
QUANTUM PROBABILITY

BANACH CENTER PUBLICATIONS, VOLUME 73

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2006

QUANTUM LÉVY-TYPE LAPLACIAN ANDASSOCIATED STOCHASTIC DIFFERENTIAL EQUATIONSA. BARHOUMI and H. OUERDIANEDepartment of MathematisFaulty of Sienes of TunisUniversity of Tunis El-Manar1060 Tunis, TunisiaE-mail: abdessatar.barhoumi�ipein.rnu.tn, habib.ouerdiane�fst.rnu.tn
Abstrat. We study a quantum extension of the Lévy Laplaian, so-alled quantum Lévy-typeLaplaian, to the nulear algebra of operators on spaes of entire funtions. We give severalexamples of the ation of the quantum Lévy-type Laplaian on basi operators and we study aquantum white noise onvolution di�erential equation involving the quantum Lévy-type Lapla-ian.1. Introdution. In in�nite dimensional analysis, the Lévy Laplaian was introduedby P. Lévy [19℄ and rigorously developed by T. Hida and his shool [14℄, [25℄, [22℄, [18℄.The situation however hanged with a series of papers [3℄, [4℄ where it is provedthat the Yang-Mills equations and the Lévy Laplae equation for the assoiated paralleltransport are equivalent. These results provide a strong motivation for a new approahto in�nite dimensional analysis based on the Brownian motion and its quantization.On the other hand, a Fok spae realization of the Lévy Brownian motion is obtainedand the orresponding quantum proess is given expliitly [2℄. More reently, an in�nitedimensional lassial stohasti proess generated by self-adjoint extensions of the LévyLaplaian is disussed and equi-ontinuous semigroups of lass (C0) generated by theseextensions are onstruted [25℄.The present work is mostly based on the papers [1℄, [24℄, [22℄ where a �rst path to aquantum approah to the Lévy Laplaian is done. Then, employing the reent frameworkof the theory of operators de�ned on spaes of holomorphi funtions [7℄, the onvolutionalulus [6℄, and the heat equation assoiated with the Lévy Laplaian [22℄, [24℄, [4℄, we2000 Mathematis Subjet Classi�ation: Primary 60H40; Seondary 46A32, 46F25, 46G20.Key words and phrases: onvolution produt, Gelfand triple, heat equation, holomorphy,Laplae transform, Lévy Laplaian, operator symbol, quadrati quantum white noise.The paper is in �nal form and no version of it will be published elsewhere.
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82 A. BARHOUMI AND H. OUERDIANEspeify the ation of the quantum Lévy-type Laplaian on basi examples of operatorsand we give the operator version of the nie onnetion between the Lévy Laplaian andthe quadrati quantum white noise pointed out, in the lassial ase, in [22℄, [24℄.The paper is organized as follows. In Setion 2 we assemble a general framework whihis neessary for our paper. In Setion 3 we reformulate the so-alled quantum Lévy-typeLaplaian. In Setion 4 we give several examples of the ation on basi white noise op-erators and we show, in partiular, that in the ase of the ommutative subalgebra ofonvolution operators, the lassial Lévy Laplaian oinides with its quantum extensionvia the Laplae transform and the symbol transform. Setion 5 is devoted to an investi-gation of a quantum white noise di�erential equation involving the quantum Lévy-typeLaplaian. Finally, we disuss the traditional dependene of in�nite dimensional Lapla-ians and some in�nite sequenes of vetors.General notation. Let X , Y be loally onvex spaes.
⊲ L(X ,Y): the spae of all ontinuous linear operators from X into Y equipped with thetopology of bounded onvergene.
⊲ X ⊗Y : the omplete Hilbert spae tensor produt when both X , Y are Hilbert spaes.
⊲ X ⊗π Y : the omplete π-tensor produt. For simpliity, with no danger of onfusion inour ontext, ⊗π will be denoted by ⊗ again.
⊲ In both ases, ⊗̂ stands for the symmetri tensor produt.2. General framework. First we review basi onepts, notations, and some resultswhih will be needed in the present paper. Development of these and similar results anbe found in the papers [12℄, [23℄, [6℄, [7℄.2.1. Entire funtion with θ-exponential growth. Let θ be a Young funtion, i.e., it is aontinuous, onvex and inreasing funtion de�ned on R+ and satis�es the two onditions:
θ(0) = 0 and limx→∞ θ(x)/x = +∞, see [11℄. We de�ne the onjugate funtion θ∗ of θ by

θ∗(x) = sup
t≥0

(tx− θ(t)), x ≥ 0.Throughout the paper, we �x a Young funtion θ.For a omplex Banah spae (B, ‖.‖) let H(B) denote the spae of all entire funtionson B, i.e. of all ontinuous C-valued funtion on B whose restritions to all a�ne linesof B are entire on C. For eah m > 0 we denote by Exp(B, θ,m) the spae of all entirefuntions on B with θ-exponential growth of �nite type m, i.e.(2.1) Exp(B, θ,m) = {f ∈ H(B); ‖f‖θ,m := sup
z∈B

|f(z)| e−θ(m‖z‖) <∞}.Let E be a real nulear Fréhet spae with topology given by an inreasing family
{|.|p; p ∈ N} of Hilbertian norms. Then

E = projlim
p→∞

Ep,where Ep is the ompletion of E with respet to the norm |.|p. We use E−p to denote thetopologial dual spae of Ep. Then the strong dual spae E′ an be obtained as
E′ = indlim

p→∞
E−p,



QUANTUM LÉVY-TYPE LAPLACIAN 83where the strong topology of E′ and the indutive limit topology oinide due to thenulearity of E.Let N = E + iE and Np = Ep + iEp, p ∈ Z be the omplexi�ations of E and Ep,respetively. Then N and its strong dual spae N ′ an be represented by
N = projlim

p→∞
Np and N ′ = indlim

p→∞
N−p.Aording to (2.1), the projetive system {Exp(N−p, θ,m); p ∈ N, m > 0} and theindutive system {Exp(Np, θ,m); p ∈ N, m > 0} give the following two nulear spaes:

Fθ(N
′) = projlim

p→∞;m↓0
Exp(N−p, θ,m), Gθ(N) = indlim

p→∞;m→∞
Exp(Np, θ,m).By de�nition f ∈ Fθ(N

′) and g ∈ Gθ(N) admit the Taylor expansions:(2.2) f(z) =
∞
∑

n=0

〈z⊗, fn〉, z ∈ N ′, fn ∈ N ⊗̂n,

g(ξ) =
∞
∑

n=0

〈gn, ξ
⊗n〉, ξ ∈ N, gn ∈ (N ⊗̂n)′,where we used the ommon symbol 〈·, ·〉 for the anonialC-bilinear form on (N ⊗̂n)′×N ⊗̂nfor all n. The Taylor series map T (at zero) assoiates to any entire funtion the sequeneof oe�ients. For example, if f ∈ Fθ(N

′) is given as in (2.2), the Taylor series map isde�ned by T f = ~f = (fn).The spaes Fθ(N
′) and Gθ(N) are haraterized through the T -transform and thefollowing two nulear Fréhet spaes:

Fθ(N) = projlim
p→∞;m↓0

Fθ,m(Np), Gθ(N
′) = indlim

p→∞;m→∞
Gθ,m(N−p),where, for any pair p ∈ N, m > 0,

Fθ,m(Np) =
{

~f = (fn); fn ∈ N ⊗̂n
p , ‖~f‖2

θ,p,m :=

∞
∑

n=0

θ−2
n m−n|fn|

2
p <∞

}

,

Gθ,m(N−p) =
{

~Φ = (Φn); Φn ∈ N ⊗̂n
−p , ‖~Φ‖2

θ,−p,m :=
∞
∑

n=0

(n!θn)2mn|Φn|
2
−p <∞

}

and
θn = inf

r>0

exp (θ(r))

rn
, n = 0, 1, 2, . . .By de�nition, the strong dual of Fθ(N) is identi�ed with Gθ(N

′) through the anonial
C-bilinear form

〈〈 ~Φ, ~f 〉〉 :=

∞
∑

n=0

n!〈Φn, fn〉.Moreover, we have the following duality theorem:Theorem 2.1 ([12℄). The Taylor series map T gives two topologial isomorphisms
Fθ(N

′) → Fθ(N) and Gθ∗(N) → Gθ(N
′).



84 A. BARHOUMI AND H. OUERDIANELet Fθ(N
′)∗ denote the topologial dual spae of Fθ(N

′). The ation of a distribution
Φ ∈ Fθ(N

′)∗ on a test funtion ϕ ∈ Fθ(N
′) an be expressed in terms of the Taylor mapas follows:

〈〈Φ, ϕ〉〉 = 〈〈 ~Φ, ~ϕ 〉〉,where ~Φ = (T ∗)−1Φ and ~ϕ = T ϕ. On the other hand, it is easy to see that for eah
ξ ∈ N , the exponential funtion(2.3) eξ(z) := e〈z,ξ〉, z ∈ N ′lies in Fθ(N

′) and the set of suh test funtions spans a dense subspae of Fθ(N
′). Thus,for any Φ ∈ Fθ(N

′)∗, the Laplae transform of Φ is de�ned by(2.4) (LΦ)(ξ) := 〈〈Φ, eξ〉〉, ξ ∈ N.Therefore, we have the following duality theorem:Theorem 2.2 ([12℄). The Laplae transform realizes a topologial isomorphism
L : Fθ(N

′)∗ → Gθ∗(N).2.2. Entire funtions in two variables. LetM and N be two nulear Fréhet spaes withde�ning Hilbertian norms {|.| M,p} and {|.| N,p}, respetively. Let Mp ⊕Np be the diretsum of Hilbert spaes. Then the diret sum M ⊕N is by de�nition
M ⊕N = projlim

p→∞
Mp ⊕Np.Similarly,

(M ⊕N)′ = M ′ ⊕N ′ = indlim
p→∞

M−p ⊕N−p.By de�nition, an entire funtion in two variables onM×N is a separately entire funtion
f : M ×N → C. On the other hand, in an obvious manner, a funtion f : M ×N → C isin one-to-one orrespondene to a funtion f̃ : M ⊕N → C. Therefore, we will not makedistintion between them. Fore more details see e.g. [11℄.Aording to the previous subsetion, we easily hek that a funtion f : (M⊕N)′ → Cbelongs to Fθ((M ⊕N)′) if and only if for any pair p ≥ 0 and m > 0

‖f‖θ,−p,m := sup
ω∈M ′,z∈N ′

|f(ω ⊕ z)| exp (−θ(m|ω|M,−p) − θ(m|z|N,−p)) <∞.Similarly, a funtion g : M ⊕N → C belongs to Gθ(M ⊕N) if and only if there exists apair p ≥ 0 and m > 0 suh that
‖g‖θ,p,m := sup

ξ∈M,η∈N
|g(ξ ⊕ η)| exp (−θ(m|ξ|M,p) − θ(m|η|N,p)) <∞.As in (2.3), an exponential funtion in two variables is de�ned, for ξ ∈M and η ∈ N ,by

eξ⊗η(z, w) = exp{〈z, ξ〉 + 〈w, η〉}, z ∈ N ′, w ∈M ′.Then, the Laplae transform, denoted again by L, is de�ned as in (2.4) and the state-ment in Theorem 2.2 remains valid. Moreover, by a standard argument with the Taylor



QUANTUM LÉVY-TYPE LAPLACIAN 85expansion, we see that the orrespondene eξ⊕η ↔ eξ ⊗ eη an be uniquely extended toan isomorphism(2.5) Fθ((M ⊕N)′) ∼= Fθ(M
′) ⊗Fθ(N

′).2.3. Charaterization of operators. We are interested in ontinuous operators from
Fθ(N

′) into Fθ(N
′)∗. The spae of suh operators is denoted by L(Fθ(N

′),Fθ(N
′)∗)and assumed to arry the bounded onvergene topology.Let µ be the standard Gaussian measure on E′ uniquely spei�ed by its harateristifuntion

e−
1
2
|ξ|2

0 =

∫

E′

ei〈x,ξ〉µ (dx) , ξ ∈ E,and denote by H the Hilbert spae L2 (E′, µ,C). Moreover, we assume that the Youngfuntion θ satis�es the following ondition:(2.6) limsup
x→∞

θ(x)

x2
< +∞or equivalently(2.7) liminf

x→∞

θ∗(x)

x2
> 0.Then, under this ondition on θ, we see that the spaes L(Fθ(N

′),Fθ(N
′)) and L(H,H)an be onsidered as subspaes of L(Fθ(N

′),Fθ(N
′)∗). Moreover, identi�ed with its re-strition to Fθ(N

′), eah operator T ∈ L(Fθ(N
′)∗,Fθ(N

′)∗) will be onsidered as anelement of L(Fθ(N
′),Fθ(N

′)∗), so that we have the ontinuous inlusion
L(Fθ(N

′)∗,Fθ(N
′)∗) ⊂ L(Fθ(N

′),Fθ(N
′)∗).In view of the lassial kernel theorem, there is an isomorphism

L(Fθ(N
′),Fθ(N

′)∗) ∼= Fθ(N
′)∗ ⊗Fθ(N

′)∗ ∼= (Fθ(N
′) ⊗ Fθ(N

′))
∗
.If T ∈ L(Fθ(N

′),Fθ(N
′)∗) and TK ∈ (Fθ(N

′) ⊗Fθ(N
′))

∗ are related under this isomor-phism, we have
〈〈Tϕ, ψ〉〉 = 〈〈TK , ϕ⊗ ψ〉〉.We all TK the kernel of T .The symbol of T ∈ L(Fθ(N
′),Fθ(N

′)∗) is by de�nition a C-valued funtion on N×Nde�ned by(2.8) σ(T )(ξ, η) = 〈〈Teξ, eη〉〉 e
−〈ξ,η〉 , ξ, η ∈ N.Then, every operator in L(Fθ(N

′),Fθ(N
′)∗) is uniquely determined by its symbol sinethe exponential vetors eξ span a dense subspae of Fθ(N

′). Therefore, in a similarmanner to the haraterization theorem 2.2 for distributions in Fθ(N
′)∗, we have thefollowing haraterization theorem for operators.Theorem 2.3. The symbol map yields a topologial isomorphism between

L(Fθ(N
′),Fθ(N

′)∗) and Gθ∗(N ⊕N).More preisely, we have the following isomorphisms
L(Fθ(N

′),Fθ(N
′)∗) → Gθ∗(N ⊕N) → Gθ(N

′) ⊗Gθ(N
′) ≡ Gθ((N ⊕N)′);
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T 7→ σ(T )(ξ, η) =
∑

l,m

〈κl,m, η
⊗l ⊗ ξ⊗m〉 7→ K = (κl,m)l,m.Remark 2.4. It is noteworthy that the symbol transform de�ned by (2.8) is sometimesalled the Wik symbol [8℄. This is more like the standard notion of a symbol of apseudo-di�erential operator (see e.g. [20℄). In fat, we found that our de�nition is moreonvenient for the onvolution produt σ(T1 ∗ T2) = σ(T1) σ(T2) and for the onnetionbetween the Lévy Laplaian ating on operators and the quadrati quantum white noise,(see Setion 5). This is due to the peuliar feature of the so-alled the quantum Lévy-typeLaplaian: it reeives a rigorous meaning of seond order di�erential operator with respetto a suitable notion of derivations on some Lie algebra of quantum white noise vetor�elds. A further detailed study in this diretion will appear in a future paper.Let y ∈ N ′ and ϕ ∈ Fθ(N

′). We de�ne the holomorphi derivative of ϕ(z) =
∑∞

n=0〈z
⊗n, ϕn〉 at a point z ∈ N ′ by

Dyϕ(z) =

∞
∑

n=0

(n+ 1)〈z⊗n, y ⊗1 ϕn+1〉,where ⊗1 is the right ontration of tensor produt of degree 1 (see [21℄). It is knownthat Dy ∈ L(Fθ(N
′),Fθ(N

′)) and hene D∗
y ∈ L(Fθ(N

′)∗,Fθ(N
′)∗). If, in partiular,

E = S(R), H = L2(R, dt) and E′ = S ′(R) (the Shwartz distributions spae), we mayde�ne
at = Dδt

, t ∈ Rand denote its adjoint operator by a∗t . Then the operators at ∈ L(Fθ(N
′),Fθ(N

′)) and
a∗t ∈ L(Fθ(N

′)∗,Fθ(N
′)∗) are, respetively, alled the annihilation operator and thereation operator at a point t ∈ R. In all the remainder of this paper we shall onsiderthe above Shwartz standard Gelfand triple when needed.It is shown (see [16℄, [23℄) that Gθ∗(N ⊕N) is losed under pointwise multipliation,then the onvolution produt T = T1 ∗ T2 of T1, T2 ∈ L(Fθ(N

′),Fθ(N
′)∗) is de�ned asthe unique T ∈ L(Fθ(N

′),Fθ(N
′)∗) suh that(2.9) σ(T ) = σ(T1 ∗ T2) := σ(T1) σ(T2).We next reall the following useful result.Theorem 2.5 ([6℄). Let ϕ be the Young funtion given by

ϕ(x) = (eθ∗

− 1)∗(x), x ∈ R+.Then, for any T ∈ L(Fθ(N
′),Fθ(N

′)∗), the onvolution exponential
exp∗T :=

∞
∑

n=0

1

n!
T ∗nonverges in L(Fϕ(N ′),Fϕ(N ′)∗).3. A quantum Lévy-type Laplaian. In this setion, based on the paper [1℄, we shallreview the so-alled quantum Lévy-type Laplaian.



QUANTUM LÉVY-TYPE LAPLACIAN 87Let E1, E2 be two real nulear Fréhet spaes with omplexi�ations N1 and N2 asbefore. A funtion F : E1 ⊕ E2 → R is alled of lass C2(E1 ⊕ E2) if there exist twoontinuous maps ξ ⊕ η 7→ F ′(ξ, η) ∈ (E1 ⊕ E2)
′ and

ξ ⊕ η 7→ F ′′(ξ, η) ∈ L((E1 ⊕ E2), (E1 ⊕ E2)
′) ∼= ((E1 ⊕ E2)

⊗2)′, ξ ⊕ η ∈ E1 ⊕ E2,suh that, for any ξ ⊕ η ∈ E1 ⊕ E2, we have(3.1) F ((ξ, η) + (a, b)) = F (ξ, η) + 〈F ′(ξ, η), a⊕ b〉 +
1

2
〈F ′′(ξ, η), (a⊕ b)⊗2〉 + ε(ξ, η),where the error term satis�es

lim
γ→0

ε(γ(ξ, η))

γ2
= 0, ξ ⊕ η ∈ E1 ⊕ E2,and the nulear kernel theorem is used into aount. A C-valued funtion F : E1⊕E2 → Clies in C2(E1⊕E2) if so do its real and imaginary parts. In that ase, F ′(ξ, η) ∈ (N1⊕N2)

′and F ′′(ξ, η) ∈ ((N1 ⊕N2)
⊗2)′.Fix an arbitrary sequene {en ⊕ fm}n,m∈N in E1 ⊕E2, i.e. two sequenes e = (en)n∈Nand f = (fm)m∈N in E1 and E2, respetively. From the paper [1℄ we introdue thefollowing de�nition.Definition 3.1. Let F : E1 ⊕ E2 → C be an element of C2(E1 ⊕ E2). By a Laplaianof Lévy-type assoiated with the sequene (e, f) = (en ⊕ fm)n,m∈N we mean the elliptioperator △̃Q

L de�ned by
(△̃Q

LF )(ξ, η) := lim
N1,N2→∞

1

N1N2

N1
∑

n=1

N2
∑

m=1

〈F ′′(ξ, η), (en ⊕ fm)⊗2〉, ξ ⊕ η ∈ E1 ⊕ E2,whenever the limit exists.The above de�nition is a natural extension of the usual Lévy Laplaian △̃L de�ned,with respet to the in�nite sequene e = {en}n∈N
⊂ E1, on a funtion f ∈ C2(E1) by(3.2) (∆̃Lf)(ξ) := lim

n→∞

1

n

n
∑

j=1

〈f ′′ (ξ) ej , ej〉, ξ ∈ E1,when the limit exists. To be more preise, if for example E2 = {0} then fm = 0 for any
m ∈ N and one an onsider the identi�ations

E1 = E1 ⊕ {0}, ξ = ξ ⊕ 0 and F (ξ, 0) = F (ξ), ∀ ξ ∈ E1,then
F ′(ξ, 0) = F ′(ξ) and F ′′(ξ, 0) = F ′′(ξ).So, we get the following Lemma:Lemma 3.2. The restrition of the Laplaian of Lévy-type △̃Q

L assoiated with the se-quene (e, f) = (en ⊕ fm)n,m∈N to the subspae E1 ≡ E1 ⊕ {0} (resp. E2 ≡ {0} ⊕ E2)gives rise to the usual Lévy Laplaian △̃L on E1 (resp. E2) assoiated with the sequene
e = (en)n∈N (resp. f = (fm)m∈N).The above Lemma is ruial for the operator △̃Q

L ating on funtions in two variables.



88 A. BARHOUMI AND H. OUERDIANEReall that for T ∈ L(Fθ(N
′),Fθ(N

′)∗), the symbol transform σ(T ) belongs to
Gθ∗(N ⊕N). In partiular, σ(T ) ∈ C2(N ⊕N). Let e = (en)n∈N and f = (fm)m∈N be twoarbitrary sequenes in N and let DQ

L (N) denote the spae of all T ∈ L(Fθ(N
′),Fθ(N

′)∗)suh that σ(T ) ∈ Dom(△̃Q
L ) and △̃Q

L (σ(T )) ∈ Gθ∗(N ⊕N).Definition 3.3. The quantum Lévy-type Laplaian △Q
L , ating on DQ

L (N), is de�ned by(3.3) △Q
L (T ) = σ−1(△̃Q

L (σ(T ))), T ∈ DQ
L (N).4. Basi examples. In the remainder of this Setion we �x two sequenes e = (en)n∈Nand f = (fm)m∈N of vetors in E. We denote by N ′

L,e and N ′
L,f the sets of all vetors

z ∈ N ′ and ω ∈ N ′ suh that(4.1) ‖z‖2
L,e := lim

N1→∞

1

N1

N1
∑

n=1

〈z, en〉
2 <∞,

(4.2) ‖ω‖2
L,f := lim

N2→∞

1

N2

N2
∑

m=1

〈ω, fm〉2 <∞,respetively.4.1. Translation operators. Let y ∈ N ′. For ϕ ∈ Fθ(N
′), the translation operator τyϕ of

ϕ by y is de�ned by
τyϕ(x) = ϕ(x+ y) , x ∈ N ′.It is easy to hek that τy is a ontinuous linear operator from Fθ(N

′) into itself. We �x
y ∈ N ′. Then, for ξ ∈ N , we see that τy eξ = e〈y,ξ〉eξ. Hene, by de�nition, one has

σ(τy)(ξ, η) = 〈〈τyeξ, eη〉〉 e
−〈ξ,η〉 = e〈y,ξ〉 , ξ, η ∈ N.Therefore, for any n,m ∈ N(4.3) 〈σ(τy)

′′(ξ, η), (en ⊕ fm)⊗2〉 = 〈y, en〉
2 σ(τy)(ξ, η) , ξ, η ∈ N.Proposition 4.1. Let y ∈ N ′. Then τy ∈ DQ

L (N) if and only if y ∈ N ′
L,e and, in thisase, τy is an eigenvetor for △Q

L in suh a way that
△Q

L (τy) = ‖y‖2
L,eτy.Proof. The proof follows from (4.3) and the de�nition of △Q

L .4.2. Integral kernel operators. Let a pair l,m ∈ N and a distribution κl,m ∈ (N⊗(l+m))′be given. The funtion Θl,m : (ξ, η) 7→ 〈κl,m, η
⊗l ⊗ ξ⊗m〉 is of polynomial growth, thenit belongs to Gθ∗(N ⊕ N). Then we shall denote by Tl,m(κl,m) ∈ L(Fθ(N

′),Fθ(N
′)∗)the unique operator assoiated to Θl,m via the symbol transform. We employ the formalintegral expression:

Tl,m(κl,m) =

∫

Rl+m

κl,m(s1, . . . , sl, t1, . . . , tm)a∗s1
. . . a∗sl

at1 . . . atm
ds1 . . . dsldt1 . . . dtmand all it the integral kernel operator with kernel κl,m (see e.g. [21℄). By de�nition, thesymbol of Tl,m(κl,m) is given by

σ(Tl,m(κl,m))(ξ, η) = 〈κl,m, η
⊗l ⊗ ξ⊗m〉, ξ, η ∈ N.



QUANTUM LÉVY-TYPE LAPLACIAN 89For simpliity, we put F (ξ, η) := 〈κl,m, η
⊗l ⊗ ξ⊗m〉. Then, by diret omputation, for any

p, q ∈ N, we have
〈F ′′(ξ, η), (ep ⊕ fq)

⊗2〉 = l(l − 1) 〈κl,m, (η
⊗(l−2)⊗̂f⊗2

q ) ⊗ ξ⊗m〉(4.4)
+ m(m− 1)〈κl,m, η

⊗l ⊗ (ξ⊗(m−2)⊗̂e⊗2
p )〉

+ 2lm〈κl,m, (η
⊗(l−1)⊗̂fq) ⊗ (ξ⊗(m−1)⊗̂ep)〉.This suggests the following:Theorem 4.2. Let l,m ∈ N. Suppose that(4.5) κl,m = z⊗l ⊗ ω⊗m ∈ (E⊗l)′ ⊗ (E⊗m)′and denote

κl−i,m−j := z⊗(l−i) ⊗ ω⊗(m−j) , 0 ≤ i ≤ l, 0 ≤ j ≤ m.Then, Tl,m(z⊗l ⊗ ω⊗m) ∈ DQ
L (N) if and only if z ∈ E′

L,f and ω ∈ E′
L,e and in that ase

△Q
L (Tl,m(κl,m)) = l(l − 1) Tl−2,m(κl−2,m)‖z‖2

L,f +m(m− 1)Tl,m−2(κl,m−2)‖ω‖
2
L,e(4.6)

+ 2lmTl−1,m−1(κl−1,m−1)

{

lim
N1→∞

1

N1

N1
∑

p=1

〈ω, ep〉

} {

lim
N2→∞

1

N2

N2
∑

q=1

〈z, fq〉

}

.Proof. With our assumption (4.5), (4.4) beomes
〈F ′′(ξ, η), (ep ⊕ fq)

⊗2〉 = l(l − 1) 〈κl−2,m, η
⊗(l−2) ⊗ ξ⊗m〉〈z, fq〉

2

+m(m− 1) 〈κl,m−2, η
⊗l ⊗ ξ⊗(m−2)〉〈ω, ep〉

2

+ 2lm 〈κl−1,m−1, η
⊗(l−1) ⊗ ξ⊗(m−1)〉〈z, fq〉 〈ω, ep〉

= l(l − 1) σ (Tl−2,m(κl−2,m)) (ξ, η)〈z, fq〉
2

+m(m− 1) σ (Tl,m−2(κl,m−2)) (ξ, η)〈ω, ep〉
2

+ 2lm σ (Tl−1,m−1(κl−1,m−1)) (ξ, η)〈z, fq〉 〈ω, ep〉.It follows that
(4.7) △Q

L (Tl,m(κl,m))

= l(l − 1) Tl−2,m(κl−2,m) ‖z‖2
L,f +m(m− 1)Tl,m−2(κl,m−2) ‖ω‖

2
L,e

+ 2lmTl−1,m−1(κl−1,m−1)

{

lim
N1,N2→∞

1

N1N2

N1
∑

p=1

N2
∑

q=1

〈ω, ep〉 〈z, fq〉

}

,when the right side of (4.7) makes sense. Now if ‖z‖2
L,f < ∞ and ‖ω‖2

L,e < ∞, by usingthe Shwarz inequality, we have
lim

N1,N2→∞

1

N1N2

N1
∑

p=1

N2
∑

q=1

〈ω, ep〉 〈z, fq〉 <∞and the statement follows.Remark 4.3. Suppose that E = S(R), H = L2(R, dt) and E′ = S ′(R) (the Shwartzdistribution spae). In the notations of the above Theorem, by taking z = ω = δt, one an



90 A. BARHOUMI AND H. OUERDIANEfound the ation of △Q
L on higher powers of quantum white noises. To be more preiselet l,m ∈ N and t ∈ R+. For T = a∗

l

t a
m
t ∈ L(Fθ(N

′),Fθ(N
′)∗), one has

△Q
L

(

a∗
l

t a
m
t

)

= m(m− 1) a∗
l

t a
m−2
t ‖δt‖

2
L,e + l(l − 1) a∗

l−2

t am
t ‖δt‖

2
L,f(4.8)

+ 2lm a∗
l−1

t am−1
t

(

lim
N1,N2→∞

1

N1N2

N1
∑

p=1

N2
∑

q=1

〈δt, ep〉 〈δt, fq〉

)

when the limits exist.It is well-known (see [18℄) that if e = f = (en)n∈N ⊂ E is the omplete orthonormalbasis onsisting of Hermite funtions of H, then supt∈R |〈δt, en〉| = O(n−1/12). Therefore,
N1
∑

n=1

〈δt, en〉
2 ≈

N1
∑

n=1

n−1/6 = O(N
5/6
1 )and therefore

lim
N1→∞

1

N1

N1
∑

n=1

〈δt, en〉
2 = ‖δt‖

2
L,e = 0.In onlusion, the above relation (4.8) beomes

△Q
L (a∗

l

t a
m
t ) = 0, ∀ l,m ∈ N.So, all the higher powers of quantum white noises are eigenvetors of the quantum Lévy-type Laplaian △Q

L for the eigenvalue 0.4.3. Gross Laplaian. The Gross Laplaian (see [15℄, [18℄) is the operator de�ned by itsFok expansion as follows:
△G = T0,2(τ ) =

∫

τ (s, t)asatds dt,where τ ∈ (N⊗2)′ is the trae de�ned by
〈τ, ξ ⊗ η〉 = 〈ξ, η〉 , ξ, η ∈ N.It is well-known that △G is a linear operator from Fθ(N

′) into itself. We desribe theation of the quantum Lévy-type Laplaian △Q
L on this in�nite dimensional lassialLaplaian.Proposition 4.4. The quantum Lévy-type Laplaian △Q

L ats on the Gross Laplaian
△G as follows:

△Q
L (△G) = 2 lim

N1→∞

1

N1

N1
∑

n=1

〈en, en〉Iif the limit exists. In partiular, if e = (en)n∈N is an orthonormal system, then △G ∈

DQ
L (N) and we have

△Q
L (△G) = 2 I,where I is the identity operator of L(Fθ(N

′),Fθ(N
′)).Proof. By diret omputation we obtain

σ(△G)(ξ, η) = 〈τ, ξ⊗2〉 = 〈ξ, ξ〉 , ξ, η ∈ N.
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〈σ(△G)′′(ξ, η), (en ⊕ fm)⊗2〉 = 2〈en, en〉 , ξ, η ∈ N.Therefore
△̃Q

L (σ(△G))(ξ, η) = 2 lim
N1→∞

1

N1

N1
∑

n=1

〈en, en〉if the limit exists. To onlude, it is su�ient to remark that σ(I) = 1.4.4. Convolution operators. By a onvolution operator on the test funtion spae Fθ(N
′)we mean a ontinuous linear operator from Fθ(N

′) into itself whih ommutes with alltranslation operators τx, x ∈ N ′.We de�ne the onvolution Φ ∗ ϕ of a distribution Φ ∈ Fθ(N
′)∗ and a test funtion

ϕ ∈ Fθ(N
′) to be the funtion

(Φ ∗ ϕ)(x) = 〈〈Φ, τxϕ〉〉, x ∈ N ′.Note, in partiular, that the distribution Φ ∈ Fθ(N
′)∗ ats on a test exponential funtionby:(4.9) Φ ∗ eξ = (LΦ)(ξ) eξ , ξ ∈ N.Diret alulation shows that Φ∗ϕ ∈ Fθ(N

′), for any ϕ ∈ Fθ(N
′), and that the mapping

TΦ de�ned by
TΦ : ϕ 7→ Φ ∗ ϕ, ϕ ∈ Fθ(N

′)is a onvolution operator on Fθ(N
′). Conversely, it was proved in [6℄ that all onvolutionoperators on Fθ(N

′) our this way, i.e., if T is a onvolution operator on Fθ(N
′), thenthere exists a unique Φ ∈ Fθ(N

′)∗ suh that T = TΦ, or equivalently,(4.10) T (ϕ) = TΦ(ϕ) = Φ ∗ ϕ, ϕ ∈ Fθ(N
′).Suppose Φ1,Φ2 ∈ Fθ(N

′)∗. Let TΦ1
and TΦ2

be the onvolution operators given by
Φ1 and Φ2, respetively, as in Equation (4.10). It is lear that the omposition TΦ1

◦TΦ2
isalso a onvolution operator on Fθ(N

′). Hene there exists a unique distribution, denotedby Φ1 ∗ Φ2, in Fθ(N
′)∗ suh that(4.11) TΦ1

◦TΦ2
= TΦ1∗Φ2

.The distribution Φ1 ∗Φ2 in Equation (4.11) is alled the onvolution of Φ1 and Φ2. FromProposition 1 of the paper [6℄ we have the following equality for any Φ1,Φ2 ∈ Fθ(N
′)∗ :(4.12) L(Φ1 ∗ Φ2) = LΦ1 LΦ2.This proves, in partiular, that the spae Lc of all onvolution operators on Fθ(N

′) is aommutative subalgebra of L(Fθ(N
′),Fθ(N

′)).In the white noise theory the lassial Lévy Laplaian is de�ned through the Laplaetransform. For Φ ∈ Fθ(N
′)∗, sine LΦ ∈ Gθ∗(N), we have LΦ ∈ C2(N). Let DL(N)denote the spae of all Φ ∈ Fθ(N

′)∗ suh that
△̃L(LΦ)(ξ) := lim

n→∞

1

n

n
∑

j=1

〈(LΦ)′′(ξ), ej ⊗ ej〉



92 A. BARHOUMI AND H. OUERDIANEexists for any ξ ∈ N , and △̃L(L(Φ)) ∈ Gθ∗(N) (where e = (en)n∈N is an arbitrary in�nitesequene of elements of N). Then the Lévy Laplaian ats on Φ ∈ DL(N) by(4.13) △LΦ := L−1(△̃L(LΦ)) ∈ Fθ(N
′)∗.The next Proposition gives a onnetion between the lassial Lévy Laplaian △̃L andthe quantum Lévy-type Laplaian △̃Q

L on the algebra of onvolution operators.Proposition 4.5. For any Φ ∈ DL(N) we have TΦ ∈ DQ
L (N) and(4.14) △̃Q

L (σ (TΦ)) (ξ, η) = △̃L (LΦ) (ξ) , ξ, η ∈ N.Proof. Let Φ ∈ DL(N). By de�nition and the relation (4.9) we have, for any ξ, η ∈ N ,(4.15) σ(TΦ)(ξ, η) = 〈〈TΦeξ, eη〉〉e
−〈ξ,η〉 = 〈〈Φ ∗ eξ, eη〉〉e

−〈ξ,η〉 = (LΦ)(ξ).Then, using the de�nitions of △̃Q
L and △̃L, one has

△̃Q
L (σ (TΦ)) (ξ, η) = lim

N1,N2→∞

1

N1N2

N1
∑

n=1

N2
∑

m=1

〈σ(TΦ)′′(ξ, η), (en ⊕ fm)⊗2〉

= lim
N1,N2→∞

1

N1N2

N1
∑

n=1

N2
∑

m=1

〈(LΦ)′′(ξ), (en ⊕ fm)⊗2〉

= lim
N1,N2→∞

1

N1N2

N1
∑

n=1

N2
∑

m=1

〈(LΦ)′′(ξ), e⊗2
n 〉

= lim
N1→∞

1

N1

N1
∑

n=1

〈(LΦ)′′(ξ), e⊗2
n 〉

= △̃L (LΦ) (ξ).This proves the statement.5. Quadrati quantum white noise and the quantum Lévy-type Laplaian. Inthis Setion we give, in the frame of white noise alulus, a good onnetion betweensquare of quantum white noise and the quantum Lévy-type laplaian △Q
L , and we disussthe related heat equation.In the remainder, we assume that E = S (R) , H = L2(R, dt), and E′ = S′(R).Following [9], any ontinuous map t 7→ Tt ∈ H = L2(E′, µ,C) de�ned on an inter-val an be onsidered as a usual (lassial) stohasti proess. Hene, any ontinuousfuntion whose domain is an interval of R and a range in Fθ(N

′)∗ an be alled a (gener-alized) lassi stohasti proess. In a similar way, in the frame of white noise analysis, a(generalized) quantum stohasti proess is a ontinuous mapping of a subset of R onto
L(Fθ(N

′),Fθ(N
′)∗).We now fous on the onvolution di�erential equation with quadrati quantum whitenoise as oe�ients:(5.1) dT

dt
= (a2

t + a∗2
t ) ∗ T, T0 = I.



QUANTUM LÉVY-TYPE LAPLACIAN 93De�ne a quantum stohasti proess {Zt} by
Zt =

∫ t

0

(a2
s + a∗2

s)ds.Sine L(Fθ(N
′),Fθ(N

′)∗) is a ommutative algebra with respet to the onvolution prod-ut (see (2.9)), the formal solution to (5.1) is given by the onvolution exponential:(5.2) Tt = exp∗(Zt) =
∞
∑

n=0

1

n!
(Zt)

∗n .The symbol of (5.2) is given by(5.3) σ(Tt)(ξ, η) =

∞
∑

n=0

1

n!
(σ(Zt))

n(ξ, η) = exp{σ(Zt)(ξ, η)}, ξ, η ∈ N.But, by de�nition we have
σ(Zt)(ξ, η) =

∫ t

0

〈〈(a2
s + a∗2

s)eξ, eη〉〉 e
−〈ξ,η〉ds =

∫ t

0

(ξ(s)2 + η(s)2)ds.Hene, (5.3) beomes(5.4) σ(Tt)(ξ, η) = exp
{

∫ t

0

(ξ(s)2 + η(s)2)ds
}

, ξ, η ∈ N.Theorem 5.1. The quadrati quantum white noise onvolution di�erential equation (5.1)has a unique solution {Tt} in L(Fθ(N
′),Fθ(N

′)∗) given by (5.2) and the map t → Tt isontinuous.Proof. Let p ≥ 0 and m > 0. Then, using (5.4) we have the estimates
|σ(Tt)(ξ, η)| exp(−θ∗(m|ξ|p) − θ∗(m|η|p))

= exp

{
∫ t

0

(ξ(s)2 + η(s)2)ds− θ∗(m|ξ|p) − θ∗(m|η|p)

}

≤ exp{|ξ|20 − θ∗(m|ξ|p)} × exp{|η|20 − θ∗(m|η|p)}

≤ exp{|ξ|2p − θ∗(m|ξ|p)} × exp{|η|2p − θ∗(m|η|p)}.We need the following statement:
Fat. (1) For 0 ≤ δ ≤ 1, x ≥ 0, we have(5.5) δθ∗(x) ≥ θ∗(δx).

(2) For δ ≥ 1, x ≥ 0, we have(5.6) δθ∗(x) ≤ θ∗(δx).Indeed, θ∗ is a Young funtion, so θ∗ is onvex, then for any 0 ≤ δ ≤ 1 , x ≥ 0

θ∗(δx− (1 − δ)0) ≤ δθ∗(x) + (1 − δ)θ∗(0) = δθ∗(x).Hene δθ∗(x) ≥ θ∗(δx). This proves (5.5). The relation (5.6) follows by hanging δ to
1
δ . The ondition (2.7) says that there exists δ > 0 small enough (0 < δ ≤ 1) suh that
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1
δ θ

∗(|ξ|p) ≥ |ξ|2p. Then, taking (5.6) into aount, one has, for any p ≥ 0 and m = 1/δ > 0

‖σ(Tt)‖θ∗,p,m <∞.This proves that σ(Tt) ∈ Gθ∗(N ⊕ N), or equivalently, Tt ∈ L(Fθ(N
′),Fθ(N

′)∗). Theontinuity of the map t→ Tt is straightforward.Remark 5.2. From the proof of the above theorem we see that the range of the solution
{Tt} of (5.1) is ontained in an algebra whih is singular to the original L(H,H), so that
{Tt} is a generalized quantum stohasti proess.We �x two in�nite sequenes e = (en)n∈N and f = (fm)m∈N in N satisfying thefollowing properties:(j) for any ξ, η,∈ N(5.7) lim

N1,N2→∞

1

N1N2

N1
∑

n=1

N2
∑

m=1

(
∫ α

0

en(u)ξ(u)du+

∫ α

0

fm(u)η(u)du

)2

= 0.(jj)(5.8) lim
N1→∞

1

N1

N1
∑

n=1

∫ α

0

e2n(u)du = lim
N2→∞

1

N2

N2
∑

m=1

∫ α

0

f2
m(u)du = α.Here α is a �xed positive real number.Theorem 5.3. Let {Ts} be the generalized quantum stohasti proess solution of thequadrati quantum white noise onvolution di�erential equation (5.1). Let α ≥ 0. Assumethat the above onditions (j) and (jj) are satis�ed. Then Tα is an eigenfuntion of theLévy-type Laplaian △Q

L suh that(5.9) △Q
LTα = 4αTα.Moreover, for γ ∈ C, Lt = e2γtTα satis�es the quantum white noise heat equation(5.10) ∂L

∂t
=
γ

2
△Q

LL, L(0) = Tα.Proof. From (5.4) we have, for eah ξ, η ∈ N ,
σ(T )(ξ, η) = exp

{
∫ t

0

(

ξ(s)2 + η(s)2
)

ds

}

.Then to prove (5.9) it is su�ient to show that
△̃Q

L (σ(Tα)) = 4ασ(Tα).Given a pair n ≥ 1 and m ≥ 1, one has, by diret omputation
〈σ(Tα)′′(ξ, η), (en ⊕ fm)⊗2〉 =

[

2

(
∫ α

0

e2n(u)du+

∫ α

0

f2
m(u)du

)

+ 4

(
∫ α

0

ξ(u)en(u)du+

∫ α

0

η(u)fm(u)du

)2]

σ(Tα)(ξ, η).Then taking the onditions (j) and (jj) into aount, we obtain
△̃Q

L (σ(Tα))(ξ, η) = 4ασ(Tα)(ξ, η), ξ, η ∈ Nas desired. The veri�ation of the seond assertion is straightforward.



QUANTUM LÉVY-TYPE LAPLACIAN 95Corollary 5.4. Let S be a ompat interval of R equipped with a �nite measure ν. Ifthe assumptions in Theorem 5.3 are true for all s ∈ S, then
Lt =

∫

S

e2γst Ts ν(ds), t ≥ 0,satis�es the quantum white noise heat equation
∂L

∂t
=
γ

2
△Q

LLwith initial ondition
L0 =

∫

S

Tsν(ds).Proof. Sine s 7→ Ts ∈ L(Fθ(N
′),Fθ(N

′)∗) is ontinuous, {Ts; s ∈ S} is a ompatsubset of L(Fθ(N
′),Fθ(N

′)∗) and s 7→ e2γstTs is then integrable, and hene Lt ∈

L(Fθ(N
′),Fθ(N

′)∗). By the Lebesgue dominated onvergene theorem we obtain
∂

∂t
(Lt) =

γ

2

∫

S

4sTse
2γstν(ds) =

γ

2

∫

S

△Q
L (Ts)e

2γstν(ds) =
γ

2
△Q

L (Lt)whih is what we look for.In view of Lemma 3.2 and Corollary 5.4 we obtain the following well-known result,see e.g. [22℄, [24℄.Corollary 5.5. Let {Φs} ⊂ Fθ(N
′)∗ be the lassial stohasti proess orresponding tothe quantum stohasti proess determined by (5.2), i.e., Φs = Tse0, s ∈ S. Under theassumptions of Theorem 5.3, the integral
Ψt =

∫

S

eγstΦsdsis de�ned in Fθ(N
′)∗ and satis�es the Lévy heat equation

∂

∂t
Ψt =

γ

2
△LΨtwith the initial ondition

Ψ0 =

∫

S

Φsds.Remark 5.6. The Lévy Laplaian [19℄ has been extensively studied in white noise anal-ysis, see e.g. [14℄, [17℄, [18℄. It is noteworthy that in these di�erent developments the LévyLaplaian is de�ned depending on an in�nite sequene e = (en)n∈N of the middle Hilbertspae H of the initial nulear Gelfand triple E ⊂ H ⊂ E′ on whih is onstruted thealgebra of white noise operators, (L(Fθ(N
′),Fθ(N

′)∗) in our ase). A typial example, asused in the previous Setion, is E = S (R) ⊂ H = L2 (R, dt) ⊂ E′ = S′ (R). It is usuallyassumed that e = (en)n∈N satis�es the following three properties:(i) e = (en)n∈N is a omplete orthonormal basis of L2(S, dt) with S a �nite time interval.(ii) e = (en)n∈N is equally dense, i.e.,
lim

n→∞

1

n

n
∑

k=1

∫

S

f(u)e2k(u)du =

∫

S

f(u)du, ∀ f ∈ L∞(S, dt).



96 A. BARHOUMI AND H. OUERDIANE(iii) e = (en)n∈N is uniformly bounded on S, i.e.,sup
n≥0

‖en‖∞ <∞where ‖.‖∞ is the supremum norm.Reently, more attention has been paid to the su�ieny of suh onditions. Weakerassumptions on e = (en)n∈N are �rst onsidered by Obata-Ouerdiane [24], in order tosolve the heat equation with the Lévy Laplaian ating on funtions on a real nulearspae E. More preisely, the Lévy Laplaian is de�ned depending on an arbitrary in�nitesequene e = (en)n∈N. Moreover, it is shown that a lass of solutions of the Lévy heatequation an be obtained in a uni�ed manner without assuming the above traditionalonditions (i), (ii), (iii), but just under the two onditions (j) and (jj) as in Theorem 5.3for two variables.Below we delve a little further into the weakness of these new hypotheses. First, notethat the ondition (jj) is learly stritly weaker than (ii). On the other hand, let e1 be a�xed nonzero vetor in E with ‖e1‖L2(0,1) = 1, and for any n ≥ 1, put en = 1
ne1. Thenwe shall fous on this sequene e = (en)n∈N. For ξ ∈ E we have

lim
n→∞

1

n

n
∑

k=1

〈ek, ξ〉
2 = lim

n→∞

1

n

n
∑

k=1

〈e1, ξ〉
2

k2
= 0.This means that the ondition (j) is satis�ed with the just onstruted sequene (en),but this sequene is not an orthogonal oordinate system as in (i). In onlusion, theonditions pointed out by Obata-Ouerdiane [24℄ are stritly weaker than the traditionalones.
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