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Abstract. We consider biorthogonal systems of functions on the interval [0, 1] or T which have

the same dyadic scaled estimates as wavelets. We present properties and examples of these

systems.

1. Introduction. In recent years more and more attention has been paid in mathemat-

ical papers to bases on a bounded set, the interval [0, 1] or the circle T (see for instance

[1], [14], [15], [24]). Sometimes these systems are some modifications of wavelets on R

([13], [23]). Unfortunately, even in this case, they do not have the structure of wavelets

(i.e. they do not come from one fixed function), therefore they are more difficult to study.

In this paper we consider properties of orthogonal or biorthogonal systems on [0, 1] or

T consisting of functions which have dyadic scaled estimates (see (I), (II), (III) below).

All the systems from the papers mentioned above satisfy this kind of estimate. Moreover,

many of classical systems also fulfil conditions (I), (II) and (III). This list includes

e.g. the Haar system, the Franklin system, both orthonormal and biorthonormal spline

systems ([9], [11]), the orthogonal system of trigonometric conjugates to the Franklin

function (see [4], and Theorem 3.3 for estimates) or periodic wavelets.

2. Systems with dyadic scaled estimates

2.1. Preliminaries and notation. We will consider systems on the interval [0, 1] as well

as on the one-dimensional circle T, so let (I, d) denote either the metric space ([0, 1], d1)

or (T, d2), where

d1(x, y) = |x− y|, x, y ∈ [0, 1], d2(x, y) = min(|x− y|, 1 − |x− y|), x, y ∈ T.

If j ∈ N and k ∈ {1, 2, . . . , 2j} then by Ij,k we denote the interval
[

k−1
2j ,

k
2j

]

and for n ∈ N

we define n ∗ Ij,k as the set {x ∈ I : d(x, k
2j ) ≤ n

2j }.
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By a biorthogonal wavelet type system on I we mean a biorthogonal system

{ψn, φn}∞n=−N , where natural N ≥ −1 is given, consisting of functions on I satisfing

the following conditions:

(I) There is a constant M > 0 such that for any n ∈ {−N, . . . , 0, 1} and x ∈ I

|ψn(x)| ≤M and |φn(x)| ≤M.

(II) For j ≥ 0, k ∈ {1, 2, . . . , 2j} and x ∈ I

|ψ2j+k(x)| ≤ 2
j

2S

(

2jd

(

x,
k

2j

))

, |φ2j+k(x)| ≤ 2
j

2S

(

2jd

(

x,
k

2j

))

,

where the function S satisfies some kind of integral condition. In this paper we assume

that

(III) S : [0,∞) → R is a nonincreasing function such that
∫ ∞

0

ln(1 + x)S(x)dx < +∞.

2.2. Properties of the function S. As a consequence of the monotonicity of S and of

condition (III) one can get

Lemma 2.1. There is a constant C such that
∞
∑

j=0

∞
∑

k=1

2jS(k2j) < C

and for j ≥ 0 and x, y ∈ I

2j

∑

k=1

S

(

2jd

(

x,
k

2j

))

S

(

2jd

(

(y,
k

2j

))

≤ CS(2j−1d(x, y)).

Lemma 2.2. Let B be an arbitrary family of dyadic intervals with disjoint interiors. For

each interval Ij0,m and t 6∈ Ij0,m we have

(1)
∑

Ij,k∈B

Ij,k⊂Ij0,m

∞
∑

i=0

2iS(2j+i−1d(t, Ij,k)) ≤
∞
∑

i=0

2iS(2j0+i−1d(t, Ij0,m)).

Proof. If we denote the left side of inequality (1) by L, then

L = lim
n→∞

j0+n
∑

j=j0

∑

Ij,k∈B

Ij,k⊂Ij0,m

∞
∑

i=0

2iS(2j+i−1d(t, Ij,k)) =: lim
n→∞

an(B).

Let bn = sup an(B), where the supremum is taken over all the families B. We will show

that the sequence {bn}n≥0 is constant. Obviously bn ≤ bn+1. On the other hand

an+1(B) = an(Bn) +
∑

k′:I
j0+n+1,k′∈B

Ij0+n+1,k′⊂Ij0,m

∞
∑

i=0

2iS(2j0+n+id(t, Ij0+n+1,k′)),

where Bn comes from B after excluding all the intervals shorter than 1/2j0+n.
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Let Ij0+n+1,k′ ∈ B and Ij0+n+1,k′ ⊂ Ij0,m. The interval Ij0+n+1,k′ is a half of some

interval Ij0+n,k. Let us denote the second half of Ij0+n,k (which may also belong to B) by

Ij0+n+1,k′′ . The interiors of two dyadic intervals are either disjoint or one of them contains

the other, thus Ij0+n,k ⊂ Ij0,m. But d(t, Ij0+n+1,k′) ≥ d(t, Ij0+n,k) and d(t, Ij0+n+1,k′′) ≥
d(t, Ij0+n,k), therefore from the monotonicity of S we have

∞
∑

i=0

2iS(2j0+n+id(t, Ij0+n+1,k′)) +

∞
∑

i=0

2iS(2j0+n+id(t, Ij0+n+1,k′′))

≤
∞
∑

i=0

2i+1S(2j0+n+id(t, Ij0+n,k)) =

∞
∑

i=1

2iS(2j0+n+i−1d(t, Ij0+n,k)).

Since Ij0+n+1,k′ ∈ B, it follows that Ij0+n,k 6∈ B and the interior of Ij0+n,k is disjoint

from intervals of Bn. From this we get

an+1(B) ≤ an(Bn ∪A),

where A is a family of dyadic intervals of length equal to 1/2j0+n which are disjoint from

elements of Bn. Thus

bn+1 ≤ bn.

Since the sequence {bn}b≥0 is constant, we have

L ≤ b0 =

∞
∑

i=0

2iS(2j0+i−1d(t, Ij0,m)).

2.3. Properties of wavelet type systems. Below we list some properties of wavelet type

systems which have been proved by the author in [30]

Theorem 2.3. Let {ψn, φn}∞n=−N be a wavelet type system. If the system {ψn}∞n=−N is

a basis in L2(I), then it is also a basis in Lp(I), 1 ≤ p <∞.

The proof is an adaptation of the argument for orthogonal wavelet on R
d from the paper

by S. E. Kelly, M. A. Kon, L. A. Raphael [22]. Moreover, the following theorem is true:

Theorem 2.4. Let {ψn, φn}∞n=−N be a wavelet type system and let {ψn}∞n=−N be a basis

in L2(I). If the set of linear combinations of elements of {ψn}∞n=−N is dense in C(I),

then {ψn}∞n=−N is a basis in C(I).

Remark 2.5. It is not hard to prove that the system {ψn}∞n=−N ⊂ C(I) is linearly dense

in C(I) if and only if

Pn1 → 1 uniformly on I,

where Pn are the partial sum operators, i.e.

Png =

n
∑

i=−N

(g, φi)ψi.

Using Lemma 2.2 we can prove

Theorem 2.6. Let {ψn, φn}∞n=−N be a wavelet type system. If {ψn}∞n=−N is a Riesz basis

in L2(I), then {ψn}∞n=−N is an unconditional basis in Lp(I) for 1 < p <∞.
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The idea of the proof comes from the papers [21], [29], [16], where the case of wavelets

on R is considered.

It turns out that conditions (I), (II), (III) ensure that each function ψn (n ≥ 1) can

be estimated by the maximal function of the Haar function χn and vice versa:

Lemma 2.7. Let {ψn, φn}∞n=−N be a wavelet type system. Then there is a constant C

such that for all j ≥ 0, k ∈ {1, 2, . . . , 2j} and t ∈ I we have

|χ2j+k(t)| ≤ C ·Mψ2j+k(t),

|ψ2j+k(t)| ≤ C ·Mχ2j+k(t),

where Mf denotes the Hardy-Littewood maximal function of f .

From this fact and C. Feffermann’s and E. Stein’s theorem (see for instance [28],

Theorem II.1) we get

Theorem 2.8. Let {ψn, φn}∞n=−N be a wavelet type system. Then for each 1 < p < ∞
and an arbitrary sequence of real numbers {an}n≥1,

(2)
∥

∥

∥

{

∞
∑

n=1

a2
nχ

2
n

}
1
2
∥

∥

∥

p
∼
∥

∥

∥

{

∞
∑

n=1

a2
nψ

2
n

}
1
2
∥

∥

∥

p
,

where the implied constants depend only on p and S.

Remark 2.9. The above theorem is also true when p = 1 or when p ∈ (0, 1) and the

function S satisfies an additional assumption, namely
∫ ∞

0

Sp(x)dx < +∞,

but the proof in these cases is much more complicated. The method of the proof is based

on the papers [19] and [20].

Let us note that if {fn} is an unconditional basis in Lp(I), 1 < p < ∞, then from

Khintchin’s ineqality we have
∥

∥

∥

∑

n

anfn

∥

∥

∥

p
∼
∥

∥

∥

{

∑

n

a2
nf

2
n

}
1
2
∥

∥

∥

p
.

Therefore, as a consequence of Theorem 2.8, we get the boundedness of the shift operators.

Theorem 2.10. Let {ψn, φn}∞n=−N be a wavelet type system. If the system {ψn}∞n=−N

is a Riesz basis in L2(I), then the linear shift operators defined by T+ψn = ψn+1 and

T−ψn = ψn−1 for n ≥ −N + 1 and T−ψ−N = 0 are bounded in Lp(I), 1 < p < ∞, and

hence ‖f‖p ∼ ‖T+f‖p.

Remark 2.11. Under some additional assumptions about the system {ψn, φn}∞n=−N we

can also prove that the shift operator T+ is unbounded in L1(I) (see [30] for details).

Combining Theorems 2.8 and 2.10 we obtain an equivalence of the bases {ψn}∞n=−N

and {χn}∞n=1 in Lp(I) for 1 < p <∞:
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Theorem 2.12. Let {ψn, φn}∞n=−N be a wavelet type system. Let 1 < p < ∞. Let us

assume that {ψn}∞n=−N is a Riesz basis in L2(I). Then the series

∞
∑

n=1

anψn−N−1 and

∞
∑

n=1

anχn

are equiconvergent in Lp(I) and their norms are equivalent.

Conditions (I), (II), (III) allow us to prove that the maximal operator

P ∗f(x) = sup
n≥−N

|Pnf(x)|

is of type (p, p) for 1 < p < ∞ and of weak type (1, 1). Thus, using standard methods

(see [27], Theorem 3.1.2), we can show the following theorem

Theorem 2.13. Let {ψn, φn}∞n=−N be a wavelet type system. Let us assume that the

system {ψn}∞n=−N is a basis in L2(I). If f ∈ L1(I), then Pj,kf(x) → f(x) for a.e. x ∈ I.

Remark 2.14. From Theorem 2.13 we have in particular that

(3) Pn1(x) → 1 if n→ ∞
for a.e. x ∈ I. Similarly as in [22] we can prove that if x is Lebesgue’s point of f and x

satisfies (3) then Pnf(x)
n→∞−→ f(x).

3. Some classical examples

3.1. The Franklin system. The Franklin system is the complete orthonormal system

obtained from the Schauder system {ϕn}∞n=0:

ϕ0(t) = 1, ϕn(t) =

∫ t

0

χn(s)ds, n = 1, 2, . . .

by means of Schmidt’s orthonormalization procedure ([17], [5]).

If we exclude from the orthonormalization function ϕ1 then we get the periodic

Franklin system. Both systems satisfy

Theorem 3.1 (Z. Ciesielski [6]). There are constants C > 0 and 0 < q < 1 such that for

every j, k and t ∈ I we have

(4) |f2j+k(t)| ≤ C · 2 j

2 q2
jd(t,k2−j).

Moreover

(5) |f ′2j+k(t)| ≤ C · 2 3j

2 q2
jd(t,k2−j).

The estimate (4) means that these systems satisfy conditions (I), (II), (III) with the

function S(x) = Cqx.

The unconditionality of the Franklin system in Lp(I) for 1 < p < ∞ was proved by

S. V. Bočkariev in [2]. A stronger fact, i.e. the equivalence in these spaces with the Haar

basis was shown in [12].

The boundedness of the shift operator for the Franklin system in Lp(I) (1 < p < ∞)

arises from [12], while the unboundedness in L1(I) is proved in [18].
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3.2. Splines of higher orders. If we apply the Schmidt orthonormalization procedure to

the set

{1, t, . . . , tm+1, Gm+1χn(t), n ≥ 2}
( m ≥ −1, Gf(t) =

∫ t

0
f(s)ds) then we get a complete orthonormal system {f (m)

n }∞n=−m

of splines of order m. (For m = −1 this is the Haar system, for m = 0 the Franklin

system.)

From the system {f (m)
n }∞n=−m we can obtain new systems:

f (m,k)
n =

{

Dkf
(m)
n for 0 < k ≤ m+ 1, n ≥ k −m,

H−kf
(m)
n for −m− 2 ≤ k < 0, n ≥ −k −m,

where D is the differentiation operator and Hf(t) =
∫ 1

t
f(s)ds. It is known that

|f (m,k)
j,l (x)| ≤ C2

j

2
+kjq2

jd(x, l

2j ), ‖f (m,k)
j,l ‖p ∼ 2j( 1

2
− 1

p
)+kj

and (f
(m,k)
n1

, f
(m,−k)
n2

) = δn1,n2
.

Now we consider the biorthogonal systems {h(m,k)
n , h

(m,−k)
n }∞

n=|k|−m
, where

h(m,k)
n =

{

f
(m,k)
n ‖f (m,k)

n ‖−1
2 for 0 ≤ k ≤ m+ 1,

f
(m,k)
n ‖f (m,−k)

n ‖2 for 0 ≤ −k ≤ m+ 1,
m ≥ −1, |k| ≤ m+ 1.

The orthogonal and biorthogonal spline systems were considered in [25], [9] and [7]. In

[26] it was proved that these systems are Riesz bases while the case of Lp(I) for 1 < p <∞
(unconditionality, equivalence with the Haar basis and convergence almost everywhere of

Fourier expansion) was considered in [8].

Let us note that from the above mentioned properties of the functions f
(m,k)
n we have

that for 0 ≤ k ≤ m+ 1 the biorthogonal system {h(m,k)
n , h

(m,−k)
n }∞n=k−m satisfies (I) and

(II) with the function S(x) = Cqx (0 < q < 1), which of course satisfies (III).

The next examples of wavelet type systems are spline systems with boundary con-

ditions constructed by Z. Ciesielski and T. Figiel in [10] and [11]. For these systems we

have similar estimates.

3.3. The conjugate Franklin system. In this subsection let fn denote the periodic Franklin

functions. The conjugate Franklin system is the system

(6) {1} ∪ {f̃n : n ≥ 2}
where

f̃n(x) = −
∫ 1

2

0

(fn(x+ t) − fn(x− t)) cotπt dt.

The system (6) is an orthonormal basis in L2(I), because the map f → f̃ is an isometry

on {f ∈ L2(I) :
∫

I
f(x) = 0}. Moreover, this map is bounded in Lp(I) for 1 < p < ∞

and the Franklin system is an unconditional basis in these spaces, hence the system (6)

is an unconditional basis, too.

In [4] S. V. Bočkariev has proved that the system (6) is a basis in the space C(T). His

proof in [4] is based on pointwise estimates for the kernels of the partial sum operators.

However, in [3], he has obtained the following pointwise estimates for f̃n’s:
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Theorem 3.2 (S. V. Bočkariev [3]). There is a constant B such that for all j = 0, 1, . . .

and k = 1, . . . , 2j we have

|f̃2j+k(x)| ≤ Bmin

(

√
2j ,

1

2
3
2
j
(

d2(x,
k
2j )
)2

)

.

That is, the conjugate Franklin system is a wavelet type system with S(x)=C/(1+x)2,

and the fact that it is a basis in C(T) follows directly from Theorem 2.4.

Here we present more accurate estimates for f̃n as a wavelet type system, with S(x) =

C/(1 + x)3. This more accurate estimate allows us, for example, to get the equivalence

(2) for a bigger range of p ∈ (0, 1) than the estimate from Theorem 3.2, see Remark 2.9.

Theorem 3.3. The system (6) fulfils condition (II) with S(x) = C/(1 + x)3.

Proof. It is enough to show condition (II) for n ≥ 2. Let j ≥ 0 and k ∈ {1, 2, . . . , 2j}. We

can write

|f̃2j+k(x)| ≤
∣

∣

∣

∣

∫ 1

2j

0

(f2j+k(x+ t) − f2j+k(x− t)) cotπt dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1
2

1

2j

(f2j+k(x+ t) − f2j+k(x− t)) cotπt dt

∣

∣

∣

∣

= |V1| + |V2|.

Let us estimate the first term. Let x ∈ Ij,l. Since d(x + t, x) ≤ 1
2j and d(x, x − t) ≤ 1

2j ,

the points x− t, x, x+ t belong to 1 ∗ Ij,l. Using (5) we get

|f2j+k(x+ t) − f2j+k(x− t)| ≤ 2t sup
u∈1∗Ij,l

|f ′2j+k(u)|

≤ C2
3j

2 t sup
u∈1∗Ij,l

q2
jd(u, k

2j ) ≤ C ′2
3j

2 tq2
jd(x, k

2j ).

Therefore

|V1| ≤ C2
3j

2

∫ 1

2j

0

t cot πt dt · q2
jd(x, k

2j ) ≤ C ′q2
jd(x, k

2j ).

Finally

|V1| ≤ 2
j

2S1

(

2jd

(

x,
k

2j

))

,

where S1(x) = Cqx.

Now we estimate V2. Let us introduce auxiliary functions

Bj,x,s(t) =

{

cotπ(t− x) for s
2j ≤ |t− x| ≤ 1

2 ,

0 for |t− x| < s
2j .

Thus

V2 =

∫

1

2j ≤|t−x|≤ 1
2

f2j+k(t) cotπ(t− x)dt =

∫

|t−x|≤ 1
2

f2j+k(t)Bj,x,1(t)dt.

Since both functions f2j+k and Bj,x,1 are periodic with period 1, we have

V2 =

∫ 1

0

f2j+k(t)Bj,x,1(t)dt.
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Let us fix x ∈ I. Let Wj−1(t) denote the piecewise linear periodic function interpolating

Bj,x,1 in the dyadic points from the j-th level (i.e. 0, 1
2j ,

2
2j , . . . , 1). It may be checked

that

|Bj,x,1(t) −Wj−1(t)| ≤ Cmin

(

2j ,
1

22jd(x, t)3

)

(see also [4]). Hence

V2 =

∫ 1

0

f2j+k(t)(Bj,x,1(t) −Wj−1(t))dt+

∫ 1

0

f2j+k(t)Wj−1(t)dt,

where the second term is equal to 0 because f2j+k is orthogonal to Wj−1(t). Therefore

we can write

|V2| ≤
∫ 1

0

|f2j+k(t)|min

(

2j ,
1

22jd(x, t)3

)

dt

≤
∫

1∗Ij,l

|f2j+k(t)|2jdt+

∫

(1∗Ij,l)c∩{t: 1
2
d(x, k

2j )≤d(x,t)}

|f2j+k(t)| 1

22j(max( 1
2j ,

1
2d(x,

k
2j )))3

dt

+

∫

(1∗Ij,l)c∩{t: 1
2
d(x, k

2j )≤d( k

2j ,t)}

|f2j+k(t)| 1

22jd(x, t)3
dt.

Using the fact that ‖f2j+k‖1 ≤ C2−
j

2 we get

|V2| ≤ C2
j

2 q2
jd(x, k

2j ) +
C

(1 + 2jd(x, k
2j ))3

2
j

2 + C2
j

2 q2
jd(x, k

2j ).

Thus

|V2| ≤ 2
j

2S1

(

2jd

(

x,
k

2j

))

+ 2
j

2S2

(

2jd

(

x,
k

2j

))

,

where S1(x) = Cqx for some q ∈ (0, 1), while S2(x) = C/(1 + x)3, which finishes the

proof of Theorem 3.3.

3.4. Periodic wavelets. One of the methods of obtaining orthogonal systems on T is the

following: We start from a multiresolution analysis on R, with a scaling function ϕ and

an associated wavelet ψ. Under the assumption ψ ∈ L1(R) we can define

ψ◦
2j+k(x) =

∑

l∈Z

ψj,k(x− l).

It turns out that the system {1} ∪ {ψ◦
n}n≥1 is an orthonormal basis in L2(T) (see for

instance [29]). Moreover, if

|ψ(x)| ≤ C

(1 + |x|)s

for some s > 1, then the system {1} ∪ {ψ◦
n}n≥1 satisfies (I), (II), (III).
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