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Abstract. Biane found out that irreducible decomposition of some representations of the sym-

metric group admits concentration at specific isotypic components in an appropriate large n scal-

ing limit. This deepened the result on the limit shape of Young diagrams due to Vershik-Kerov

and Logan-Shepp in a wider framework. In particular, it is remarkable that asymptotic behavior

of the Littlewood-Richardson coefficients in this regime was characterized in terms of an oper-

ation in free probability of Voiculescu. These phenomena are well understood through highest

order analysis in the Kerov-Olshanski algebra of polynomial functions on Young diagrams with

respect to the weight degree. Taking this point of view of highest order analysis into account,

we show an asymptotic formula for moments of the Jucys-Murphy element by considering an

appropriate graph structure on the Young diagrams which parametrize the conjugacy classes.

1. Introduction. This note grew out of an effort to understand Biane’s works [1] and

[2] where a remarkable connection of asymptotic theory for representations of the sym-

metric groups with free probability of Voiculescu is revealed. In particular, an asymptotic

behavior (or a certain thermodynamical limit) of the Littlewood-Richardson coefficients

is described by using free convolution. One of our motivations is to give an alternative

proof of this important result within the framework of representations of the symmetric

groups, namely without appealing to those of the general linear groups.

Asymptotic theory for representations of the symmetric groups, which was initiated by

Vershik, Kerov, Olshanski et al., has enjoyed rapid development in connection with a wide
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variety of topics in harmonic analysis and probability theory, including random matrices,

point processes, free probability, and representations of the infinite symmetric group. We

refer to Kerov [10] and Vershik [17] which outline development of the theory. Concerned

with behavior of objects related to representations of the symmetric group S(n) as n→
∞, we can observe various phenomena according to the regimes of scaling limits. The set

Yn of the Young diagrams with n boxes parametrizes both the equivalence classes of the

irreducible representations and the conjugacy classes of S(n). The Plancherel measure is

introduced on Yn in several canonical manners, such as the Plancherel theorem in Fourier

analysis (or irreducible decomposition of the regular representation), the distribution of

a canonical Markov chain on the Young graph, and the push-forward of the uniform

probability on S(n) by the Robinson-Schensted correspondence. When diagrams in Yn are

rescaled by 1/
√
n horizontally and vertically and distributed according to the Plancherel

measure, the famous limit shape appears as a typical diagram in n→∞ limit, as shown by

Vershik-Kerov [18] and Logan-Shepp [12]. This result was a starting point of subsequent

great progress.

A fantastic idea due to Vershik-Kerov, which enables us to treat scaling limits well,

is to embed Young diagrams into a function space and further a space of measures on R.

The notion of transition measure for a diagram due to Kerov is of particular use. Based

on a series of Kerov’s works, Biane found in [1] that free probability theory describes

properly the asymptotic behavior of representations of the symmetric groups in the same

scaling regime as the limit shape is observed. Biane showed the following results. In

this regime, the irreducible character of S(n) enjoys an asymptotic formula as n → ∞
in terms of free cumulants of the transition measure corresponding to the irreducible

representation. Also in the same regime as n→∞, several representations admit a con-

centration phenomenon in which certain dominant isotypic components can be specified

in the irreducible decompositions. Moreover, the specific components are determined from

the original representations through appropriate operations in free probability theory. In

particular, the apperance of the limit shape due to Vershik-Kerov and Logan-Shepp is

this concentration in irreducible decomposition of the regular representation of S(n).

Here the transition measure of the limit shape is the standard semi-circle distribution of

Wigner. In these works of Biane, a central role is played by the Jucys-Murphy element

Jn = (1 n+ 1) + (2 n+ 1) + · · ·+ (n n+ 1) ∈ C[S(n+ 1)]

which commutes with S(n) and fully describes the branching rule of the restriction of each

irreducible representation of S(n+ 1) to S(n). Throughout this note, S(n) is embedded

as the stabilizer of the letter n+ 1 in S(n+ 1).

Let us assemble some notations in symmetric groups and Young diagrams. Y denotes

the set of Young diagrams. For λ ∈ Y, the number of boxes, rows and columns are

denoted by |λ|, row(λ) and col(λ) respectively. The number of j-rows of λ is denoted by

mj(λ). Set Y = {λ ∈ Y
∣

∣m1(λ) = 0} and Yk = {λ ∈ Y
∣

∣|λ| = k} . For ρ, σ ∈ Y, their

union ρ ∪ σ is defined by mj(ρ ∪ σ) = mj(ρ) + mj(σ). We use also the cycle notation

ρ = (1m1(ρ)2m2(ρ) . . . jmj(ρ) . . .) and the row coordinates ρ = (ρ1 ≥ ρ2 ≥ · · · ≥ ρi ≥ · · · ).
The conjugacy class of S(n) and the adjacency operator corresponding to ρ ∈ Y, |ρ| ≤ n
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σ σ◦ σ×

Fig. 1. σ◦ and σ×

are denoted by Cρ∪(1n−|ρ|) and Aρ∪(1n−|ρ|) =
∑

x∈C
ρ∪(1n−|ρ|)

x respectively. Let l(g) be

the distance between g ∈ S(n) and the unit element e (or the length of g) on the Cayley

graph of S(n) where all transpositions are taken as generators. l is a class function on

S(n). If g ∈ Cρ∪(1n−|ρ|), we have l(g) = n− ♯{cycles in g} = |ρ| − row(ρ). We then define

the length function l on Y by l(ρ) = |ρ| − row(ρ). σ◦ denotes the diagram made of σ ∈ Y

by removing all 2-rows and the 1st column, while σ× the one by removing just the 1st

column (Figure 1). For σ ∈ Yk, let NC(σ) denote the set of all noncrossing partitions of

{1, 2, . . . , k} with σ as their block structure (namely, having mj(σ) blocks of length j).

Conditional expectation En : C[S(n + 1)] −→ C[S(n)] is defined to fix the elements in

S(n) and to map S(n+ 1) \ S(n) to 0.

Here is the main result of this note.

Theorem 1. The following asymptotic expression holds for k ∈ N = {1, 2, . . .}:

(1) EnJ
k

n =
∑

σ∈Yk

|NC(σ)|nl(σ)(1 +O(n−1))
Aσ◦∪(1n−|σ◦|)

|Cσ◦∪(1n−|σ◦|)|
.

Note the advantage that the range of sum depends only on k and not on n. The

meaning of Theorem 1 will be clearer when we put Eq. (1) into the conjugacy class algebra

(or, applying irreducible characters, into the polynomial functions on Y) and consider the

weight degree. Each summand in the right hand side of Eq. (1) is expressed as

|NC(σ)|aσ×;n + (lower terms)

with respect to the weight degree. See §4 for necessary definitions. The weight degree of

aσ×;n is equal to |σ×|+ row(σ) = |σ| = k.

As a continuation of the works of Kerov and Biane along this direction, some recent

works of Śniady are remarkable. In [13] and [14], Śniady studied not only analysis of the

highest degree terms but also transformation rules involving lower degree terms. As an

application, he obtained a universal feature of the fluctuation of Young diagrams.

The aim of this note is more modest. In §2 we give an elementary proof of Theorem 1

by introducing random walk on Young graph Y which is stratified in a noncanonical way.

In §3 we summarize discussions about how the concentration phenomenon is observed

in irreducible decomposition by applying Theorem 1. Asymptotic theory for symmetric

groups has an important feature as permutation models for free probability. It is therefore

meaningful to describe how operations in free probability come out in the scaling limits by

way of random permutation methods which are logically independent of random matrix

models. The main theorem and its proof are quite elementary and need no preliminaries.

For convenience of readers, we collect in §4 some notions and terminology which may not

be well-known and are necessary for understanding the discussion on the concentration

phenomenon in §3 (as well as some parts in this Introduction).
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∅

old edge
new edge

Fig. 2. Stratification of Y and its graph structure

2. Proof of Theorem 1

2.1. Suppose n≫ k. In the expression

J k
n =

∑

i1,...,ik∈{1,...,n}
(ik ∗) · · · (i1 ∗) where ∗ = n+ 1 ,

each term induces a k-walk starting at e on the Cayley graph of S(n+ 1) as well as its

associated ‘shadow walk’ on Y. Here Y is considered to parametrize conjugacy classes and

is given the stratification according to length function l (Figure 2). One step transition

increases or decreases the length just by 1 and hence causes an up or down among the

strata. This stratification was used also in [4] to introduce appropriate creation and

annihilation operators. Acted on by En, a term really contributes to the sum only if

(ik ∗) · · · (i1 ∗) ∈ S(n). Its type is characterized by the following. (In [3], those partitions

determined by such indices i1, . . . , ik are said to be admissible.) The proof is given in the

next subsection.

Lemma 1. Let ρ ∈ Y be given. The following are equivalent.

(i) There exist i1, . . . , ik ∈ {1, . . . , n} such that (ik ∗) · · · (i1 ∗) is of ρ-type and in S(n).

(ii) l(ρ) has the same parity with k and satisfies |ρ|+ row(ρ) ≤ k.
(iii) ρ = σ◦ holds for some σ ∈ Yk.

Lemma 1 yields

(2) EnJ
k

n =
∑

σ∈Yk

∑

g∈C
σ◦∪(1n−|σ◦|)

(EnJ
k

n )(g) g .

For each σ ∈ Yk, we count up the second sum in Eq. (2) asymptotically (neglecting lower

orders). To describe possible ups and downs caused by multiplying (i ∗) from the left, we

introduce the edges for Y as Figure 2. We have the stratification of Y with respect to l

by pasting a copy of the first column at every diagram in the usual Young graph Y. In

Figure 2, Y inherits the old edges from Y in this operation, while the new edges indicate

that the two diagrams are communicated each other by joining two rows or by dividing

one row. We classify the contributing terms in the second sum of Eq. (2) according to the
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associated k-walks on the modified Young graph Y in an asymptotic manner. If an up

step is caused by multiplying (i ∗), we can assume that the letter i has never appeared

since otherwise the contributions are of lower orders. (For example, we neglect the case

of going up along a new edge.) Clearly ∗ must jump out of a nontrivial cycle in the final

step. The associated (non-Markovian) random walk on Y is governed by the following

rule.

1. The final step is going down along an old edge.

2. Suppose you are now at ρ ∈ Y. Your next diagram is chosen by:

(a) if you came up to ρ along an old edge

i. add a box to the row just lengthened [up]

ii. divide the row just lengthened [down]

(b) if you came down to ρ along an old edge

i. add a 2-row [up]

ii. add a box to the row just shortened [up]

iii. divide the row just shortened [down]

(c) if you came down to ρ along a new edge

i. add a box to either row just divided [up]

ii. divide either row just divided [down].

Given a sample of k-walk obeying this rule, we can specify the row containing ∗ (up to

the ones of equal length) at every step by tracing backward the walk to ∅.

For σ ∈ Yk, let W (σ) denote the k-walks from ∅ to σ◦ obeying this rule. If a k-walk

w ∈ W (σ) has u up steps, the number of corresponding paths on the Cayley graph of

S(n+ 1) to w is nu up to lower orders. Since u is given by

u =
k + l(σ◦)

2
=
|σ|+ l(σ◦)

2
= |σ| − row(σ) = l(σ)

from Eq. (5), we have

(3)
∑

g∈C
σ◦∪(1n−|σ◦|)

(EnJ
k
n )(g) = |W (σ)|nl(σ) +O(nl(σ)−1) .

Lemma 2. There is a bijective mapping of W (σ) to NC(σ) for σ ∈ Y.

The proof of Lemma 2 is given in the next subsection.

Combining Eqs. (2) and (3) with Lemma 2, we get

(4) EnJ
k
n =

∑

σ∈Yk

∑

g∈C
σ◦∪(1n−|σ◦|)

|NC(σ)|nl(σ)
(

1 +O(n−1)
)

g .

Since Jn commutes with S(n) (= the stabilizer of ∗ in S(n+ 1)), so does EnJ
k

n . In other

words, EnJ
k

n is a linear combination of adjacency operators. Note that the correspondence

between σ and σ◦ is one-to-one if k is given. Hence Eq. (4) agrees with Eq. (1). This

completes the proof of Theorem 1.
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(a1 + b1 − 1 ups)

(a2 + b2 − b1 ups)

Fig. 3. The first and second down steps

2.2. Proof of Lemma 1. Assume that (i) holds. Let u and d denote the numbers of

ups and downs respectively of the k-walk from ∅ to ρ on Y associated with the path

e → (i1 ∗) → · · · → (ik ∗) · · · (i1 ∗) on S(n + 1). We have u + d = k and u − d = l(ρ),

hence

(5) u =
k + l(ρ)

2
and d =

k − l(ρ)
2

.

This implies that k and l(ρ) have the same parity. Since a cycle in (ik ∗) · · · (i1 ∗) which

does not contain ∗ cannot be produced until a down step occurs, we have

row(ρ) ≤ d =
k − l(ρ)

2
hence k ≥ l(ρ) + 2row(ρ) = |ρ|+ row(ρ) .

Conversely assume that (ii) holds. We can take (ik ∗) · · · (i1 ∗) ∈ S(n) of ρ-type as follows.

Let ρ = (ρ1 ≥ ρ2 ≥ · · · ≥ ρrow(ρ)). First take distinct i1, . . . , iρ1
∈ {1, . . . , n} and

iρ1+1 = i1. Then (iρ1+1 ∗)(iρ1
∗) · · · (i1 ∗) = (i1i2 . . . iρ1

) ∈ S(n). Next take distinct

j1, . . . , jρ2
∈ {1, . . . , n} \ {i1, . . . , iρ1

} and make ρ2-cycle in S(n) similarly. Repeating

this procedure to get distinct row(ρ) cycles in S(n), we count the number of steps as

(ρ1 + 1) + · · ·+ (ρrow(ρ) + 1) = |ρ|+ row(ρ) ≤ k. As for the remaining k− (|ρ|+ row(ρ))

steps, which is even, we repeat multiplying (s ∗) by using letter s which never appeared.

We have thus (i) ⇔ (ii). It is obvious that (ii) ⇔ (iii) holds from the definition of σ◦.
This completes the proof of Lemma 1.

Proof of Lemma 2. We construct a map W (σ)→ NC(σ) for given σ ∈ Yk as follows. Let

us assign ◦ and • to an up and down step respectively and arrange them according to the

given k-walk w ∈ W (σ) (e.g. Figure 4). We specify the row which contains ∗ for every

diagram on w. Suppose that the row containing ∗ is divided as Figure 3 at the first down

step, then we join the first down vertex • with the a1 (≥ 1) left adjacent up vertices ◦
to get a block of length a1 + 1. Similarly suppose that the second down step looks like

Figure 3, we join the second • with the a2 left adjacent ◦’s, skipping the ones contained

in the already finished block, to get a block of length a2 + 1. In order to continue this

operation until all ◦’s and •’s are joined properly, it suffices to verify that

(i) at each down step the left adjacent ◦’s are not lacking for ai

(ii) at the final down step the remaining ◦’s are all joined.

The row finished by a down step may be of length 1 though the row is then not written

in σ◦. In division into two rows at a down step, the row which does not contain ∗ keeps

invariant afterward because we can neglect lower orders. Consider the moment that the

jth down step has occurred for j = 1, . . . , q where q is the number of down vertices. The

number of vertices which have already appeared is a1 + · · ·+ aj + bj + (j − 1), while the
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( )NC∈
◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ •

Fig. 4. Example; 11-walk of 7 ups and 4 downs

∗ ∗ ∗
∗ ∗

∗∗∗∗∗∗

σ◦ =

∅
1 2 3 4 5 6

7
891011

u u u u d u

u

ddud

Fig. 5. Example; 11-walk of 7 ups and 4 downs

number of vertices which should be joined is a1 + · · · + aj + j. Since bj − 1 ≥ 0 for any

j, (i) holds. Moreover, since bq = 1 at the final step, (ii) holds. The resulting partition of

{1, . . . , k} is clearly noncrossing. We thus obtain a map W (σ)→ NC(σ).

Conversely let π ∈ NC(σ) be given. We assign • to the right end vertex of each block

and ◦ to the other vertices (Figure 4). We specify a1, a2, . . . and then trace backward the

above procedure to obtain a k-walk in W (σ) starting from σ◦. (An example is given in

Figure 4 and Figure 5.) This completes the proof of Lemma 2.

3. Concentration phenomenon in irreducible decomposition

3.1. Fundamental scheme of concentration phenomenon. We summarize a scheme of the

concentration phenomenon due to Biane [1], [2] as follows. Let χ(n) be a positive-definite

central function on S(n) and χ̃(n) = χ(n)/χ(n)(e) its normalization. When we consider

the concentration in irreducible decomposition of representation πn of S(n), we take

χ(n) = χπn as the character of πn. Since χ̃(n) is expressed as a convex combination of the

normalized irreducible characters of S(n), we have probability P (n) on Yn determined by

(6) χ̃(n) =
∑

λ∈Yn

P (n)(λ)χ̃λ .

The transition measure of χ(n) is also defined through Eq. (6) as

mχ(n) =
∑

λ∈Yn

P (n)(λ)mλ.

Taking the regime of 1/
√
n-scaling into account, we set the following assumptions for

a growing family {χ(n)}.

Assumption 1. For any k ∈ N, there exists mk ∈ R such that

(7) Mk(mχ(n)) ∼ mk n
k/2 (n→∞).

Moreover, the moment problem for the sequence {mk}k∈N has a unique solution.

Assumption 2. For any ρ, σ, τ ∈ Y, χ(n) satisfies:

2a) (decay order)

(8) χ̃
(n)

ρ∪(1n−|ρ|)
= O(n−l(ρ)/2) (n→∞)
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2b) (asymptotic factorization)

(9) χ̃
(n)

σ∪τ∪(1n−|σ|−|τ|)
− χ̃(n)

σ∪(1n−|σ|)
χ̃

(n)

τ∪(1n−|τ|)
= o(n−(l(σ)+l(τ))/2) (n→∞).

We can see that for irreducible characters Eq. (8) implies Eq. (9) with a better error

O(n−(l(σ)+l(τ))/2−1) by using multiplicativity on the center and an elementary argument

on conjugacy classes (see e.g. §3.3 of [5]). Let ∆ denote the continuous diagram determined

from Assumption 1 by

(10) mk =

∫ ∞

−∞
xk

m∆(dx) (k ∈ N).

As Biane showed in [2], Assumptions 1 and 2 yield the concentration at ∆ ∈ D in the

regime of 1/
√
n-scaling as n→∞. More precisely, for arbitrarily given errors ǫ1, ǫ2 > 0,

we have

(11) P (n)
({

λ ∈ Yn

∣

∣|Mk(mλ
√

n)−Mk(m∆)| ≥ ǫ1
})

≤ ǫ2
for sufficiently large n (see Eq. (19) for λ

√
n). If we are dealing with A-balanced diagrams

for some fixed A > 0, Eq. (11) implies the concentration at ∆ also in the uniform topology

on the continuous diagrams.

A self-contained derivation of the result in this subsection from Theorem 1 is pre-

sented in [5]. We state here its outline for the sake of convenience. Since Eq. (22) yields

χ̃(n)(EnJ
k

n ) = Mk(mχ(n)) for any k ∈ N, Assumption 1 (Eq. (7)) is written as

(12) χ̃(n)(EnJ
k

n ) ∼ Mk(m∆)nk/2 (n→∞)

under Eq. (10). A central limit argument based on Theorem 1 contributes to verification

of Eq. (12) (hence Assumption 1) for relevant representations. Note that multiplicativity

χ̃λ(EnJ
k

n EnJ
l

n ) = χ̃λ(EnJ
k
n )χ̃λ(EnJ

l
n ) (λ ∈ Yn; k, l ∈ N)

holds since EnJ
k

n belongs to the center of C[S(n)]. Applying Theorem 1, we can show

that an asymptotic factorization property

(13) χ̃(n)(EnJ
k

n EnJ
l

n )− χ̃(n)(EnJ
k

n )χ̃(n)(EnJ
l

n ) = o(n(k+l)/2) (n→∞)

holds if χ(n) satisfies Assumption 2. Eqs. (12) and (13) imply that the ‘mean’ and ‘stan-

dard deviation’ have the asymptotics

χ̃(n)(EnJ
k
n ) ≍ nk/2,

{

χ̃(n)(EnJ
k

n EnJ
k

n )− χ̃(n)(EnJ
k
n )2

}1/2
= o(nk/2),

respectively for each k ∈ N. Then, through a standard discussion relying on the Chebychev

inequality, we derive Eq. (11) by using Eq. (22) again.

3.2. Examples. Let us consider irreducible decomposition of a representation of the sym-

metric group and assume that the characters are computable in an appropriate sense.

Through the discussion in §3.1, we can understand a concentration phenomenon for the

representation by applying Theorem 1 in the framework due to Biane. We briefly discuss

the following two cases which include several interesting examples.

1. Induction of an irreducible representation of a subgroup.

2. Restriction of a factor representation of the infinite symmetric group S(∞).
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3.2.1. Let us take Gel’fand pair (S(m + n), S(m) × S(n)) as an example. Here S(m)

and S(n) are regarded as the stabilizers in S(m + n) of m + 1, . . . ,m + n and 1, . . . ,m

respectively. For λ ∈ Ym and µ ∈ Yn, consider irreducible decomposition of their outer

product

Uλ ◦ Uµ = Ind
S(m+n)
S(m)×S(n)Uλ ⊠ Uµ ≃

⊕

ν∈Ym+n

c ν
λµUν .

c ν
λµ is a Littlewood-Richardson coefficient. Probability Lλ,µ on Ym+n defined by

Lλ,µ(ν) =
c ν
λµ dim ν

dimλ ◦ µ (ν ∈ Ym+n)

gives decomposition of the normalized character χ̃λ◦µ. We call it the Littlewood-Richard-

son measure. If we apply the induced character formula and Biane’s asymptotic character

formula Eq. (26) for balanced Young diagrams, verification of Assumptions 1 and 2 is

not difficult. Computing χ̃λ◦µ(Em+nJ
k

m+n) by using Theorem 1, we get the expression of

the free cumulant-moment formula for free convolution mλ ⊞ mµ. Thus, as anticipated in

Introduction, the concentration phenomenon with respect to the Littlewood-Richardson

measure due to Biane [1] is shown within the framework of representations of the sym-

metric groups.

Let us take Gel’fand pair (S(2n), H(n)) as another example, where H(n) = (Z2)
n ⋊

S(n). Here we divide {1, . . . , 2n} into pairs as {1, 1, . . . , n, n} = {1, . . . ,n}, i = {i, i}.
(Z2)

n is regarded as a subgroup of S(2n) by acting as flips of i and i, while S(n) by

acting as permutations of {1, . . . ,n}. Spherical functions on (S(2n), H(n)) are known

as zonal polynomials. From a general construction of irreducible representations of a

semi-direct product group, the irreducible representations of H(n) are parametrized by

{(m,λ, µ)|m ∈ {0, . . . , n}, λ ∈ Ym, µ ∈ Yn−m}. Consider the probability coming from

irreducible decomposition of Ind
S(2n)
H(n) U(m,λ,µ) as above. In this case also, Assumptions

1 and 2 are verified through computation by using the induced character formula. As a

result, we observe concentration at the limit shape Ω (Eq. (18)). Restricted on balanced

Young diagrams, the concentration is valid in the uniform topology on the continuous

diagrams. See [6] for some details in this paragraph.

3.2.2. This second case is pointed out by Biane [2]. As shown by Thoma [16], the factor

representations of finite type of S(∞) are parametrized by

{

α = (α1 ≥ α2 ≥ · · · ≥ 0), β = (β1 ≥ β2 ≥ · · · ≥ 0)
∣

∣

∣

∞
∑

i=1

(αi + βi) ≤ 1
}

.

The value of the character at the conjugacy class corresponding to ρ ∈ Y is given by

(14) ψα,β
ρ =

∏

k≥2

(

∞
∑

i=1

αk
i −

∞
∑

i=1

(−βi)
k
)mk(ρ)

.

Vershik-Kerov [20] constructed realization Uα,β of the factor representation correspond-

ing to this ψα,β . In particular, it is isomorphic to the regular representation if α =

β = 0, while it is the canonical representation on a tensor product of CN if α =

(1/N, · · · , 1/N, 0, · · · ) (1/N repeated N times) and β = 0. As shown by Vershik-Kerov

[19], ψα,β is captured as the limit of irreducible character χ̃λ(n)

along the sequence
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x1 O xr−row(λ) col(λ)

Fig. 6. Young diagram and the min-max coordinates

λ(n) ∈ Yn such that λ
(n)
i /n → αi and λ

(n)′
i /n → βi. Here ′ indicates the transposed

Young diagram. Hence, when we discuss concentration phenomenon in irreducible decom-

position of Res
S(∞)
S(n) U

α(n),β(n)

under 1/
√
n-scaling, we should necessarily take sequences

α(n), β(n) which converge to 0 pointwise. Since χ̃α(n),β(n)

= ψα(n),β(n) |S(n) is multiplica-

tive, Assumption 2 is trivial. Assumption 1 is also treated in such a way that the free

cumulants of the limit measure are computed by using Eq. (14) and Theorem 1.

4. Appendices

4.1. Transition measure and continuous diagram. In order to admit operations of scaling

limits, it is convenient to extend the notion of Young diagrams through the expression in

a “Russian style” (Figure 6). As references for this subsection, we mention Kerov [9], [10].

See also Ivanov-Olshanski [8]. We restrict ourselves to dealing with centered diagrams.

Set

D = {ω : R→ R||ω(x1)− ω(x2)| ≤ |x1 − x2|, ω(x) = |x| for sufficiently large |x|}
⊃ D0 = {ω ∈ D|ω is piecewise linear, ω′(x) = 1 or − 1} ⊃ Y .

Elements in D and D0 are called continuous diagrams and rectangular diagrams respec-

tively. A rectangular diagram is determined by the interlacing sequence consisting of

positions of its local minima xi and local maxima yi (Figure 6):

(15) λ ∈ D0 ↔ x1 < y1 < x2 < · · · < xr−1 < yr−1 < xr such that
r

∑

i=1

xi =
r−1
∑

i=1

yi .

(Note that the min-max coordinates xi, yi of λ ∈ Y are integers since each box is
√

2×
√

2

in the embedding Y ⊂ D.) Considering the partial fraction expansion

(16)
(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr)
=

µ1

z − x1
+ · · ·+ µr

z − xr
,

we get atomic probability measure
∑r

i=1 µiδxi
on R, which has mean 0 since

∑

xi =
∑

yi.

Conversely, since yi’s are defined by Eq. (16) if such a probability measure is given, we

have a rectangular diagram satisfying (15). The transition measure of λ ∈ D0 is defined

as this atomic probability and denoted by mλ. Let Mk( · ) denote the kth moment of a

measure. We have M0(mλ) = 1, M1(mλ) = 0 and, if λ ∈ Y, M2(mλ) = |λ|. On the other

hand, set τλ =
∑r

i=1 δxi
−∑r−1

i=1 δyi
for λ ∈ D0 satisfying (15). τλ is called the Rayleigh

measure of λ. Then we see

(17)
∞
∑

n=0

Mn(mλ)
1

zn
= exp

∞
∑

k=1

Mk(τλ)

k

1

zk
.
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Especially, {Mn(mλ)}n∈N and {Mk(τλ)}k∈N are expressed by polynomials of each other.

For arbitrary ω ∈ D, take an approximating sequence of rectangular diagrams in the

uniform topology. By virtue of the moment problem for probabilities and Eq. (17), we

obtain uniquely the Rayleigh measure τω and the transition measure mω. Here mω and τω
also satisfy Eq. (17). Furthermore, if the support of any ω(x)− |x| is contained in a fixed

compact interval, these correspondences are homeomorphic with respect to the uniform

topology on the continuous diagrams and the weak topology on the probabilities. The

transition measure and the Rayleigh measure of the limit shape:

(18) Ω(x) =

{

2
π

(

xarcsinx
2 +
√

4− x2
)

(|x| ≤ 2),

|x| (|x| > 2),

are the standard semi-circle distribution and an arcsine one respectively:

mΩ(dx) =
1

2π

√

4− x2 I[−2,2](x)dx, τΩ(dx) =
1

π
√

4− x2
I(−2,2)(x)dx.

If we consider a rescaled diagram ωs(x) = s−1ω(sx) for ω ∈ D and s > 0, we have

(19) Mk(mωs) =
1

sk
Mk(mω) (k ∈ N).

4.2. A trace formula. Let λ ∈ Yn have x1 < y1 < · · · < yr−1 < xr as the min-max

coordinates (Figure 6). Putting a box at the ‘valley’ of min coordinate xj of λ, we obtain r

diagrams in Yn+1, denoted by Λj (j = 1, . . . , r). By using the hook formula for dimensions

of irreducible representations, we can verify that the transition measure of λ is given by

(20) mλ =

r
∑

j=1

dimΛj

(n+ 1) dimλ
δxj

.

See [10], Chapter 4, 1.4. The mass dimΛ/(n + 1) dimλ agrees with the transition prob-

ability from λ to Λ of the Markov chain on the Young graph Y which is called the

Plancherel growth process. On the other hand, by using well-known spectral structure of

the Jucys-Murphy elements (see e.g. [15]), we see

(21) χ̃λ(EnJ
k

n ) =

r
∑

j=1

xk
j

dimΛj

(n+ 1) dimλ
.

Eqs. (20) and (21) yield the following trace formula (see [3]):

(22) χ̃λ(EnJ
k
n ) = Mk(mλ) (k ∈ N, λ ∈ Yn).

4.3. Polynomial functions on Young diagrams, the conjugacy class algebra. We review

these materials as a background of such an expression as Eq. (1). We refer to Kerov-

Olshanski [11], Ivanov-Olshanski [8], Ivanov-Kerov [7] and Kerov [10] for details. Recall

{Mk(τλ)}k∈N and {Mk(mλ)}k∈N are related to each other by polynomials in view of

Eq. (17). They are expressed as polynomials in the min-max coordinates of λ. We consider

the weight degree by regarding Mk(τλ) as homogeneous with degree k. Set

Σρ(λ) =

{

|λ||ρ|χ̃λ
ρ∪(1|λ|−|ρ|) (|λ| ≥ |ρ|)

0 (|λ| < |ρ|)
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ρ = φ1 = φ2 =1 2
3 4
5

1 2
3 4
6

Fig. 7. gφ1 = gφ2 = (12)(34) ∈ S(6)

for ρ ∈ Y, and Σk(λ) = Σ(k)(λ) for k ∈ N. Applying the Frobenius formula for the value

of an irreducible character at a cycle, we can get

(23) Σk(λ) = −1

k
[z−1]

{

1

Gmλ
(z)
· · · 1

Gmλ
(z − k + 1)

}

where Gµ(z) denotes the Cauchy transform of the measure µ. On the other hand, the

Voiculescu formula for the R-transform gives the expression for free cumulants:

(24) Rk+1(mλ) = −1

k
[z−1]

{(

1

Gmλ
(z)

)k}

.

Comparing Eq. (23) and Eq. (24), we deduce

Σk(λ) = Kk(R2(mλ), · · · , Rk+1(mλ)) = Rk+1(mλ) + · · ·
where the lower terms (· · · ) consist of a polynomial in R2, · · · , Rk−1, each term having the

weight degree of the same parity with k+ 1. Kk is called a Kerov polynomial. See Biane

[3]. Consequently, {Mk(τλ)}, {Mk(mλ)}, {Rk(τλ)}, {Rk(mλ)} and {Σk(λ)} generate the

same algebra A. We call A the polynomial functions on Y after Kerov-Olshanski [11].

Note that the weight degree of Σk is k + 1.

The structure of A can be transformed into the conjugacy class algebra. Set

Φρ;n = {φ : {b}b∈ρ → {1, 2, . . . , n}| one-to-one map}
for ρ ∈ Y and n ≥ |ρ|. Let gφ be the element in S(n) with cycle structure determined by

φ. For example, see Figure 7. Set

aρ;n =

{

∑

φ∈Φρ;n
gφ (|ρ| ≤ n),

0 (|ρ| > n),

and ak;n = a(k);n for k ∈ N. We see

aρ;n = n|ρ| Aρ∪(1n−|ρ|)

|Cρ∪(1n−|ρ|)|
(|ρ| ≤ n).

It is remarkable that structure constants of products of aρ;n are independent of n:

(25) aσ;naτ ;n =
∑

ρ

f ρ
σ,τaρ;n (f ρ

σ,τ ∈ Z)

which was shown by Ivanov-Kerov [7]. Clearly χ̃λ(aρ;n) = Σρ(λ) holds for λ ∈ Yn. χ̃λ

is multiplicative on the center of C[S(n)]. By virtue of Eq. (25), the correspondence

ak;n ←→ Σk (given by taking the irreducible characters) defines the weight degree in the

conjugacy class algebra consistently (independently of n). Eq. (22) indicates that EnJ
k

n

corresponds to Mk(m·) and has weight degree k.

Kerov polynomials yield the following asymptotic character formula of Biane [1]:

(26) χ̃λ
ρ∪(1n−|ρ|) = n−|ρ|

∏

j≥2

Rj+1(mλ)mj(ρ) +O(n−l(ρ)/2−1) (n→∞)
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for ρ ∈ Y and λ ∈ Yn(A) where Yn(A) = {λ ∈ Yn|row(λ), col(λ) ≤ A
√
n} for some

A > 0 (so-called A-balanced Young diagrams). In fact, Ivanov-Olshanski proved Eq. (26)

in [8] along this line. See [5] for derivation of Eq. (26) from Theorem 1.
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