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Abstrat. We produe generalized q-Gaussian random variables whih have two parameters ofdeformation. One of them is, of ourse, q as for the usual q-deformation. We also investigate theorresponding Wik formulas, whih will be desribed by some joint statistis on pair partitions.1. Introdution. Bo»ejko and Speiher studied the q-analogues of Brownian motions in[BS1℄, [BS2℄ and investigated q-Gaussian proesses with Kümmerer in [BKS℄, whih aregoverned by usual independene for q = 1 and free independene for q = 0. Their onstru-tions were based on the q-Fok spae over a Hibert spae H. Let a+(f) be the q-reationoperator and a−(f) be the q-annihilation operator assoiated with f ∈ H, respetively.They satisfy the q-ommutation relation a−(f)a+(f) − qa+(f)a−(f) = ‖f‖2 ·1, whihinterpolates between the bosoni, anonial ommutation relation (CCR), at q = 1,and the fermioni, anonial anti-ommutation relation (CAR), at q = −1. Then the
q-deformed entered Gaussian random variables are given by the position operators
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128 M. BOŻEJKO AND H. YOSHIDAand the braid relations play an important role. Their onstrution inludes the q-Fokspae as a speial ase whih suggested to make it more general.We shall here present the generalized q-deformed Fok spae aording to their on-strution together with an auxiliary positive sequene and give the assoiated generalized
q-deformed Gaussian random variables. The speial hoies of the positive sequene willyield interesting two-parameter, (q, s) and (q, t)-deformed, Gaussian random variableswhih inlude the known examples, the t-free, the t-lassial (see [BW2℄), and the s-freeGaussian random variables.We also investigate the orresponding Wik formulas. One of the deformation param-eters is, of ourse, q ∈ (−1, 1) as for the usual q-deformation. On the q-deformed Wikformula, the set partition statisti of pair partitions cr, the number of rossings, is usedfor q-ounting (see, for instane, [An℄, [EP℄). The other parameters of our deformationswill require statistis other than cr in order to desribe the Wik formulas in ombina-torial terms. Namely, the number of inner points, ip, and the number of outer onnetedomponents, oc, will be used for the (q, s) and the (q, t)-deformations, respetively. Thenon one-mode interating Fok spae will be also presented as speial ase.Although the partition statisti cr is strongly multipliative on pair partitions, thejoint statistis (cr, ip) and (cr, oc) are not strongly multipliative funtions any more. Wegive an example of the model of the strongly multipliative funtion by the joint statistisof cr, the number of rossings, and cc, the number of onneted omponents. This modelwill be given by the free ompression in [NS℄. At the end of paper, we will propose someproblems for future work.
2. Deformed Fok spaes. In this setion, we shall reall the general method foronstrution of deformed Fok spaes based on a self-adjoint ontration in [BS3℄.Let H be a real Hilbert spae. Consider a self-adjoint ontration T in B(H⊗H) suhthat

(1⊗ T )(T ⊗ 1)(1⊗ T ) = (T ⊗ 1)(1⊗ T )(T ⊗ 1),where T ⊗ 1 and 1 ⊗ T are the natural ampli�ations of T to H ⊗ H ⊗ H. We de�ne
Ti = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1 times ⊗T on H
⊗(i+1)

and by ampli�ation also on all H
⊗n with n > i + 1. Then the operators {Ti} areself-adjoint ontrations and satisfy the braids relations:

{
TiTi+1Ti = Ti+1TiTi+1,

TiTj = TjTi with |i − j| ≥ 2.The authors of [BS3℄ de�ned, for a vetor f ∈ H, a reation operator d∗(f) andan annihilation operator d(f) on a dense subset F of the full Fok spae F0(H) =⊕∞
n=0 H

⊗n, where H
⊗0 = CΩ (‖Ω‖ = 1), F being the set of �nite linear ombinationsof the elementary vetors. On the full Fok spae, we have the anonial free reation



DEFORMED GAUSSIAN RANDOM VARIABLES 129operator ℓ∗(f) given by
ℓ∗(f) Ω = f,

ℓ∗(f) x1 ⊗ · · · ⊗ xn = f ⊗ x1 ⊗ · · · ⊗ xnand the free annihilation operator ℓ(f) by
ℓ(f) Ω = 0,

ℓ(f) x1 ⊗ · · · ⊗ xn = 〈x1|f〉x2 ⊗ · · · ⊗ xn.They put
d∗(f) = ℓ∗(f)and

d(f) = ℓ(f)(1 + T1 + T1T2 + · · · + T1T2 · · ·Tn−1) on H
⊗n.Of ourse, d∗(f) and d(f) are not adjoint to eah other with respet to the original salarprodut (· | ·)0 on the full Fok spae. Hene, they have introdued a new salar produt

(· | ·)T whih makes d∗(f) and d(f) adjoint to eah other.The new salar produt is de�ned by
(ξ | η)T = δm,n(ξ |P (n)η)0 for ξ ∈ H

⊗m, η ∈ H
⊗n,where the operator

P (n) =
∑

σ∈Sn

ϕ(σ)on H
⊗n is the operator orresponding to the funtion ϕ : Sn → B(H⊗n) given by ϕ(e) = 1and ϕ(πi) = Ti (i = 1, 2, . . . , n − 1). Here {π1, π2, . . . , πn−1} is, of ourse, the set ofgenerators for the permutation group of n elements Sn, where πi : (i, i + 1) 7→ (i + 1, i).Remark 1. It an be heked without muh di�ulty that if we put

R(n) = 1 + T1 + T1T2 + · · · + T1T2 · · ·Tn−2Tn−1then {P (n)} satisfy the reurrene relation
P (n+1) = (1⊗ P (n))R(n+1)with P (1) = 1.In the above situation, the following was shown (see [BS3℄):Theorem 2. (i) If ‖T‖ < 1 then the operators P (n) are stritly positive for all n and wean take the ompletion of F with respet to the new salar produt ( · | · )T as FT , the

T -deformed Fok spae.(ii) For a vetor f ∈ H, d∗(f) and d(f) are adjoint to eah other on FT , that is, forall k ∈ N and ξ, η ∈
⊕n

k=0 H
⊗k we have
(d∗(f)ξ | η )T = (ξ | d(f)η )T .3. Generalized q-deformed Fok spae. The q-deformed Fok spae introdued in[BKS℄ an be obtained in the above manner by de�ning the ontration operator T as

T : x ⊗ y 7→ q(y ⊗ x) on H ⊗ H, for q ∈ (−1, 1).



130 M. BOŻEJKO AND H. YOSHIDAIn this ase, the operator R(n) for the reurrene relation in Remark 1 an be redued to
Q(n) = 1 + qΠ1 + q2Π1Π2 + · · · + qn−1Π1 · · ·Πn−2Πn−1,where Πi is the natural �ip operator for the ith and the (i + 1)st fators on a tensorprodut spae.Now we generalize these operators {Q(n)} and introdue generalized q-deformed Fokspaes. Given a sequene of positive numbers {τn}n≥1, we put

R̂(n) = τnQ(n) for n ≥ 1,and de�ne the operators {P̂ (n)} by the same reurrene relation for {P (n)} as in Remark 1.Namely, we de�ne the operators {P̂ (n)} by the reurrene relation
P̂ (n+1) = (1⊗ P̂ (n))R̂(n+1),with P̂ (1) = 1.If we de�ne the operator P̃ (n) by the reurrene relation
P̃ (n+1) = (1⊗ P̃ (n))Q(n+1),then the operator P̂ (n) is given in the form

P̂ (n) =
( n∏

i=1

τi

)
P̃ (n).We know that P̃ (n) is positive by Theorem 2 and τi, i = 1, 2, . . . , n are positive. Henethe operator P̂ (n) remains positive.Now we shall introdue the new salar produt ( · | · )(q,{τn}) in the same manner asabove, that is,

(ξ | η)(q,{τn}) = δm,n(ξ | P̂ (n)η)0 for ξ ∈ H
⊗m, η ∈ H

⊗n.It an be seen that this new salar produt behaves on the elementary vetors asfollows:
(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(q,{τn}) = δn,m

( n∏

i=1

τi

) ∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,where inv(π) is the number of inversions of permutation π ∈ Sn de�ned by
inv(π) = #{(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}.Proposition 3. Given q ∈ (−1, 1) and a positive sequene {τn}, we de�ne, for a vetor

f ∈ H, the operator a−
(q,{τn})(f) (simply denoted by a−(f)) by

a−(f)Ω = 0,

a−(f)x1 = τ1〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = τn

n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · ·⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2),where the symbol ∨

xk means that xk has to be deleted in the tensor produt.Then the operator a−(f) is adjoint to the anonial reation operator a+(f) on thefull Fok spae with respet to the new salar produt ( · | · )(q,{τn}).



DEFORMED GAUSSIAN RANDOM VARIABLES 131Sine this proposition an be proved a similar way to [BW2℄ we omit the details.By analogy with the Boson and the q-ases, for a vetor f ∈ H, we refer to the positionoperator
ω(f) = a+(f) + a−(f)as the generalized q-deformed entered Gaussian random variable of variane ‖f‖2.4. The (q, s)-deformation. We shall onsider a speial hoie of the sequene {τn},namely τn = s2(n−1) (n ≥ 1). We shall all suh a deformation the (q, s)-deformation.It an be easily seen that the salar produt for the (q, s)-deformed Fok spae willbe given by

(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(q,s) = δn,m sn(n−1)
∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,and the (q, s)-deformed annihilation operator by
a−(f)Ω = 0,

a−(f)x1 = 〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = s2(n−1)
n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2).For a unit vetor f ∈ H, we shall evaluate the moments of the (q, s)-Gaussian randomvariable ω(f) = a+(f) + a−(f) with respet to the vauum expetation (· | ·)(q,s). Weexpand the nth power of the Gaussian random variable ω(f)n = (a+(f) + a−(f))n as

(a+(f) + a−(f))n =
∑

ε1=±1,··· ,εn=±1

aεn(f)aεn−1(f) · · · aε1(f),where we regard a+1(f) and a−1(f) as a+(f) and a−(f), respetively.It an be obtained by the routine argument (see, for instane, [EP℄) that the summand
aεn(f)aεn−1(f) · · ·aε1(f)has non-zero vauum expetation if and only if {εi}n

i=1 is a Catalan sequene. In parti-ular, n is even, say n = 2m. For the Catalan sequene {εi}2m
i=1, we put

ℓ1 = 0,

ℓ2 = ε1 = 1,

ℓi = ε1 + · · · εi−1 ≥ 0 (2 ≤ i ≤ 2m − 1),

ℓ2m = ε1 + ε2 + · · · + ε2m−1 = 1,and we shall all {ℓi}2m
i=1 the assoiated level sequene.In order to evaluate the vauum expetation, we shall use the ards arrangement,whih is a similar tehnique as in [ER℄ for juggling patterns but we have to preparedi�erent kinds of ards and we should introdue weights for the ards.Creation ards. We make the ards Ci (i = 0, 1, 2, . . .) for the reation operator. Theard Ci has i in�ow lines from the left and (i + 1) out�ow lines to the right, where onenew line starts from the middle point on the ground level. For eah j ≥ 1, the in�ow lineof the jth level goes to the (j + 1)st level without any rossing. We all the ard Ci the



132 M. BOŻEJKO AND H. YOSHIDAreation ard of level i. Eah reation ard has weight 1. We will illustrate the ards of�rst few levels:Level 0 :
1
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Level 3 :
1
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rThe weight of eah ard is indiated over the upper edge of the ard.Annihilation ards. Next we shall make the ards for the annihilation operator. For i ≥ 1,we onsider the ards A
(j)
i (j = 1, 2, . . . , i) whih have i in�ow lines from the left and

i−1 out�ow lines to the right. On the ard A
(j)
i , only the in�ow line of the jth level goesdown to the middle point on the ground level and will be annihilated. The lines �owinginto levels lower than the jth go on horizontally parallel and keep their levels. Hene j−1rossings will our. Moreover if the line �ows into the k(> j)th level, it will �ow out tothe (k − 1)st level without any rossing. We all the ards A

(j)
i the annihilation ards oflevel i. The weight of the ard will be q to the number of rossings on the ard times sto twie the number of passes through lines, that is,

wt(A
(j)
i ) = s2(i−1)qj−1.We illustrate the annihilation ards of the �rst few levels:
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DEFORMED GAUSSIAN RANDOM VARIABLES 133Remark 4. The reation ards represent the relations a+(f)f⊗i = f⊗f⊗i (i ≥ 0), wherethe number of lines orresponds to the number of tensor fators. The annihilation ardsre�et the relations
a−(f) f⊗i =

i∑

j=1

si−1qj−1(f ⊗ · · · ⊗
∨
f ⊗ · · · ⊗ f︸ ︷︷ ︸The jth fator is deleted ),

where the annihilated line indiates the position of the fator in the tensor produt whihshould be deleted.Given a Catalan sequene {εi}2m
i=1, we shall arrange the ards depending both on {εi}and on the assoiated level sequene {ℓi}2m

i=1 in the following manner: If εi = +1 then weput the reation ard of level ℓi, Cℓi
at the ith position. If εi = −1 then we put one of theannihilation ards of level ℓi, A

(j)
ℓi
. There are ℓi possibilities of the hoie of annihilationards. We all suh arrangements of ards the admissible arrangements.By our onstrution, for a given Catalan sequene {εi}2m

i=1, the sum of the produtsof the weight for the ards in all the admissible arrangements is equal to the vauumexpetation of the monomial
aεn(f)aεn−1(f) · · ·aε1(f).Furthermore, there is one-to-one orrespondene between all the admissible arrangementsfor all the Catalan sequenes of length 2m and P2(2m), the set of pair partitions of 2melements.We shall now introdue the set partition statistis on pair partitions, whih will enableus to desribe the moments in ombinatorial terms.Let π be a pair partition of the set {1, 2, . . . , 2m} of 2m elements. For a blok (i, j) ∈ π,we de�ne inpt(i, j) to be the number of k with i < k < j (inner points) and we all

ip(π) =
∑

(i,j)∈π inpt(i, j) the sum of the inner points of the pair partition π (see [Yo℄).Namely, if π = {(i1, j1), (i2, j2), . . . , (im, jm)}, where ik < jk, then we have
ip(π) =

m∑

k=1

(jk − ik − 1).Note that the same statisti ip an be found in [EP℄ as the sum of gaps.We also adopt the well-known statisti cr, the number of rossings (see, for instane,[Bi℄, [EP℄), whih is given by the number of pairs of bloks whih will ross, that is,
cr(π) = #{((a, b), (c, d)) : (a, b), (c, d) ∈ π with a < c < b < d}.Example. For the Catalan sequene {εi}8

i=1 = {+1, +1, −1, +1, +1, −1, −1, −1}, wean have, for instane, the following admissible arrangement:
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134 M. BOŻEJKO AND H. YOSHIDAThe produt of the weights of the ards is s8q3 and the orresponding pair partition is
π = {{1, 6}, {2, 3}, {4, 7}, {5, 8}}.For the statistis we have ip(π) = 8 and cr(π) = 3.Now we shall illustrate how the statisti ip will appear in the produt of the weightsof the ards in an admissible arrangement. We note �rst that eah pass through line onthe annihilation ard is the segment of some onneted line whih will make a pair, andit is obvious that this site of annihilation is an inner point of the pair. Seondly, in anadmissible arrangement, the annihilation ards of level k + 1 and the reation ards oflevel k are ompletely parenthesized, and both the annihilation ard of level k + 1 andthe reation ard of level k have k passes through lines. Hene, the sum of the number ofpasses through lines on the annihilation ards in an admissible arrangement is just halfthe sum of the inner points of the orresponding pair partition. Furthermore, it is learthat the rossings of bloks of pair partitions will be ounted only on the annihilationards. Consequently, we an have the following evaluation:Theorem 5. For a vetor f ∈ H with ‖f‖ = 1, the moments of the (q, s)-Gaussianrandom variable ω(f) = a+(f) + a−(f) is given by

(ω(f)n Ω |Ω)(q,s) =





0, if n is odd,
∑

π∈P2(2m)

sip(π)qcr(π), if n = 2m.With help of the ombinatorial arguments in [Fl℄, it is not so di�ult to see that theStieltjes transform of the standardized (q, s)-Gaussian measure ν(q,s) an be expandedinto the following ontinued fration:
∫

d ν(q,s)(t)

z − t
=

1

z −
[1]q

z −
s2[2]q

z −
s4[3]q

z −
s6[4]q. . .

,

where [n]q stands for the q-integer that is [n]q = 1−qn

1−q
.We an apply the ards arrangements to a more general situation and obtain thefollowing (q, s)-Wik formula:Theorem 6. Let ω(fj) = a+(fj)+a−(fj) be the (q, s)-Gaussian random variables. Then

(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(q,s) =
∑

π∈P2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)

sip(π)qcr(π).

5. Other speial ases. We shall onsider another speial hoie of the sequene {τn}by putting, for t > 0, τ1 = 1 and τn = t if n ≥ 2. We shall all suh a deformation the
(q, t)-deformation. In this ase, the salar produt and the annihilation operator will be



DEFORMED GAUSSIAN RANDOM VARIABLES 135redued as follows: The salar produt for the (q, t)-deformed Fok spae will be given by
(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym )(q,t) = δn,mtn−1

∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,and the (q, t)-deformed annihilation operator by
a−(f)Ω = 0,

a−(f)x1 = 〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = t

n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2).Remark 7. In the ase of q = 0, the (0, t)-deformed Fok spae is nothing else but the

t-free Fok spae investigated in [BW2℄ (see also [BW1℄). If we take the limit q → 1then we an also obtain the t-lassial Fok spae. Another example of a Fok spaerepresentation of (q, t)-Gaussian random variables was given by Wojakowski in [Wo℄.In order to obtain the (q, t)-Wik formula we shall arrange the ards again. The�gures of ards are the same as before and the weights of the reation ards will not behanged. But we have to give di�erent weights to the annihilation ards to indiate the
(q, t)-annihilation, that is,

wt(A
(j)
i ) =

{
1 if i = 1,

tqj−1 if i ≥ 2.We shall adopt the set partition statisti oc, the number of outer onneted omponents,introdued in [BW2℄. We will regard, of ourse, that pairs whih ross eah other areontained in the same onneted omponents and the outerness an be de�ned as innon-rossing ase (see [BLS℄).It is an obvious ombinatorial fat that outer onneted omponents should be losedby the annihilation ard of level 1. Furthermore, only the annihilation ard of level 1 hasweight 1 and the annihilation ards other than of level 1 have the fator t in their weights.Of ourse, there are m annihilation ards in the admissible ards arrangement of length
2m.Example. If the pair partition is

π = {{1, 5}, {2, 3}, {4, 6}, {7, 8}}then the orresponding admissible ard arrangement is given as follows:
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rThere are two outer onneted omponents {1, 5} ∪ {4, 6} and {7, 8}, whih are losedby the annihilation of level 1 at the sites 6 and 8, respetively. On the other hand, the



136 M. BOŻEJKO AND H. YOSHIDAonneted omponent {2, 3} is inner, whih is losed at the site 3 by the annihilationard of level 2. The produt of the weights of the ards is t2q, whih, of ourse, equals
t4−oc(π)qcr(π).Combining the above arguments, we have the following (q, t)-Wik formula:Theorem 8. Let ω(fj) = a+(fj)+a−(fj) be the (q, t)-Gaussian random variables. Then

(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(q,t) =
∑

π∈P2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)

tm−oc(π)qcr(π).In the generalized q-deformation introdued in setion 3, if we onsider the ase of
q = 0 then it yields the interating Fok spae whih is, however, not one mode but moregeneral. The salar produt for this ase will be redued to

(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(0,{τn}) = δn,m

( n∏

i=1

τi

)
〈x1|y1〉〈x2|y2〉 · · · 〈xn|yn〉,and the annihilation operator will be

a−(f)Ω = 0,

a−(f)x1 = τ1〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = τn〈x1|f〉x2 ⊗ x3 ⊗ · · · ⊗ xn (n ≥ 2).In this ase we an also obtain the Wik formula by the same argument for non-rossing ase in [AB℄.Theorem 9. Let ω(fj) = a+(fj) + a−(fj) be the Gaussian random variables. Then
(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(0,{τn}) =

∑

π∈NCP2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)
t(π),where NCP2(2m) denotes the set of non-rossing pair partitions of 2m elements. Herethe funtion t(π) is de�ned as follows:

t(π) =
∏

Bi∈π

τ d(Bi),where d(Bi) denotes the depth of the blok Bj in the non-rossing pair partition π givenby
d(Bi) = #{k : Bi ⊂ Bk}.6. The strongly multipliative funtion on pair partitions. We denote the set ofpair partitions on {1, 2, . . . , 2n} by P2(1, 2, . . . , 2n) and put

P2(∞) =

∞⋃

n=1

P2(1, 2, . . . , 2n).Definition. (i) A funtion t on P2(∞) is alled weakly multipliative, if we have for all
k, m ∈ N with k < m and all π1 ∈ P2(1, . . . , k) and π2 ∈ P2(k + 1, . . . , m)

t(π1 ∪ π2) = t(π1) · t(π2).



DEFORMED GAUSSIAN RANDOM VARIABLES 137(ii) A funtion t on P2(∞) is alled strongly multipliative, if we have for all k, ℓ, m ∈ Nwith k < ℓ < m and all π1 ∈ P2(1, . . . , k, ℓ + 1, . . . , m) and π2 ∈ P2(k + 1, . . . , ℓ)

t(π1 ∪ π2) = t(π1) · t(π2).Remark 10. The funtion tq(π) = qcr(π) on P2(∞) is strongly multipliative. The fun-tions ts(π) = sip(π) and tt(π) = t|π|−oc(π), where |π| stands for the number of bloks(pairs) in π, are not strongly multipliative although they are weakly multipliative.Hene, the joint statistis sip(π)qcr(π) and t|π|−oc(π)qcr(π) would not be strongly multi-pliative any more.Here we onsider the partition statisti cc, the number of onneted omponents. Itis obvious that the statisti cc will yield the strongly multipliative funtion by tα(π) =

α−cc(π).Sine the produt of strongly multipliative funtions is again strongly multipliative,for instane, the funtion
t(q,α)(π) = tα(π) tq(π) = α−cc(π)qcr(π)is strongly multipliative.Now we shall give an example of a onstrution of deformed Gaussian random vari-ables for whih the traial and strongly multipliative positive de�nite funtion suh asabove will appear in a moment formula. The model for this example is given by the freeompression investigated in [NS℄. We shall start with a traial and strongly multipliativeexample, like the q-ase.Let (A, ϕ) be a non-ommutative probability spae, where ϕ is a trae. Let p ∈ A isa projetion suh that ϕ(p) = α ( 6= 0). We onsider deformed Gaussian random variable

ω(f) in A, where f is in a real Hilbert spae H and p is free from ω(f). We make freeompression by p, that is, we have the system of non-ommutative probability spae
(pA p, ϕ̃) where ϕ̃ = 1

α
ϕ|pA p, and the random variable ω̃(f) = 1

α
p ω(f) p in (pA p, ϕ̃).This is our desired deformed Gaussian random variable. Indeed we have the followingevaluation:Theorem 11. For a vetor f ∈ H with ‖f‖ = 1, we onsider deformed Gaussian randomvariable ω(f). Let t be the orresponding positive de�nite funtion on P2(∞) for ω(f)and we assume that it is traial and strongly multipliative. Then the moments of theindued deformed Gaussian random variable ω̃(f) are given by

ϕ̃
(
ω̃(f)n

)
=





0, if n is odd,
∑

π∈P2(2m)

α−cc(π)
t(π), if n = 2m.Proof. By the assumption, the 2mth moment of the deformed Gaussian random vari-able ω(f) is written in the form

m2m =
∑

π∈P2(2m)

t(π).Conerning the moments of odd orders, they should vanish and, hene, the free umulantsof odd orders of ω(f) also vanish.



138 M. BOŻEJKO AND H. YOSHIDAIf a non-rossing partition has no blok of odd size, that is, all bloks are even, then weall suh a non-rossing partition even. We denote the set of even non-rossing partitionsof 2m elements by NCe(2m).Given a pair partition π ∈ P2(2m), the onneted omponents of π will indue theeven non-rossing partitions ν ∈ NCe(2m) anonially. We write this orrespondene by
Φ(π) = ν. For example, if the pair partition is π = {{1, 5}, {2, 3}, {4, 6}} then π has twoonneted omponents {1, 5}∪{4, 6} and {2, 3}, thus the orresponding even non-rossingpartition beomes Φ(π) = {{1, 4, 5, 6}, {2, 3}}. Pair partitions π1 and π2 in P2(2m) aresaid to be equivalent in onneted omponents if Φ(π1) = Φ(π2). By this equivalene, wean rewrite the above formula on the 2mth moment as

m2m =
∑

ν∈NCe(2m)

∑

π∈P2(2m)
Φ(π)=ν

t(π).

Here we put
r2k =

∑

ρ∈P2(2k),
cc(ρ)=1

t(ρ),

that is, r2k is the sum of t-values for the pair partitions in P2(2k) whih are onstitutedfrom only one onneted omponent. We illustrate the ase of r6 below:
r6 = t

(
q
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q
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q
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q
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q
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+ t

(
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(
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)
.Then the strong multipliativity of t guarantees that, for a given non-rossing partition

ν ∈ NCe(2m),
∑

Φ(π)=ν

t(π) =
∏

V ∈ν

r|V |,where |V | denotes the size of the blok V in the even non-rossing partition ν ∈ NCe(2m).Hene we have the equality
m2m =

∑

ν∈NCe(2m)

∏

V ∈ν

r|V |,whih means that r2k is nothing else than the 2kth free umulant of deformed Gaussianrandom variable ω(f).By the formula (1.15) in [NS℄, it follows that the 2kth free umulant r̃2k of the indueddeformed Gaussian random variable ω̃(f) is given by r̃2k = 1
α

r2k. Using the free moment-umulant formula again, we obtain
m̃2m =

∑

ν∈NCe(2m)

∏

V ∈ν

r̃|V | =
∑

ν∈NCe(2m)

α−|ν|
∏

V ∈ν

r|V |,where |ν| stands for the number of bloks in the even non-rossing partition ν ∈NCe(2m).Under the map Φ, it is lear that the number of onneted omponents of a pair parti-tion π, cc(π), equals the number of bloks of the orresponding even non-rossing par-



DEFORMED GAUSSIAN RANDOM VARIABLES 139tition ν(= Φ(π)). Consequently we have for the 2mth moment of the indued deformedGaussian random variable ω̃(f)

m̃2m =
∑

ν∈NCe(2m)

α−|ν|
∑

Φ(π)=ν

t(π) =
∑

π∈P2(2m)

α−cc(π)
t(π).

Hene the orresponding positive de�nite funtion t̃ on P2(∞) for the indued Gaussianrandom variable ω̃(f) is given by
t̃(π) = α−cc(π)

t(π)and it is again traial and strongly multipliative.Starting with t(π) = qcr(π) we have the (q, α)-deformed Gaussian random variablesand the following remarks naturally arise:Remark 12. (i) The funtion t(q,α)(π) = α−cc(π)qcr(π) is strongly multipliative and thevauum state is trae so we an think about the seond quantization and ultraontra-tivity or hyperontrativity of orresponding Ornstein-Uhlenbek semigroups, like in the
q-ase (see [Bo1℄, [Bo2℄).(ii) There is an open problem about fatoriality of the von Neumann algebra generatedby the (q, α)-Gaussian random variables (see [Hi℄, [No℄, [Ri℄, and [Si℄).(iii) How about onnetions with the lassial Markov proesses like in [BKS℄?(iv) How about the orthogonal (q, α)-Hermite polynomials?
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