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Abstrat. We �nd the limit distributions for a spetrum of a system of n partiles governed bya k-body interation. The hamiltonian of this system is modelled by a Gaussian random matrix.We show that the limit distribution is a q-deformed Gaussian distribution with the de-formation parameter q depending on the fration k/

√

n. The family of q-deformed Gaussiandistributions inlude the Gaussian distribution and the semiirular law; therefore our result isa generalization of the results of Wigner [Wig1, Wig2℄, Mon and Frenh [MF℄.
1. Introdution1.1. The k-body interations. We say that the interation of n partiles is a k-bodyinteration if it an be treated as a sum of independent interations, eah taking plae ina group of k partiles (the groups of ourse need not be disjoint). The integer k is alledthe rank of the interation.From basi priniples of physis we would expet that the fundamental interationsshould take plae only in pairs of partiles; by taking into aount higher order intera-tions between arriers of interation we see that also k-body interations are possible if
k is a small integer.Perhaps even better examples of a k-body interation we obtain by onsidering modelsof omplex physial systems whih were simpli�ed by disregarding some omponents. Insuh models e�etive hamiltonians ontain also k-body interations (k > 2) in order topreserve the e�ets onneted to the disregarded omponents.Nevertheless we would expet that k, the rank of the interation, should be relativelysmall.2000 Mathematis Subjet Classi�ation: 81V35, 81V70, 15A52.The paper is in �nal form and no version of it will be published elsewhere.
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410 P. ŚNIADY1.2. Random matrix models for omplex quantum systems1.2.1. Wigner's model. The �rst and the simplest random matrix model for omplexquantum systems suh as atomi nulei was proposed by Wigner [Wig1℄. In this modela hamiltonian of the system is represented by a large hermitian matrix (aij)1≤i,j≤Nwhih entries are omplex Gaussian random variables. This model an be heuristiallyjusti�ed as follows: in an su�iently omplex physial system the matrix elements of thehamiltonian should be very ompliated as well and therefore an be regarded as random.In the Wigner's model the matrix element between any two physial states an takenonzero values, what for quantum systems onsisting of n parts means that the systemis governed by an n-body interation, what in the light of the preeding disussion isphysially doubtful.1.2.2. Random matrix model for k-body interation. The following more realisti modelwas proposed [BF1, BF2, FW1, FW2, WF℄ in whih a k-body interation hamiltonian of
n partiles is modeled by a random matrix.We onsider a quantum system of n distinguishable partiles; the Hilbert spae Hof the system is a tensor produt of the Hilbert spaes Hi (1 ≤ i ≤ n) orrespondingto partiles. In fat as �partiles� we an take also quantum statistial objets suh asolletive exitations, holes, et.We assume that the rank of the e�etive interation in our system is equal to k andtherefore the hamiltonian H of the system is a sum of hamiltonians HA of the k-partilesubsystems,

H =
∑

A

HA.The sum is taken over all sets A ⊂ {1, . . . , n} whih have exatly k elements.Due to the fatorization of the Hilbert spae H = HA ⊗HA′ where HA =
⊗

i∈A Hi,
HA′ =

⊗

i 6∈A Hi we an write eah hamiltonian HA as HA = H0

A ⊗ 1HA′
where H0

A :

HA → HA is a selfadjoint operator and 1HA′
: HA′ → HA′ is the identity. Suppose thateah of the partiles has s possible states and therefore Hi = Cs and HA = Csk ; we seethat H0

A an be viewed as a hermitian matrix with sk rows and olumns.Similarly as in the Wigner's model we shall assume that H0

A = (aA
i,j) is a hermitianrandom matrix, i.e. aA

i,j (1 ≤ i ≤ j ≤ sk) are omplex Gaussian random variables withthe mean 0 and the ovariane E(aA
i,ja

A
k,l) = E(aA

i,ja
A
l,k) = 1

(n

k)sk
δilδjk. We assume thatthe entries of di�erent hamiltonians HA are independent.The above onsidered random matries are related to Gaussian unitary ensemble,but it is easy to write a version whih is related to Gaussian orthogonal or sympletiensemble.1.3. Overview of the artile. The goal of this paper is to investigate the limit distributionof the above spetra when n tends to in�ty and the rank of the interation k(n) dependsin a ertain way on n.A lassial result of Wigner [Wig1, Wig2℄ states that if k(n) = n then the distributionof the eigenvalues onverges to the semiirular distribution (see Fig. 1). On the other



MANY-PARTICLE SPECTRA 411hand Mon and Frenh [MF℄ showed that if k is onstant and n onverges to in�nity thenthe distribution of eigenvalues onverges to the Gaussian distribution (see Fig. 6).In this artile we show that in the intermediate ases when 1 ≪ k(n) ≪ n the limitdistributions are given by so-alled q-deformed Gaussian distributions.2. The q-deformed Gaussian random variables. For overview artiles on q-de-formed ommutation relations and q-deformed Gaussian variables we refer to [FB, BS1,BS2, BKS, vLM, Sn1, Sn, Spe℄. In this artile we will onsider only one q-deformedGaussian variable, whih simpli�es the disussion signi�antly.Let us onsider a real number −1 < q < 1. One says that an operator a ating on asome Hilbert spae K and its adjoint a⋆ ful�l the q-deformed ommutation relations if
aa⋆ − qa⋆a = 1,where 1 is the identity operator.Suppose that there exists a unital vetor Ω ∈ K suh that

aΩ = 0.A vetor with this property is alled a vauum. In suh a setup we an introdue a(non-ommutative) expetation value τ (X) = 〈Ω, XΩ〉.By the q-deformed Gaussian random variable we mean the operator a + a⋆.The q-deformed Gaussian distribution is a ompatly supported probability measure
νq on the real line with the property that for eah natural number n we have

∫

xndνq(x) = τ [(a + a⋆)n] = 〈Ω, (a + a⋆)nΩ〉.It an be proven [Sz℄ that for −1 < q < 1 this measure is supported on the interval
[−2/

√
1 − q, 2/

√
1 − q] and the density of this measure is given by

νq(dx) =
1

π

√

1 − q sin θ

∞
∏

n=1

(1 − qn)|1 − qne2iθ|2dx,where θ ∈ [0, π] is de�ned by x = 2√
1−q

cos θ.
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Fig. 1. Wigner semiirular law, orresponding to q = 0
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Fig. 2. The q-deformed distribution for q = 0.2
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Fig. 3. The q-deformed distribution for q = 0.4
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Fig. 4. The q-deformed distribution for q = 0.6
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Fig. 5. The q-deformed distribution for q = 0.8
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Fig. 6. The Gaussian distribution, orresponding to q = 1

It turns out that for q = 1 the q-deformed Gaussian distribution oinides withthe standard Gaussian distribution (see Fig. 6). For q = 0 the q-deformed Gaussiandistribution oinides with the semiirular distribution of Wigner (see Fig. 1). The q-deformed Gaussian distributions for intermediate values of the deformation paramater qare presented in Figures 2�5.3. The distribution of eigenvalues. The onnetion of the random matrix modelsonsidered in Introdution with q-deformed Gaussian variables was found by the authorin the following theorem [Sn℄.Theorem 1. If limn→∞ k(n)/
√

n = c, where 0 ≤ c ≤ ∞ then the limit distribution ofthe eigenvalues of the hamiltonians H is the q-deformed Gaussian distribution with theparameter q given by
q = exp

[

−
(

1 − 1

s2

)

c2

]

,where s is the number of one-partile states.



414 P. ŚNIADYIt should not be a surprise to see that the above theorem ontains results of Wigner (inthe model onsidered by him we have k = n and limn→∞ k/
√

n = ∞, q = exp[−∞] = 0)and of Mon and Frenh (k is onstant, therefore c = 0 and hene q = 1).We see that the square root from the number of partiles is the sale of the rank ofthe interation in whih the passage from the Gauss law to the semiirular law ours.4. Final remarks. Partiles onsidered in this artile were distinguishable. The nextstep would be to replae them by fermion or bosons. In the fermioni ase it would meanfor example that s, the dimension of a one-partile Hilbert spae must be a funtion of
n, the number of partiles. Simple arguments show that if s(n) tends to in�nity fasterthan linearly, then most of the states are not oupied and the Pauli exlusion prinipledoes not a�et our alulations. In this ase we an take s = ∞ and therefore

q = e−c2
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