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286 A. D. KRYSTEKIn Setion 4 we alulate the expliit formulae for the interlaing sequenes assoiatedwith the α-transformed retangular diagram. Namely, we obtain the following formulae
xk (α) = α xk + (1 − α)

k−1∑

j=1

(yj − xj) + (1 − α) c,

yk (α) = α yk + (1 − α)
k∑

j=1

(yj − xj) + (1 − α) c,where c =
∑n

k=1 xk −
∑n−1

k=1 yk.In Setion 5 we extend the de�nition of the α-transformation to disrete �nitely sup-ported measures and show that the α-transformation ommutes with dilation of measures.In Setion 6 we de�ne a generalization of the α-transformation, alled the β,α-transformation, and obtain similar results for that new transformation.2. Interlaing sequenes and Young diagrams. We will onsider sequenes y1, . . .

. . . , yn−1 and x1, x2, . . . , xn. Reall that two sequenes are alled interlaing if
x1 < y1 < x2 < . . . < yn−1 < xnand the number

c =
n∑

k=1

xk −
n−1∑

k=1

ykis alled the enter of interlaing sequenes. With every pair of interlaing sequeneswe an uniquely assoiate a pieewise linear ontinuous funtion ω, alled a retangularYoung diagram.Definition 1. A pieewise linear ontinuous funtion ω = ω(xi,yi) is alled a retangulardiagram onneted with the interlaing sequenes y1, . . . , yn−1 and x1, . . . , xn if
ω′ (u) =

{
+1 if xk < u < yk, k = 1, 2, . . . , n,

−1 if yk < u < xk+1, k = 1, 2, . . . , n − 1,

ω (u) = |u − c| if u < x1 or u > xn.The number
A =

∑

i<j

(yi − xi) (xj − yj−1)is alled the area of the diagram onneted with these sequenes. We denote the set ofsuh diagrams by D0.De�nition 1 implies that
ω (xk) =

k−1∑

i=1

(yi − xi) +

n−1∑

i=k

(xi+1 − yi),

ω (yk) =
k∑

i=1

(yi − xi) +
n−1∑

i=k

(xi+1 − yi),



BOOLEAN CONVOLUTION AND α-TRANSFORMATION 287see [K1, K3℄ for proof. The above relations ould be rewritten as
ω (xk) = c − xk + 2

k−1∑

j=1

(yj − xj) ,

ω (yk) = c − yk + 2

k∑

j=1

(yj − xj) .

(1)
A true Young diagram Λ = (λ1, λ2, . . . , λm), whih orresponds to some irreduiblerepresentation of the symmetri group Sq, with q = λ1 + . . . λm, is uniquely determinedby the following onditions:1. c = 0,2. xk ∈ Z and yl ∈ Z for k = 1, 2, . . . , n and l = 1, 2, . . . , n − 1.We also onsider a disrete probability measure

µ =
∑

µkδxk
, where µk =

∏
j (xk − yj)∏

j 6=k (xk − xj)
,whih is alled the transition measure of the retangular diagram ω(xi,yi) onneted withthe interlaing sequenes y1, . . . , yn−1 and x1, . . . , xn.Let Gµ (z) be the Cauhy transform of the measure µ,

Gµ (z) =
∑ µk

z − xk
=

∏
j (z − yj)∏
j (z − xj)

,(2)and Mµ (z) be the moment generating funtion of µ,
Mµ (z) =

∞∑

j=0

mµ(j)zj , where mµ(j) =
∑

x
j
k µk.Then we have

Gµ (z) =
1

z
Mµ

(
1

z

)
.(3) Another distribution assoiated with a pair of interlaing sequenes, alled the o-transition distribution, arises from the deomposition

1

Gµ (z)
=

(z − x1) (z − x2) . . . (z − xn)

(z − y1) . . . (z − yn−1)
= z − c −

n−1∑

k=1

νk

z − yk
,(4)where c = c (ωµ) is equal to the enter of the diagram ω and ∑

νk = A equals the areaof this diagram [K1℄. Moreover
νk = −

∏
i (yk − xi)∏

i 6=k (yk − yi)and
x1 < y1 < x2 < . . . < xn−1 < yn−1 < xn ⇔ ν1, . . . , νn−1 > 0.We are going to onsider the following generalization of retangular diagrams:



288 A. D. KRYSTEKDefinition 2. A ontinuous diagram is any funtion ω : R → R suh that
|ω(u1) − ω(u2)| ≤ |u1 − u2|and for some c ∈ R and su�iently large |u|

ω(u) = |u − c|.The number c is alled the enter of a diagram ω, and the area A of suh a diagram isde�ned as
A =

1

2

∫

R

(ω(u) − |u − c|) du.We denote the set of suh diagrams by D.To every diagram ω ∈ D we assoiate a probability distribution µ = µω whih we allthe transition distribution of ω. The measure µ is de�ned by the identity [K1, K2, K3℄
1

z
exp

1

2

∫

R

d (ω(x) − |x|)
x − z

=

∫

R

dµ(x)

z − x
= Gµ(z),where Gµ(z) =

∫
R

d µ(x)
z−x is the Cauhy transform of the measure µ.Kerov proved the following theorem:Theorem 1 ([K1℄). For any diagram ω ∈ D its transition measure exists and is uniqueand ompatly supported. The measure µω is �nitely supported if and only if the diagram

ω is retangular.We will also use the following lemma, see [K2℄ for proof.Lemma 2. Let µ be the transition measure assoiated with the diagram ω. Let c be theenter of ω and A its area. Then
c = mµ(1), A = mµ(2) − (mµ(1))2 .This means that the enter of diagram ω is equal to the mean of its transition measure µand the area equals the variane of this measure.Beause the transition measure of ontinuous diagrams is a generalization of thetransition measure of retangular diagrams, see [K1℄, we are going to extend the notionof o-transition measure (4) to ontinuous diagrams. First we reall a lemma provedby Maassen ([Maa℄, see also [Ak℄) whih haraterizes the reiproals of the Cauhytransforms of measures with �nite variane:Lemma 3. A holomorphi funtion F : C+ → C+ is the reiproal of the Cauhy trans-form of a measure µ with �nite seond moment if and only if there exists a positive �nitemeasure ρ on R suh that

F (z) = z − α0 −
∫

R

dρ(x)

z − x
,where α0 ∈ R is the �rst moment of the measure µ.Using the above lemma, let us de�ne the o-transition measure of ontinuous diagrams.



BOOLEAN CONVOLUTION AND α-TRANSFORMATION 289Definition 3. The o-transition measure ν of ontinuous diagram ω is de�ned by therequirement
1

Gµ(z)
= z − c −

∫

R

dν(x)

z − x
,(5)where c is a enter of ω, µ is the transition measure of ω and Gµ(z) is its Cauhytransform. The o-transition measure of the diagram is positive but not neessarily aprobability measure.3. Boolean onvolution. For ompatly supported probability measures µ, ν theirboolean onvolution µ ⊎ ν is de�ned by the requirement

RB
µ⊎ν(z) = RB

µ (z) + RB
ν (z)where

1

Gµ (z)
= z − RB

µ

(
1

z

)
,(6)see [SW℄. The funtion RB

µ (z) is alled the boolean umulant transform and it an bewritten as
RB

µ (z) =
∞∑

n=1

RB
µ (n)zn−1.The oe�ients RB

µ (n) are alled the boolean umulants. On the level of Cauhy trans-forms the boolean onvolution is equivalent to the formula
1

Gµ⊎ν (z)
=

1

Gµ (z)
+

1

Gν (z)
− z,

Gµ⊎ν (z) =
Gµ (z)Gν (z)

Gµ (z) + Gν (z) − zGµ (z)Gν (z)
.

(7)
Example 1. We are going to alulate the retangular diagram ω orresponding to thesymmetri two-point measure

µ =
1

2
(δ−a + δa) .We get the following diagram

ωµ (x) =





−x if x ≤ −a,

x + 2a if − a < x ≤ 0,

−x + 2a if 0 < x ≤ a,

x if a ≤ x.Let ν be also a symmetri two point measure ν = 1
2 (δ−b + δb). Beause

Gµ (z) =
z

(z + a) (z − a)
, Gν (z) =

z

(z + b) (z − b)
,for µ ⊎ ν we have

Gµ⊎ν (z) =
1

2

(
1

z −
√

a2 + b2
+

1

z +
√

a2 + b2

)
.



290 A. D. KRYSTEKThis means that for the boolean onvolution µ ⊎ ν we get the following diagram
ωµ⊎ν (x) =





−x if x ≤ −
√

a2 + b2,

x + 2
√

a2 + b2 if −
√

a2 + b2 < x ≤ 0,

−x + 2
√

a2 + b2 if 0 < x ≤
√

a2 + b2,

x if √a2 + b2 ≤ x.

-4 -2 2 4

1

2

3

4

5

Fig. 1. Diagram orresponding to the 1

2
(δ
−1 + δ1) ⊎

1

2
(δ
−2 + δ2)Let us also note that the �rst boolean umulant RB

µ (1) equals the �rst moment of themeasure µ and the seond umulant RB
µ (2) is equal to the variane of this measure. Thismeans that from Lemma 2 we get the following orollaries:Corollary 1. The diagram onneted with the boolean onvolution µ ⊎ ν of measures

µ, ν has enter at the point whih is equal to the sum of the enters of the diagrams relatedto the measures µ and ν.Corollary 2. The area of the diagram assoiated with the measure µ⊎ ν is equal to thesum of the areas of the diagrams onneted with the measures µ and ν.Let µ, ρ be ompatly supported measures. By de�nition of the o-transition measure(5) we obtain
RB

µ

(
1

z

)
= z −

(
z − mµ(1) −

∫

R

dνµ(x)

z − x

)
= mµ(1) +

∫

R

dνµ(x)

z − x
,or, in the disrete ase

RB
µ

(
1

z

)
= c +

n−1∑

k=1

νk

z − yk
.This means that

RB
µ (z) = mµ(1) +

∫

R

dνµ(x)
1
z − x

.Using the de�nition of the boolean onvolution (6) we obtain
RB

µ⊎ρ(z) = RB
µ (z) + RB

ρ (z) = mµ(1) +

∫

R

dνµ(x)
1
z − x

+ mρ(1) +

∫

R

dνρ(x)
1
z − x

= mµ(1) + mρ(1) +

∫

R

dνµ(x) + dνρ(x)
1
z − x

= cµ + cρ +

∫

R

dνµ(x) + dνρ(x)
1
z − x

.



BOOLEAN CONVOLUTION AND α-TRANSFORMATION 291In terms of the Cauhy transform the above formula is equivalent to
1

Gµ⊎ρ(z)
= z − (cµ + cρ) −

∫

R

d (νµ(x) + νρ(x))

z − x
.Thus we have the followingTheorem 4. Let µ, ρ be ompatly supported probability measures and let their diagramshave enters at cµ, cρ and o-transition measures νµ, νρ. Then the diagram related to themeasure µ⊎ ρ has its enter at cµ + cρ and it is uniquely determined by the o-transitionmeasure νµ + νρ.4. The α-transformation of diagrams. In this setion we will only onsider the ret-angular diagrams.Definition 4. Let ω be a retangular diagram onneted with the interlaing sequenes

y1, y2, . . . , yn−1 and x1, x2, . . . , xn. The α-transformation Tα of the diagram ω is thediagram ωα whih is equal to ω saled by α along lines whih are parallel to the line
y = −x. The diagram ωα is onneted with the sequenes y1 (α) , . . . , yn−1 (α) and
x1 (α) , . . . , xn (α), its enter is equal to the enter of ω and its area equals α A, where Ais the area of ω.Remark 1. That transformation for true Young diagrams was onsidered by Kerov in[K3℄. He gave formulae for the dimension of Λα, alled the α-hook formula, and showedonnetions with Jak polynomials and symmetri funtions, see [Ma℄.First we are going to reformulate the above de�nition more formally.Lemma 5. Let ω be a retangular diagram onneted with the interlaing sequenes y1, . . .,

yn−1 and x1, . . . , xn and enter in c. Then for (x, y) suh that y = ω(x) we obtain
Tα

(
x

y

)
=

1

2

(
(1 + α)x + (1 − α) (y + c)

(1 − α) (x − c) + (1 + α) y

)
.Proof. The α-transformation an be obtained as the superposition of the rotation of ωabout the enter c by the angle −π

4 , the dilation Dα for α > 0 de�ned as follows
Dα (u, v) = (u, αv) , (u, v) ∈ R

2,and the rotation on the enter c by the angle π
4 . Hene we get

Tα

(
x

y

)
=

1

2

(
1 −1

1 1

) (
1 0

0 α

) (
1 1

−1 1

)((
x

y

)
+

(
−c

0

))
+

(
c

0

)

=
1

2

(
1 + α 1 − α

1 − α 1 + α

) (
x − c

y

)
+

(
c

0

)
=

1

2

(
(1 + α)x + (1 − α) (y + c)

(1 − α) (x − c) + (1 + α) y

)
.Remark 2. Let ω be as in the previous lemma. To alulate the interlaing sequenes

y1(α), . . . , yn−1(α) and x1(α), . . . , xn(α) onneted with ωα let us take (
x

y

)
=

(
xk

ω(xk)

).Then by Lemma 5 we obtain
xk (α) =

1

2
((1 + α)xk + (1 − α) (ω (xk) + c))
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and for (
x

y

)
=

(
yk

ω (yk)

) we get
yk (α) =

1

2
((1 + α) yk + (1 − α) (ω (yk) + c)) .By the above remark we have a formula for alulating y1 (α) , . . . , yn−1 (α) and

x1 (α) , . . ., xn (α) whih uses the oordinates (xk, ω(xk)) , (yj , ω(yj)). We would like tohave also the rule of alulating y1 (α) , . . . , yn−1 (α) and x1 (α) , . . . , xn (α) only in termsof y1, . . . , yn−1 and x1, . . . , xn. The following lemma gives the desired formulae:Lemma 6. Let ω be a retangular diagram onneted with the interlaing sequenes y1, . . . ,

yn−1 and x1, . . . , xn and enter at c. Then
xk (α) = α xk + (1 − α)

k−1∑

j=1

(yj − xj) + (1 − α) c

and
yk (α) = α yk + (1 − α)

k∑

j=1

(yj − xj) + (1 − α) c.

Proof. By Remark 2 we get
xk (α) =

1

2
(xk + ω (xk) + α (xk − ω (xk)) + (1 − α) c)and beause of (1) we obtain

xk + ω (xk) = c + 2

k−1∑

j=1

(yj − xj) ,

xk − ω (xk) = 2xk − c − 2

k−1∑

j=1

(yj − xj) ,

whih implies
xk (α) =

1

2

(
c + 2

k−1∑

j=1

(yj − xj) + α
(
2xk − c − 2

k−1∑

j=1

(yj − xj)
)

+ (1 − α) c
)

= α xk + (1 − α)

k−1∑

j=1

(yj − xj) + (1 − α) c.

The alulation of yk (α) is similar.Lemma 7. For α > 0 the transformation Tα is a multipliative group:
Tα Tβ = Tα β .
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Tα Tβ

(
x

y

)
= Tα

(
1

2

(
(1 + β)x + (1 − β) (y + c)

(1 − β) (x − c) + (1 + β) y

))

=
1

2

(
1 + α 1 − α

1 − α 1 + α

) (
1

2

(
(1 + β)x + (1 − β) (y + c) − 2c

(1 − β) (x − c) + (1 + β) y

))
+

(
c

0

)

=
1

2

(
(1 + α β)x + (1 − α β) (y + c)

(1 − α β) (x − c) + (1 + α β)

)
= Tα β

(
x

y

)
.Hene we obtainCorollary 3. For α > 0, Tα and T1/α are inverses of eah other.5. The α-transformation of measures. In this setion we will only onsider �nitelysupported disrete probability measures.By the theorem of Kerov, see Theorem 1, we an extend the notion of Tα -transforma-tion to a transformation of disrete, �nitely supported measures on R.Definition 5. Let µ be a �nitely supported probability measure and let ω be the diagramsuh that the transition measure of ω is equal to µ. By the α-transformation of themeasure µ we mean the transition measure Tα µ assoiated with the diagram ωα.Example 2. For a one point measure δa we have

Tα δa = δa.Example 3. We ompute the α-transformation of a probability measure whih is sup-ported in two points. Let
µ = pδa + qδb, a < b, p, q ≥ 0, p + q = 1.Then we have
x1 = a, y1 = qa + pb, x2 = b, c = pa + qb.Hene

x1 (α) = αa + (1 − α) c,

y1 (α) = qa + pb − (1 − α) (a − c) ,

x2 (α) = b,and therefore
Tα µ = µ1δx1(α) + µ2δx2(α),where

µ1 =
x1 (α) − y1 (α)

x1 (α) − x2 (α)
, µ2 =

x2 (α) − y1 (α)

x2 (α) − x1 (α)
.Thus we obtain

Tα µ =
p (b − a)

b − αa − (1 − α) c
δαa+(1−α)c +

q (b − a) + (a − c) (1 − α)

αa + (1 − α) c − b
δb.



294 A. D. KRYSTEKIn general, let µ be a disrete probability measure supported on x1, x2, . . . , xn, thatis,
µ =

n∑

k=1

µkδxk
.Theorem 8. The α-transformation of measure µ is a measure µα suh that its Cauhytransform is equal to

Gµα
(z) =

∏n−1
k=1 (z − yk (α))∏n
k=1 (z − xk (α))

,where xk belongs to the support of the measure µ and yk are zeros of the Cauhy transformof µ and
xk (α) = αxk + (1 − α)

k−1∑

j=1

(yj − xj) + (1 − α) c,

yk (α) = αyk + (1 − α)
k∑

j=1

(yj − xj) + (1 − α) cfor
c =

n∑

k=1

xk −
n−1∑

k=1

yk.Moreover, we an prove the following lemma onneting the α-transformation and thedilation of measures.Lemma 9. Dilation of measures ommutes with the α-transformation:
DλTα µ = Tα Dλ µ.Proof. Let us denote the interlaing sequenes assoiated with the measure Tα Dλµ by

x̂k (α) and ŷk (α) and sequenes onneted with the measure DλTα µ by x̂k (α) and ŷk (α).Beause
Dλµ (A) = µ

(
λ−1A

)for λ > 0 we obtain
GDλµ (z) =

∫ ∞

−∞

1

z − x
d (Dλµ) (x) =

n∑

k=1

µk

z − λxk
=

1

λ
Gµ

( z

λ

)
=

1

λ

Q
(

z
λ

)

P
(

z
λ

) .This means that dilation hanges the sequenes x1, . . . , xn and y1, . . . , yn−1 into x̂1, . . . , x̂nand ŷ1, . . . , ŷn−1, where
x̂k = λxk, ŷk = λyk,(8)and

cDλµ = λ cµ.



BOOLEAN CONVOLUTION AND α-TRANSFORMATION 295Therefore after the α-transformation we obtain
x̂k (α) = α λ xk + (1 − α)λ

k−1∑

j=1

(yj − xj) + (1 − α) cDλµ

= α λ xk + (1 − α)λ

k−1∑

j=1

(yj − xj) + λ (1 − α) cµ = λ xk,

ŷk (α) = α λ yk + (1 − α)λ

k∑

j=1

(yj − xj) + (1 − α) cDλµ

= α λ yk + (1 − α)λ

k∑

j=1

(yj − xj) + λ (1 − α) cµ = λ ykand
GTα Dλµ (z) =

1

λ

∏n−1
k=1 (z − ỹk (α))∏n
k=1 (z − x̃k (α))

.On the other hand
GDλTα µ (z) =

1

λ
GTα µ

( z

λ

)
=

1

λ

∏n−1
k=1

(
z
λ − yk (α)

)
∏n

k=1

(
z
λ − xk (α)

) =

∏n−1
k=1 (z − λ yk (α))∏n
k=1 (z − λ yk (α))whih means that

ŷk (α) = λ yk (α) , x̂k (α) = λ xk (α)so dilations and α-transformations ommute.6. Generalization of the α-transformation. The α-transformation of diagrams de-�ned in Setion 4 onsists in saling the diagram by α along lines whih are parallel tothe line y = −x. We generalize this transformation and introdue a new transformation,whih onsists in saling the diagram by α along lines whih are parallel to the line
y = −x and saling by β along lines whih are parallel to the line y = x.Definition 6. Let ω be a retangular diagram onneted with the interlaing sequenes
y1, . . . , yn−1 and x1, . . . , xn. The β, α-transformation Tβ,α of the diagram ω is the diagram
ωβ,α, whih is equal to ω saled by α along lines whih are parallel to the line y = −x andis saled by β along lines whih are parallel to the line y = x. The sequenes assoiatedwith the diagram ωβ,α will be denoted by ỹ1, ỹ2, . . . , ỹn−1 and x̃1, x̃2, . . . , x̃n. The enterof the diagram ωβ,α is equal to the enter of ω and its area equals α β A, where A is thearea of ω.It is possible to �nd the numbers ỹ1, ỹ2, . . . , ỹn−1 and x̃1, x̃2, . . . , x̃n expliitly. Firstwe are going to prove the followingLemma 10. Let ω be a retangular diagram onneted with the interlaing sequenes
y1, . . . , yn−1 and x1, . . . , xn and enter in c. Then for (x, y) = (x, ω(x)) we have

Tβ,α

(
x

y

)
=

1

2

(
(β + α) (x − c) + (β − α) y + 2c

(β − α) (x − c) + (β + α) y

)
.



296 A. D. KRYSTEKProof. The β, α-transformation an be obtained as the superposition of the rotation ofdiagram ω about the enter c by the angle −π
4 , the dilation Dβ,α, where for α, β > 0

Dβ,α (u, v) = (β u, α v) , (u, v) ∈ R
2,and the rotation about the enter c by the angle π

4 . Hene we get
Tβ,α

(
x

y

)
=

1

2

(
1 −1

1 1

) (
β 0

0 α

) (
1 1

−1 1

) ((
x

y

)
+

(
−c

0

))
+

(
c

0

)

=
1

2

(
β + α β − α

β − α β + α

)(
x − c

y

)
+

(
c

0

)

=
1

2

(
(β + α) (x − c) + (β − α) y + 2c

(β − α) (x − c) + (β + α) y

)
.Lemma 11. For the diagram ω whih is onneted with the interlaing sequenes y1, . . . ,

yn−1 and x1, x2, . . . , xn and has enter at c we obtain
x̃k = α xk + (β − α)

k−1∑

j=1

(yj − xj) + (1 − α) c,

ỹk = α yk + (β − α)
k∑

j=1

(yj − xj) + (1 − α) c.Proof. By Remark 3 we get
x̃k =

1

2
(β (xk + ω (xk)) + α (xk − ω (xk)) + (2 − α − β) c)and beause of (1) we get

x̃k =
1

2

(
β
(
c + 2

k−1∑

j=1

(yj − xj)
)

+ α
(
2xk − c − 2

k−1∑

j=1

(yj − xj)
)

+ (2 − α − β) c
)

= αxk + (β − α)

k−1∑

j=1

(yj − xj) + (1 − α) c.In a similar way we obtain the expliit formula for ỹk.Remark 3. Let ω be as in the previous lemma. For the spei� hoie of (
x

ω(x)

) byLemma 10 we obtain
x̃k =

1

2
((β + α) (xk − c) + (β − α)ω (xk)) + c,

ỹk =
1

2
((β + α) (yk − c) + (β − α)ω (yk)) + c.Lemma 12. For β, α > 0, Tβ,α is a multipliative group:
Tβ1,α1

(Tβ2,α2
) = Tβ1β2,α1α2

.Proof. The alulations are similar to the α-transformation ase.Corollary 4. For α, β > 0, Tβ,α and T1/β,1/α are inverses of eah other.We an also de�ne the Tβ,α -transformation of disrete, �nitely supported measureson R.



BOOLEAN CONVOLUTION AND α-TRANSFORMATION 297Definition 7. Let µ be a �nitely supported probability measure and let ω be the diagramsuh that the transition measure of ω is equal to µ. By the β, α-transformation of themeasure µ we mean the transition measure Tβ,α µ assoiated with the diagram ωβ,α.Example 4. For a one point measure δa we have
Tβ,α δa = δa.Example 5. We ompute the β, α-transformation of a probability measure whih is sup-ported on two points. Let

µ = pδa + qδb, a < b, p, q ≥ 0, p + q = 1.Then we have
x1 = a, y1 = qa + pb, x2 = b, c = pa + qb.Hene

x̃1 = αa + (1 − α) c,

ỹ1 = β (qa + pb) + (β − α) a + (1 − α) c,

x̃2 = b,whih means that
Tβ,α µ = µ1δx̃1

+ µ2δx̃2
,where

µ1 =
x̃1 − ỹ1

x̃1 − x̃2
, µ2 =

x̃2 − ỹ1

x̃2 − x̃1
,and we obtain

Tβ,α µ =
2αa − βqa − βpb − aβ

b − αa − (1 − α) c
δαa+(1−α)c +

b − βqa − βpb − aβ + αa + cα − c

b − αa − (1 − α) c
δb.For a disrete probability µ measure supported on x1, . . . , xn, namely µ =

∑n
k=1 µkδxk

,we haveTheorem 13. The β, a-transformation of disrete measure µ is a measure µβ,α with theCauhy transform equal to
Gµβ,α

(z) =

∏n−1
k=1 (z − ỹk)∏n
k=1 (z − x̃k)

,where xk belongs to the support of the measure µ, yk are zeros of the Cauhy transformof µ and
x̃k = α xk + (β − α)

k−1∑

j=1

(yj − xj) + (1 − α) c,

ỹk = α yk + (β − α)

k∑

j=1

(yj − xj) + (1 − α) cfor c =
∑

xk −
∑

yk.Moreover we an prove a result similar to Lemma 9:



298 A. D. KRYSTEKLemma 14. Dilations of measures ommute with Tβ,α :
DλTβ,α µ = Tβ,α Dλµ.Proof. Similar to the α-transformation ase.
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