find a measurable set Ω0 ⊂ Ω,

P (Ω0) = 1, such that

1

n

n
∑

i=1

Xk
i (ω)−−−−→

n→∞
EXk

1 , ω ∈ Ω0, k = 1, 2, . . . .(3.2)

Next, define the empirical distribution functional

Ω0 ∋ ω 7→ Fn( · , ω) =
1

n

n
∑

i=1

δXi(ω)(·);(3.3)
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and observe, that by (3.2) for any k ≥ 1
∫

R

xk dFn(x, ω) =
1

n

n
∑

i=1

Xk
i (ω)−−−−→

n→∞

∫

R

xk dν(x), ω ∈ Ω0.(3.4)

Hence and from Theorem 3.1 (the gaussian distribution is determined by moments) for

every ω ∈ Ω0

Fn( · , ω) =⇒ ν, n → ∞.(3.5)

Therefore for the function f satisfying the assumptions of our theorem we have:

1

n

n
∑

i=1

f(Xi(ω)) =

∫

R

f(x) dFn(x, ω) →
∫

R

f(x) dν(x) = Ef(X1), ω ∈ Ω0,

and the proof is complete.

By R
∞
0 we denote the set of all real sequences with a finite number of nonzero terms,

i.e.

R
∞
0 = {(xi) ∈ R

∞ : xj = 0 for j > n, for some n},
Let us define a linear operator R : R

∞
0 → R by the formula

R(x) =
(

∞
∑

j=1

|ρij |xj

)

, x = (xj) ∈ R
∞
0 .

It is well known that R can be extended to a continuous linear operator over the spaces

lp, p ≥ 1. The proof below is given here just for the sake of completeness.

Lemma 3.1. For every 1 ≤ p ≤ ∞ we can extend the operator R to a continuous operator

R : lp → lp with ‖R‖ ≤ C.

Proof. Let x = (xi) ∈ R
∞
0 and denote ri =

∑∞
j=1 |ρij |, i = 1, 2, . . .. Then by Jensen’s

inequality and by symmetry of the matrix (|ρij |) we have

‖R(x)‖p
lp =

∞
∑

i=1

∣

∣

∣

∞
∑

j=1

|ρij |xj

∣

∣

∣

p

≤
∞
∑

i=1

(

∞
∑

j=1

|ρij | |xj |
)p

=

∞
∑

i=1

( ∞
∑

j=1

|ρij |
ri

|xj |
)p

rp
i ≤

∞
∑

i=1

rp
i

∞
∑

j=1

|ρij |
ri

|xj |p ≤
∞
∑

i=1

∞
∑

j=1

rp−1
i |ρij | |xj |p

≤ Cp−1
∞
∑

i=1

∞
∑

j=1

|ρij | |xj |p ≤ Cp−1
∞
∑

j=1

∞
∑

i=1

|ρji| |xj |p ≤ Cp

∞
∑

j=1

|xj |p = Cp ‖x‖p
lp .

Lemma 3.2. Let the normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfy the hypothesis

(R) and let (fi, i = 1, 2, . . .) ⊂ L2(ν). Then for each n ≥ 1 we have

V ar
(

n
∑

i=1

fi(Xi)
)

≤ C

n
∑

i=1

V ar(fi(Xi)).

Proof. This follows immediately by Gebelein’s inequality and by Lemma 3.1.

Using the last two lemmas and the method adapted from [E1] or [E2] we can prove

the a.s. convergence of (3.1) for f ∈ L1(ν). Namely,
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Theorem 3.3. Let the normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfy the hypoth-

esis (R) and f ∈ L1(ν). Then

1

n

n
∑

i=1

f(Xi)−−−−→
n→∞

Ef(X1), a.s.

Proof. We start with the observation that it suffices to prove the theorem for f ∈ L1(µ)

and f ≥ 0. For each α > 1 let us define a sequence (kn, n = 0, 1, 2, . . .) of integers as

follows:

k0 = 1, kn = [αn], n ≥ 1,

where [x] is the greatest integer less than or equal to x. It is clear that

lim
n→∞

kn

kn+1
=

1

α
.

Moreover
∧

m≥1

∨

n(m)≥1

kn(m)−1 ≤ m ≤ kn(m).(3.6)

It now follows that for f ≥ 0 that

kn(m)−1

kn(m)

Skn(m)−1

kn(m)−1
=

Skn(m)−1

kn(m)
≤ Sm

m
≤

Skn(m)

kn(m)−1
=

kn(m)

kn(m)−1

Skn(m)

kn(m)
,(3.7)

where Sm =
∑m

i=1 f(Xi). Suppose that holds

∧

α>1

Skn

kn

−−−−→
n→∞

Ef(X1), a.s.(3.8)

By this assumption and by (3.7) for a fixed α > 1 the inequalities

1

α
Ef(X1) ≤ 1

α
lim inf
m→∞

Skn(m)

kn(m)
≤ lim inf

m→∞
Sm

m
≤ lim sup

m→∞

Sm

m
≤ α lim sup

m→∞

Skn(m)

kn(m)

= α Ef(X1)

hold on some Ωα with P (Ωα) = 1. Therefore

lim
m→∞

Sm

m
= Ef(X1), a.s.

Thus, it is sufficient to check (3.8). To start the proof of (3.8) note that

Ef(X1) < ∞ ⇐⇒
∞
∑

i=1

P{f(X1) ≥ i} < ∞ ⇐⇒ P{f(Xi) ≥ i i.o.} = 0.

Thus
Skn

− ESkn

kn

−−−−→
n→∞

0, a.s. ⇐⇒
Sc

kn
− ESkn

kn

−−−−→
n→∞

0, a.s.,

where Sc
m =

∑m
i=1 fc(Xi) and fc(Xi) = f(Xi)I{f(Xi) < i}. Note also that

E[f(Xi)I{f(Xi) ≥ i}] → 0, i → ∞,

hence
1

n

n
∑

i=1

E[f(Xi)I{f(Xi) ≥ i}]−−−−→
n→∞

0,
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and consequently

Skn
− ESkn

kn

−−−−→
n→∞

0, a.s. ⇐⇒
Sc

kn
− ESc

kn

kn

−−−−→
n→∞

0, a.s.(3.9)

The convergence in (3.9) is equivalent to
∧

ε>0

P (lim sup
n→∞

{|Sc
kn

− ESc
kn
| > εkn}) = 0

and this will follow once we show the convergence of the series
∞
∑

n=1

P{ |Sc
kn

− ESc
kn
| > εkn}.

By Chebyshev’s inequality and by Lemma 3.2 we obtain
∞
∑

n=1

P{ |Sc
kn

− ESc
kn
| > εkn} ≤ 1

ε2

∞
∑

n=1

V ar(Sc
kn

)

k2
n

≤ C

ε2

∞
∑

n=1

1

k2
n

kn
∑

i=1

V ar(fc(Xi)) =
C

ε2

∞
∑

n=1

∞
∑

i=1

V ar(fc(Xi))

k2
n

I{1,2,...,kn}(i)

=
C

ε2

∞
∑

i=1

V ar(fc(Xi))

∞
∑

n=1

1

k2
n

I{1,2,...,kn}(i) =
C

ε2

∞
∑

i=1

V ar(fc(Xi))

∞
∑

n=1
i≤kn

1

k2
n

.

It follows that
∞
∑

n=1
i≤kn

1

k2
n

≤ C1

i2
, i = 1, 2, . . .

with some constant C1 = C1(α). Therefore, we can write
∞
∑

n=1

P{ |Sc
kn

− ESc
kn
| > εkn} ≤ C2

ε2

∞
∑

i=1

V ar(fc(Xi))

i2
,

where C2 = C · C1. However,
∞
∑

i=1

V ar(fc(Xi))

i2
≤

∞
∑

i=1

E(fc(Xi))
2

i2
=

∞
∑

i=1

E[f(X1)2I{f(X1) < i}]

i2

=

∞
∑

i=1

1

i2

i
∑

j=1

E[f(X1)2I{j − 1 ≤ f(X1) < j}]

=

∞
∑

j=1

E[f(X1)2I{j − 1 ≤ f(X1) < j}]

∞
∑

i=j

1

i2

≤
∞
∑

j=1

2

j
E[f(X1)2I{j − 1 ≤ f(X1) < j}]

≤ 2
∞
∑

j=1

E[f(X1)I{j − 1 ≤ f(X1) < j}] = 2Ef(X1) < ∞,

and the proof is complete.
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The above theorem admits a converse:

Proposition 3.1. Let f be a Borel function on R and let

lim sup
n→∞

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

< ∞

on a set with positive probability. Then f ∈ L1(ν).

Proof. It suffices to show

E|f(X1)| = ∞ =⇒ lim sup
n→∞

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

= ∞ a.s.

By assumption, for fixed α > 0, we have

E

∣

∣

∣

∣

f(X1)

α

∣

∣

∣

∣

= ∞,

whence
∞
∑

n=1

P{|f(X1)| ≥ αn} = ∞.

By the Borel-Cantelli Lemma for gaussian systems (Corollary 2.1) it follows that

P (lim sup
n→∞

{|f(Xn)| ≥ αn}) = 1.

Since

|f(Xn)| = |Sn − Sn−1| ≥ αn ⇒ |Sn| ≥
αn

2
∨ |Sn−1| ≥

αn

2
≥ α(n − 1)

2
,

we see that

P (lim sup
n→∞

{|Sn| ≥ αn/2}) = 1

Thus, we have established the following
∧

α>0

∨

Ωα∈F
P (Ωα)=1

lim sup
n→∞

|Sn(ω)|
n

≥ α

2
, ω ∈ Ωα.

If we put Ω0 =
⋂∞

m=1 Ωm, then

lim sup
n→∞

|Sn(ω)|
n

≥ m

2
, ω ∈ Ω0, m ≥ 1.

From this we conclude that

lim sup
n→∞

|Sn(ω)|
n

= ∞ a.s.

and the proposition follows.

Modifying slightly the proof of Theorem 3.3 we obtain the convergence of (3.1) with

f(Xn) replaced by fn(Xn), fn ∈ L2(ν) (see also [E2]).

Theorem 3.4. Let the normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfy the hypoth-

esis (R) and let fi ∈ L2(ν), i ≥ 1. Moreover, let

sup
i≥1

E|fi(Xi)| < ∞
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and
∞
∑

i=1

Var(fi(Xi))

i2
< ∞.

Then
1

n

n
∑

i=1

fi(Xi) − Efi(Xi)−−−−→
n→∞

0, a.s.

Proof. Since

Var(fi(Xi)) ≥ Var((fi(Xi) − Efi(Xi))
+) + Var((fi(Xi) − Efi(Xi))

−), i ≥ 1,

it is sufficient to prove the theorem for non-negative random variables fi(Xi). Let Sn =
∑n

i=1 fi(Xi), α > 1 and

k0 = 1, kn = [αn], n ≥ 1,

In the same way as in the proof of Theorem 3.3 we can estimate
∞
∑

n=1

P{ |Skn
− ESkn

| > εkn} ≤ C2

ε2

∞
∑

i=1

V ar(fi(Xi))

i2
,

for every ε > 0. Thus by the Borel-Cantelli lemma

Skn
− ESkn

kn

−−−−→
n→∞

0, a.s.(3.10)

Now, for given m we have kn(m)−1 ≤ m ≤ kn(m), whence

Sm − ESm

m
≤

∣

∣

∣

∣

Skn(m)
− ESkn(m)

kn(m)

∣

∣

∣

∣

kn(m)

kn(m)−1
+

ESkn(m)
− ESkn(m)−1

kn(m)−1
(3.11)

and
Sm − ESm

m
≥ −

∣

∣

∣

∣

Skn(m)−1
− ESkn(m)−1

kn(m)−1

∣

∣

∣

∣

−
ESkn(m)

− ESkn(m)−1

kn(m)−1
.(3.12)

Using (3.11) and (3.12) we obtain

lim sup
m→∞

∣

∣

∣

∣

Sm − ESm

m

∣

∣

∣

∣

≤ sup
i≥1

Efi(Xi)(α − 1)

for every α > 1 which concludes the proof.

We will need the following theorem (for the proof see [W]).

Theorem 3.5 (Orno Theorem). Let
∑∞

n=1 Yn be a series of random variables (Yn) un-

conditionally convergent in probability. Then
∑∞

n=1
Yn

ln(n+1) converges a.s.

Application of Orno’s result gives the following version of the Strong Law of Large

Numbers.

Theorem 3.6. Let the normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfy the hypoth-

esis (R) and let fi ∈ L2(ν) for i ≥ 1. Moreover, let

∞
∑

n=1

Var(fn(Xn))

n2
ln2(n + 1) < ∞.(3.13)
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Then

1

n

n
∑

i=1

fi(Xi) − Efi(Xi)−−−−→
n→∞

0, a.s.(3.14)

Proof. We see at once from (3.13) that the series
∞
∑

n=1

fn(Xn) − Efn(Xn)

n
ln(n + 1)

is unconditionally convergent in probability. By Orno’s theorem it follows that the series
∞
∑

n=1

fn(Xn) − Efn(Xn)

n
(3.15)

converges a.s. Applying Kronecker’s lemma to (3.15) we obtain (3.14) and the proof is

complete.

Notice that a slight change in the proof of the classical Menchoff inequality (see [SW])

shows that for normalized gaussian sequence (Xi, i = 1, 2, . . .) satisfying the hypothesis

(R) and for fi ∈ L2(ν), i ≥ 1 (Efi(Xi) = 0, i ≥ 1) we have

E( max
1≤i≤n

S2
i ) ≤ C

[

ln(4n)

ln 2

]2 n
∑

i=1

E[fi(Xi)]
2, n ≥ 1

where Si =
∑i

j=1 fj(Xj). From this (in a standard way) we obtain

Theorem 3.7 (Theorem of Rademacher-Menchoff type). Suppose additionally that

∞
∑

n=1

(ln n)2E[fn(Xn)]2 < ∞.

Then Sn converges a.s.

It is easy to see that applying Theorem 3.7 and Kronecker’s Lemma we obtain another

proof of Theorem 3.6.

Acknowledgements. The authors are indebted to Stanis law Kwapień for his con-

structive remarks. In particular, he pointed out that Theorem 3.6 for f ∈ L2(ν) follows

from Orno’s Theorem and this motivated us to prove Theorem 3.3.
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