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178 S. GOLDSTEIN ET AL.Dunford-Pettis property if every weakly ompat operator with domain X is ompletelyontinuous. The funtion spaes C(K) and L1(µ) are among the best-known examplesof suh spaes. Now in the nonommutative world the Dunford-Pettis property is knownto fail for almost all types of von Neumann algebras and their preduals [CI, B℄. Henein our analysis we annot rely on the onvenient onnetion between weakly ompatand ompletely ontinuous operators a�orded by this property in the lassial setting.However despite this drawbak, at least as far as multipliation operators are onerned,one still �nds a remarkable similarity between the results pertaining to weakly ompatmultipliation operators and those pertaining to ompletely ontinuous ones.The results on ompatness and weak ompatness of multipliation operators havebeen proved by Akemann and Wright in [AW℄ for general C∗-algebras. In their argumentsthey use the redued atomi representation of a C∗-algebra. Those arguments are veryelegant, but they do not show learly enough what is happening in the von Neumannalgebra ase. In partiular, one annot easily see why there are no nonzero (weakly) om-pat multipliation operators on von Neumann algebras without minimal projetions, likealgebras of type II and III. Their tehniques also make impliit use of the fat that theoperators under onsideration behave well with regard to duality. This seriously limitsthe appliation of their tehniques to the investigation of omplete ontinuity, whih isnot preserved under duality. We deided to give new and very straightforward argumentsin support of the fats. As suh these arguments not only provide new information withregard to ompletely ontinuous multipliation operators, but also give additional insightinto the ase of (weakly) ompat ones. They follow from a ouple of lemmas of inde-pendent interest, whih we shall use in our subsequent paper generalizing the results tononommutative Lp-spaes [GJL℄. Note that several other generalizations have alreadybeen obtained by a series of authors, see for example [M, BC℄. One should also onsultthe very interesting work of P�tzner on weak ompatness in C∗-algebras [P℄.We use standard notation and terminology for von Neumann algebra theory, as found,for example, in [T, KR1, KR2℄. In partiular, we denote by B(H) the algebra of allbounded operators on a Hilbert spae H, and by K(H) the ideal of ompat operatorson that spae. We all an element of M ompat if its image in some (though obviouslynot every) faithful normal representation of M on a Hilbert spae H belongs to K(H).We denote by Z(M) the enter of the algebra M and by c(f) the entral support (orarrier) of f in M. A projetion e of M is of �nite rank (or �nite dimensional) in M ifthe algebra eMe is �nite dimensional.We use the same symbol Mf for left multipliation operators ating on the algebra:
Mf : M → M, a 7→ fa and on its predual Mf : M∗ → M∗, ψ 7→ fψ, where f belongs to
M. Similarly, we denote the right multipliation operators by fM . Note that if f = u|f |is the polar deomposition of f , then Mf = MuM|f | and M|f | = Mu∗Mf . The idealproperty of ompat, weakly ompat and ompletely ontinuous operators now impliesthatMf has one of the three properties if and only ifM|f | has the same property. (Hene,we an always assume that the symbol we use for the multipliation is positive.) Sine
f∗ = |f |u∗, the same an be said of Mf and Mf∗ . Note that fM an be obtained byonseutive appliation of the involution of the algebra andMf∗ . Sine the ∗-operation is



COMPACTNESS PROPERTIES FOR MULTIPLICATION OPERATORS 179norm, weak and weak∗ ontinuous on M, Mf is ompat, weakly ompat or ompletelyontinuous if and only if fM has the same property. Analogous statements are true ofmultipliation operators on the predual M∗.In a few plaes, we were able to demonstrate two di�erent kinds of strategies�themore straightforward ones, based on the properties of von Neumann algebras, and themore general ones, using tensor produts and `diagram hasing'.2. Weak ompatness. Note that Mf : M∗ → M∗ is weakly ompat if and only ifso is its adjoint (Mf )∗ = fM : M → M. We shall use the fat without further notie.We start with a simple but very useful lemma, whih may well belong to the mathe-matial folklore. Sine we were not able to trae it down in the literature, we provide ithere with a proof.Lemma 2.1. Let M be a von Neumann algebra with no minimal projetions. Then nomaximal abelian von Neumann subalgebra M0 of M has minimal projetions.Proof. Let M be a von Neumann algebra with no minimal projetions and let M0 be aommutative von Neumann subalgebra of M. Suppose that e0 is a minimal projetionin M0. By hypothesis, there must exist a projetion f0 ∈ M \ M0 with 0 < f0 < e0.Now given any other projetion e in M0, we have by ommutativity that e0e ∈ M0 is asubprojetion of e0. So by minimalityeither e0e = 0 (i.e. e0 ⊥ e) or e0e = e0 (i.e. e0 ≤ e).Thus sine f0 < e0 we also have thateither f0 ⊥ e or f0 < efor any projetion e in M0. But this means that f0 ommutes with all the projetions in
M0. Sine the span of these projetions is dense inM0, f0 ommutes withM0. Therefore
M0 annot be maximal abelian, sine {f0,M0} generates a ommutative subalgebrawhih is stritly larger than M0.The next lemma uses standard arguments of the struture theory of von Neumannalgebras.Lemma 2.2. Let M be a von Neumann algebra. (1) Assume M is not a �nite diretsum of �nite disrete fators (i.e. it is not �nite dimensional). Then there is in M anorthogonal sequene of non-zero projetions. (2) Assume M has no minimal projetions.If e ∈ M is a non-zero projetion, then there exists in M an orthogonal sequene ofnon-zero subprojetions of e. (3) Let e ∈ M be a projetion whih is not of �nite rank in
M. Then there exists in M an orthogonal sequene of non-zero subprojetions of e. Inall ases, we an hoose eah of the projetions to be σ-�nite.Proof. (1) The onditions on M imply that it an be represented as a diret sum M1 ⊕

M2 ⊕ M3 ⊕ M4, where M1 is ontinuous (i.e. type II or III), M2 is type I∞ (inpartiular, properly in�nite), M3 is �nite disrete with non-atomi enter (i.e. a diretsum of type In, n < ∞ algebras with non-atomi enters) and M4 is a diret sumof �nite disrete fators; with all but one of the four summands possibly zero, but if
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M1 = M2 = M3 = {0}, then M4 is an in�nite diret sum of �nite disrete fators. Weonsider the di�erent ases:(a) M1 = M2 = M3 = {0} and M4 is an in�nite diret sum of �nite disrete fators.Let zn ∈ Z(M4) be suh that eah of M4zn is a di�erent type In fator. Then (zn)onstitutes the desired sequene of non-zero projetions.(b) M1 6= {0} and/or M2 6= {0}. There exists a projetion e ∈ M1 (resp. e ∈ M2)suh that e ∼ 1 − e. We an put e1 = e and ontinue the proedure for the algebra
(1−e)M1(1−e) (resp. (1−e)M2(1−e)), whih is obviously ontinuous (resp. type I∞),to obtain e2 ≤ 1 − e1. Then e3 ≤ 1 − e1 − e2 and so on.() M3 6= {0}. If M3 is not σ-�nite, then 1 ∈ M3 an be written as an orthogonalsum of (entral) non-zero σ-�nite projetions. In this ase, we an hoose any ountablesubfamily from the olletion. Thus, we may assume that M3 is σ-�nite. Sine M3 is adiret sum of type In algebras, it is enough to onsider a non-zero diret summand oftype In, that is an algebra of the form F⊗Z, where F is type In fator and Z is a σ-�nitenon-atomi ommutative algebra. Let τ be a faithful normal traial state on Z. Sine Z isnon-atomi, we an �nd a projetion e1 ∈ Z with 0 < τ (e1) < 1, then e2 ≤ 1−e1, e2 ∈ Zwith 0 < τ (e2) < τ (1 − e1) and so on. By passing to (1 ⊗ en), this gives an orthogonalsequene of non-zero projetions in F ⊗Z.(2) This is a diret onsequene of (1) applied to eMe.(3) Again, eMe annot be a �nite diret sum of �nite disrete fators, sine then itwould be �nite-dimensional in some faithful representation of M. Thus, part (1) of thelemma applies to eMe.The validity of the last remark follows from the fat that any non-σ-�nite projetionis an orthogonal sum of σ-�nite ones, of whih we an use any ountable subset. Indeed,this is an immediate onsequene of Zorn's lemma. A non-σ-�nite projetion e musthave a non-zero σ-�nite subprojetion e0: take any non-zero ϕ ∈ (eMe)∗,+ and put
e0 = supp(ϕ).The following lemma ontains the essene of what we are going to prove.Lemma 2.3. Let M be a von Neumann algebra and let f ∈ M. If there exists an in�nitesequene of projetions en ∈ M and a number λ > 0 satisfying the following onditions:

|f |en = en|f | for all n,
|f |en ≥ λen for all n,

en → 0 strongly,
en are σ-�nite and non-zero,then the operator Mf : M∗ → M∗ is not weakly ompat.Proof. We may assume that f ∈ M+. Observe also that e =

∨
n en is σ-�nite, henethere exists ϕ ∈ (M∗)+ suh that supp(ϕ) = e. We have ϕ(en) > 0 for all n, so that wean de�ne a sequene of states (ϕn) by

ϕn(x) =
1

ϕ(en)
ϕ(enxen) for all x ∈ M and all n
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ϕ(en)enϕen). The ϕn's are states sine ‖ϕn‖ = ϕn(1) = 1. Now,

(Mfϕn)(en) = (fϕn)(en) = ϕn(enf) =
1

ϕ(en)
ϕ(fen)

≥
1

ϕ(en)
λϕ(en) = λ > 0.Hene, the set {Mfϕn} is not relatively weakly ompat (see [T℄, Lemma III.5.5), whihends the proof.The next two theorems show that weak ompatness of the multipliation operatorsan happen only for very �disrete� algebras and only if the element f whih we use isompat.Proposition 2.4. Let M be a von Neumann algebra without minimal projetions, f ∈

M and f 6= 0. Then Mf : M∗ → M∗ is not weakly ompat.Proof. Assume as in the proof of Lemma 2.3 that f is positive (and non-zero). Let Adenote a maximal abelian von Neumann subalgebra of M ontaining the element f . Let
λ > 0 be suh that e = χ[λ,∞[(f) 6= 0. By Lemma 2.1, A has no minimal projetions. Nowwe an apply Lemma 2.2(2) to e and obtain an orthogonal sequene (en) of subprojetionsof e satisfying all four onditions of Lemma 2.3. Consequently, the operator Mf : M∗ →

M∗ is not weakly ompat.Theorem 2.5. Let M be a von Neumann algebra and f ∈ M. The operator Mf isweakly ompat on either M or M∗ if and only if f is ompat in M. If this is thease, the algebra Mc(f) is σ-�nite and atomi. Moreover, if (zn) is a sequene of entralprojetions suh that c(f) = z1 + z2 + . . . and Mzk's are fators, then (‖fzn‖) ∈ c0.Proof. �⇒� Assume f is positive and non-zero and that c(f) = 1. If, for some λ > 0, thespetral projetion eλ = χ[λ,∞[(f) is not of �nite rank in M, then Lemma 2.2(3) gives asequene (en) satisfying the assumptions of Lemma 2.3 and Mf is not weakly ompat.Hene, for eah λ > 0, eλ is of �nite rank. Consequently, there exists a (�nite or in�nite)dereasing sequene (λn) of stritly positive real numbers suh that the spetrum of fonsists of λn's and, possibly, zero. We only need to show that in some representation of
M all the spetral projetions en orresponding to eigenvalues λn have �nite-dimensionalranges. Now, if for some entral projetion z ∈ M the algebra M(1− z) has no minimalprojetions, then supp(f) ≤ z, sine otherwise, by Proposition 2.4, f(1 − z) would notbe weakly ompat. Hene, we an assume that M is a diret sum of disrete fators.Evidently,M annot have more than a ountable number of non-zero summands, and if itis an in�nite diret sum of suh fators, sayM = Mz1+Mz2+. . . with z1, z2, . . . ∈ Z(M)and Mz1,Mz2, . . . disrete, then the norms ‖fzn‖ tend to zero when n tends to in�nity.Otherwise, we ould easily build a sequene satisfying all the assumptions of Lemma 2.3as in the proof of Lemma 2.2(1)(a). Our result is obvious for a �nite disrete fator,so assume for a moment that Mc(f) (or simply M) is a fator of type I∞ (where ∞stands for some ardinal number). Suh an algebra an be represented as B(H) for asuitable Hilbert spae H. In suh a ase, all the spetral projetions en must have �nite-dimensional ranges, otherwise we would easily get a sequene of projetions satisfying



182 S. GOLDSTEIN ET AL.the assumptions of Lemma 2.3. This means that in a suitable representation eah of
fz1, fz2, . . . is ompat. Moreover, as the norms of fzn go to zero, eah non-zero spetralvalue of f is a spetral value of a �nite number of fzn's only. Hene, in this representationthe spetrum of f is either �nite or its non-zero elements an be arranged into a sequene
(λn) tending to zero and suh that the spetral subspaes orresponding to λn's are �nitedimensional. Obviously, this is enough to guarantee that f is also ompat.�⇐� Assume that f is positive and ompat.Suppose �rst that M = B(H) for some in�nite dimensional Hilbert spae H. Let
ξ ∈ H, ‖ξ‖ = 1 and let f be a one-dimensional projetion onto the subspae generatedby ξ. Choose now any sequene (en) of orthogonal projetions in M onverging stronglyto zero. Then, for any ϕ in the unit ball of M∗, there is a trae-lass operator h suhthat ϕ(·) = tr(h·). Let (ξi) be an orthonormal basis in H with one of the vetors equalto ξ. Then

(fϕ)(en) = tr(henf) =
∑

(henfξi, ξi) = (henξ, ξ) = (enξ, h
∗ξ)and

|(fϕ)(en)| ≤ ‖enξ‖‖h‖ ≤ ‖enξ‖‖h‖1 ≤ ‖enξ‖.Thus, the onvergene (fϕ)(en) → 0 is uniform with respet to ϕ from the unit ball ofthe predual. This means that �nite-rank f 's and onsequently also ompat ones are suhthat Mf 's are weakly ompat.Using the well-known fat that a Banah spae operator u : X → Y is weakly ompatif and only its seond adjoint u∗∗ maps X∗∗ into Y , we an also argue as follows. If weuse trae duality to identify B(H) and K(H)∗∗, then Mf : B(H) → B(H) is just theseond adjoint of Mf as an operator on K(H). So weak ompatness is equivalent to Mfating from B(H) to K(H), whih is readily seen to be equivalent to ompatness of f .This kind of argument seems to trae bak to K. Vala [V℄; see also C. A. Akemann andS. Wright [AS℄.Observe now that the algebra Mc(f) must be atomi and σ-�nite. In fat, if Mzhas no minimal projetions for some entral projetion z, then the spetral projetionsof fz orresponding to its stritly positive eigenvalues annot be of �nite rank. Also,if ‖fz‖ > 0 for unountable number of entral projetions z suh that Mz is a fator,then, for some ǫ > 0, the number of suh projetions with ‖fz‖ > ǫ would be in�nite,whih is impossible for a ompat f . Hene, Mc(f) is σ-�nite. Let (zn) be a sequeneof entral projetions suh that all Mzn's are fators and c(f) = z1 + z2 + . . . . Thenall the fators are disrete and ‖fzn‖ → 0. Reall that eah in�nite disrete fator is
∗-isomorphi to B(H) for some in�nite dimensional Hilbert spae H. Hene, by whatwe have just proved, Mf is weakly ompat on eah disrete fator, the result for �nitedisrete fators being obvious. Now, if we hoose k0 large enough, we an make the normof f(zk0+1 + zk0+2 + . . . ) arbitrarily small. Hene, with en and ϕ as before,

|(fϕ)(en)| ≤ |(fz1ϕ)(en)| + · · · + |(fzk0
ϕ)(en)| + ‖f(zk0+1 + zk0+2 + . . . )‖,whih an be made arbitrarily small uniformly w.r.t. ϕ from the unit ball, by what wehave already proved.Therefore, if f is ompat, then Mf is weakly ompat.



COMPACTNESS PROPERTIES FOR MULTIPLICATION OPERATORS 1833. Complete ontinuity. In this setion we show that a multipliation operatorMf on
M or M∗ an be ompletely ontinuous only if the algebra Mc(f) is �nite and atomi.Moreover, if Mf is ompletely ontinuous on the algebra, then f must be ompat.Theorem 3.1. Let M be a von Neumann algebra and f ∈ M. Then Mf ating on Mis ompletely ontinuous if and only if Mc(f) is �nite and f is ompat.Proof. Assume that Mf is ompletely ontinuous and that c(f) = 1. Consider �rst thease when M has no minimal projetions. Let M0 be a maximal abelian von Neumannsubalgebra of M ontaining f . By Lemma 2.1, M0 has no minimal projetion, either.Note that Mf restrits to a ompletely ontinuous map from M0 to M0. Sine M0 isommutative (and hene to all intents of purposes a C(K) spae), the restrition of Mfto M0 is weakly ompat [DU, p 160, Corollary 17℄. Hene we may apply Proposition2.4 to onlude that f = 0 in this ase.The next ase to onsider is that of an arbitrary I∞ fator. We an assume that
M = B(H) for some Hilbert spae H. As above, the restrition of Mf to some maximalabelian von Neumann subalgebra M0 of M is weakly ompat. By 2.5, f is ompat in
M0. Consequently, if f is not zero, there are a non-zero projetion e in M and a number
λ suh that fe = λe. We an assume that e is one-dimensional as an operator on H. Let
(en) be a sequene of pairwise orthogonal one-dimensional projetions on H suh that
e1 = e. Let vn be partial isometries suh that v∗nvn = en and vnv

∗
n = e. Choose any

ϕ ∈ M∗. The Cauhy-Shwarz inequality gives
|ϕ(vn)| ≤ ϕ(en)1/2ϕ(1)1/2 → 0.Hene vn is weakly null. On the other hand, the norms

‖Mfvn‖ = ‖Mfevn‖ = |λ|‖vn‖ = |λ|do not onverge to zero, whih yields a ontradition. Hene, f must be zero.In this ase, we ould again proeed by means of `soft analysis'. If Mf ats on Min a ompletely ontinuous manner, then it does so on K(H). When we identify, in aanonial fashion, K(H) and the ompleted injetive tensor produt H⊗̌H, then Mfbeomes 1H ⊗ f . Suppose now that f 6= 0. Pik x ∈ H with f(x) 6= 0 and identifythe linear span of x as well as of f(x) with C. Reall that H is just a opy of H⊗̌C.Combine all this to see 1H an be onsidered as being indued by 1H ⊗ f through theseidenti�ations. We onlude that 1H is ompat, whene dim H <∞.Suppose now that M is an in�nite diret sum of �nite type I fators. Let (zn) bea sequene of pairwise orthogonal non-zero entral projetions suh that eah Mzn isa fator. Obviously, the sequene (zn) is weakly (i.e. σ(M,M∗)) null. Hene ‖fzn‖ =

‖Mfzn‖ → 0, so that, for eah ǫ, the set of these nonzero entral projetions z for whih
Mz is a fator and ‖fz‖ ≥ ǫ, is �nite. Hene, the set of all nonzero entral projetions
z for whih fz 6= 0 and Mz is a fator is at most ountable and f is ompat (f. theproof of Theorem 2.5).We are left with the ase of a �nite diret sum of �nite type I fators. It is lear thatin this ase f must be ompat in M.



184 S. GOLDSTEIN ET AL.For the onverse, assume that f is ompat. The result is obvious if M is a �nitediret sum of �nite type I fators, so let M be an in�nite diret sum of suh fators.Let also the zn's be seleted as before. Given ǫ > 0, we an �nd k0 suh that ‖fzk‖ < ǫfor any k > k0. Take an arbitrary weakly null sequene (an) in M. We an assume thatits elements are taken from the unit ball. Obviously, ‖anzk‖ → 0 as n → ∞, sine theweak and norm topologies oinide on any �nite type I fator. Hene ‖anzk‖ < ǫ/‖f‖ for
k ≤ k0 and n su�iently large. Consequently, for all suh n, ‖fanzk‖ < ǫ for all k, whihmeans that ‖fan‖ ≤ ǫ, so that Mf is ompletely ontinuous.Theorem 3.2. Let M be a von Neumann algebra and f ∈ M. The operator Mf atingon M∗ is ompletely ontinuous if and only if Mc(f) is �nite atomi.Proof. Assume that, for some f ∈ M+, Mf is ompletely ontinuous and c(f) = 1.Consider �rst the ase when M is properly in�nite. Let (en) be a sequene of pairwiseorthogonal projetions in M, all equivalent to 1, and let (vn) be suh that v∗nvn = en and
vnv

∗
n = 1. Choose any state ϕ onM. As in the proof of Theorem 3.1, vn is σ(M,M∗)-null,hene also σ(M,M∗)-null. This implies that (ϕvn) is weakly null. Thus Mf (vnϕ) → 0 innorm. At the same time, ‖Mf (ϕvn)‖ ≥ ϕ(vnv

∗
nf) = ϕ(f). Hene f = 0.Assume now that M has no minimal projetions. Fix a state ϕ on M. Sine, byLemma 2.1, maximal abelian subalgebras ontaining f annot have minimal projetions,there is in M a Rademaher sequene (rn) onsisting of symmetries ommuting with

f and suh that ϕ(rkrl) = 0 for k 6= l. To see this, reall that eah suh subalgebrais ∗-isomorphi, as a von Neumann algebra, to the ℓ∞-diret sum of L∞-spaes oversome nonatomi �nite measure spaes. Note that the mapping x 7→ xϕ from M into
M∗ fatorizes through the Hilbert spae Hϕ of the GNS representation of M w.r.t. ϕ:
x 7→ xξ 7→ xϕ, where ξ ∈ Hϕ is suh that ϕ = ωξ. Sine (rnξ) forms an orthonormalsequene in Hϕ, it is weakly null there. Consequently, (rnϕ) is weakly null in M∗. Thus,
Mf (rnϕ) → 0 in norm. At the same time ‖Mf (rnϕ)‖ ≥ ϕ(rnfrn) = ϕ(f). Hene f = 0.Assume �nally that M is �nite atomi. Then M∗ has Shur's property. In fat, byProposition III.5.10 in [T℄, it is enough to show that if (ϕn) is weakly null, then the sets
{|ϕn|} and {|ϕ∗

n|} are both relatively weakly ompat. To this end, note that sine Mis �nite, the ∗-operation is σ-strongly ontinuous on bounded parts of M (see for exam-ple [S℄, Theorem 2.5.6), so that by Theorem III.5.7 in [T℄, the Arens-Makey topology
τ (M,M∗) oinides with the σ-strong topology on bounded parts of M. This yields rel-ative weak ompatness of the set of absolute values of any relatively ompat subset of
M∗, as explained in detail in Exerise V.2.5(d) from [T℄. Hene, every bounded operatoron M∗ is ompletely ontinuous, whih ends the proof.4. Compatness. The riteria for ompatness of a multipliation operator are easy toread o� from our results on ompletely ontinuous operators. In partiular, we obtainthat a multipliation operator on the algebra is ompat if and only if it is ompletelyontinuous.Theorem 4.1. Let M be a von Neumann algebra and f ∈ M. Then Mf ating on Mor M∗ is ompat if and only if Mc(f) is �nite and f is ompat.



COMPACTNESS PROPERTIES FOR MULTIPLICATION OPERATORS 185Proof. It is enough to prove the result for M, sine the other one follows from Shauder'stheorem�the operator on M is ompat if and only if its preadjoint operator on M∗ isompat. If Mf is ompat, then it is also ompletely ontinuous. Thus, by Theorem 3.1,
Mc(f) is �nite and f is ompat. For the onverse, assume that the two onditions aresatis�ed. Let (an) be a bounded sequene in M and let (zk) be the sequene of entralprojetions from the proof of Theorem 3.1. Obviously, the sequene (an) has a subse-quene whih onverges in norm on Mz1, then a subsequene of this subsequene whihonverges in norm on Mz2 and so on. Thus, we an onstrut a diagonal subsequene of
(an) whih is norm onvergent on eah �nite fator Mzk, k = 1, 2, . . . . The same type ofreasoning as in the proof of Theorem 3.1 shows that the image of this subsequene under
Mf is in fat norm onvergent on M.
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