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Abstrat. This paper gives some very elementary proofs of results of Aupetit, Ransford andothers on the variation of the spetral radius of a holomorphi family of elements in a Ba-nah algebra. There is also some brief disussion of a notorious unsolved problem in automationtinuity theory.1. Introdution. Let A be a omplex, unital Banah algebra, let U be an open subsetof C and let f : U → A be an A-valued holomorphi funtion. There is a onsiderableliterature onerned with the way in whih the spetrum Sp(f(z)) (and, in partiular,the spetral radius ρ(f(z))) depends on z (see, e.g. [2℄, [3℄, [7℄, [8℄).In this note, we will give elementary proofs of various results on the variation of thespetral radius of f(z). In all that follows, A will be a omplex, unital Banah algebra(whih is not neessarily ommutative). To avoid onfusion with other onventions, notethat, for every a ∈ A, we de�ne its spetral radius ρ(a) ≡ ρA(a) to be

ρ(a) = sup{|λ| : λ ∈ Sp a},and it is realled that
ρ(a) = lim

n→∞
‖an‖1/n = inf

n≥1
‖an‖1/n.From this last `inf' formula, it is immediate that the funtion ρ : A → R

+ is upper-semiontinuous ; it is very important to realize that ρ is not in general ontinuous (seee.g. [2℄, Chap. 1, �5).It is also worth remarking that if, following [4℄ (Chapter 1, �4, Corollary 2), we de�ne
Eun(A) to be the set of all unital, submultipliative norms on A that are equivalent to2000 Mathematis Subjet Classi�ation: Primary 46H40; Seondary 31A05, 46H10.The paper is in �nal form and no version of it will be published elsewhere.[9℄ © Instytut Matematyzny PAN, 2007



10 G. R. ALLANthe initial norm ‖. ‖, then it is simple to show that
ρ(a) = inf{p(a) : p ∈ Eun(A)}.(This remark gives another proof that the spetral radius is upper-semiontinuous.)For holomorphi f : U → A, we will generally write ρf : U → R+ for the funtion

z 7→ ρ(f(z)) (z ∈ U). In [8℄, Vesentini proved that ρf is subharmoni on U . This propertywas famously exploited by Aupetit [1℄ in his remarkable proof of Johnson's uniqueness-of-norm theorem. For later referene it is realled that the Johnson theorem may be statedas follows:Theorem (B. E. Johnson). Let A, B be Banah algebras, with B semisimple, and let
T : A → B be an algebra homomrphism suh that T (A) = B. Then T is ontinuous.In [6℄, Ransford gave a still more elementary proof of the Johnson theorem, in whihsubharmoni funtions do not appear expliitly. The aim of this note is to show that agood deal of the holomorphi theory of the spetral radius may be obtained, in a veryelementary way, by using a devie similar to that of Ransford.The essential step in Ransford's proof was provided by the dedution of a speial aseof the lassial Hadamard three-irles theorem, as follows:Lemma 1 (Ransford). Let A be a unital Banah algebra, let R > 1 and let f be a holo-morphi A-valued funtion on a neighbourhood of the annulus {z ∈ C : R−1 ≤ |z| ≤ R}.Then

(ρf)(1)2 ≤ sup
|z|=R−1

(ρf)(z) sup
|z|=R

(ρf)(z).Remark. Ransford stated his lemma for polynomials with oe�ients from A; the formof the lemma for holomorphi A-valued f is no harder to prove, and �ts better with whatfollows.The present note is greatly in�uened by Ransford's proof of Lemma 1; but it is usefulto give a slightly more general version of the result (Theorem 4).2. A maximum priniple and its onsequenes. We have realled that, for every
a ∈ A, ρ(a) = limn→∞ ‖an‖1/n. It is a very useful triviality that, if we let n run throughpowers of 2, say let gk(a) = ‖a2

k

‖2
−k , then gk is a monotone dereasing sequene with,of ourse, gk(a) → ρ(a) as k → ∞. This fat will be ombined with the following simplevariant of Dini's theorem:Lemma 2 (Dini lemma). Let T be a ompat Hausdor� spae, and let (hn)n≥1 be amonotone dereasing sequene of ontinuous funtions hn : T → R+; de�ne h(t) =

limn→∞ hn(t) (t ∈ T ). Then supT hn → supT h as t → ∞.Note that, in this lemma, h is not required to be ontinuous and, indeed the onvergeneof hn to h need not be uniform. (This point is important sine, otherwise, we would havea false dedution of ontinuity of the spetral radius.)In fat Lemma 2 had also been proved by Zemánek in his dotoral thesis [9℄, as a stepin the proof of his well known haraterization of the radial of a Banah algebra. But,in the published version in [10℄, the lemma does not appear, sine a di�erent method



HOLOMORPHIC SPECTRAL THEORY 11of proof was used. The use of the Dini lemma in [9℄ was essentially the same as in theproof of the following Lemma 3. We remark that (very elementary) lassial funtiontheory enters the present aount entirely via that lemma. As throughout the paper, Ais a omplex, unital Banah algebra.Lemma 3 (Weak maximum priniple for the spetral radius). Let open U ⊆ C and let
f : U → A be holomorphi. Then for every ompat K ⊂ U and every z0 ∈ K,

(ρf)(z0) ≤ sup
z∈∂K

(ρf)(z).Proof. For every holomorphi g : U → A, we may use the Hahn-Banah theorem to �nd
χ ∈ A∗ with ‖χ‖ = 1 and χ(g(z0)) = ‖g(z0)‖.Then χ ◦ g : U → C is holomorphi so that, by the lassial maximum priniple,

‖g(z0)‖ = |(χg)(z0)| ≤ sup
z∈∂K

|(χg)(z)| ≤ sup
z∈∂K

‖g(z)‖.Apply the outer inequality to g = f2
k (k = 1, 2, . . . ), take 2kth roots and then let k → ∞.Using the Dini lemma we dedue that

(ρf)(z0) ≤ sup
z∈∂K

(ρf)(z).The key step for all the other results in this paper, is the following form of three-irlestheorem (Lemma 1 being essentially the ase |z|2 = R1R2). The proof adapts one of thestandard proofs of the Hadamard three-irles theorem.Theorem 4 (Spetral three-irles theorem). Let 0 < R1 < R2, let U be an open neigh-bourhood of the annulus ∆(R1, R2) ≡ {z ∈ C : R1 ≤ |z| ≤ R2} and let f : U → A be holo-morphi. For j = 1, 2 let Mj = sup|z|=Rj
(ρf)(z). Then, for every z with R1 < |z| < R2,

(ρf)(z) ≤ M t
1M

1−t
2 ,where t ∈ (0, 1) is the unique number with |z| = Rt
1R

1−t
2 .Proof. Write r = |z|. For integers p, q with q ≥ 1, we apply Lemma 3 to the funtion

|z|pρ(f(z))q = ρ(zpf(z)q) on ∆(R1, R2) and then take qth roots, obtaining
rp/q(ρf)(z) ≤ max(R

p/q
1 M1, R

p/q
2 M2). (∗)Let α be the real number suh that Rα

1 M1 = Rα
2 M2, and then apply (∗) to a sequene ofinteger pairs (pn, qn) with pn/qn → α. Then we dedue

rα(ρf)(z) ≤ Rα
1 M1 = Rα

2 M2. (∗∗)But log r = t log R1 + (1 − t) log R2 and α log R1 + log M1 = α log R2 + log M2, so weeasily dedue from (∗∗) that log(ρf)(z) ≤ t log M1 + (1 − t) log M2 , whih is equivalentto the stated result.The �rst appliation is a Liouville theorem: we write the proof to show that, for thisresult, Lemma 1 is su�ient.Corollary 5. Let A be a omplex unital Banah algebra, and let f : C → A be an
A-valued entire funtion. Suppose that ρf is bounded on C; then ρf is onstant.



12 G. R. ALLANProof. Let M = supz∈C(ρf)(z); we may learly suppose that M > 0. Suppose, towards aontradition, that ρf is not onstant; then m ≡ infz∈C(ρf)(z) < M and we may hoose
ǫ > 0 with m + ǫ < M . Choose z0 ∈ C with (ρf)(z0) < m + ǫ; by onsidering f(z + z0) ifneessary, we may assume that z0 = 0. By the upper-semiontinuity of ρf at 0, there issome δ > 0 suh that (ρf)(z) < m + ǫ whenever |z| ≤ δ.Let 0 6= a ∈ C and hoose R > 1 for whih |a|/R < min(|a|, δ) ≤ |a| < R/|a| . Then,by applying Theorem 4 (or just Lemma 1) to the annulus entered at 0, with radii |a|/Rand R/|a| we have

(ρf)(a)2 ≤ sup
|z|=|a|/R

(ρf)(z) sup
|z|=R/|a|

(ρf)(z) ≤ (m + ǫ)M.Thus (m+ ǫ)M is an upper bound for (ρf)2 on C (trivially at a = 0), so that m+ ǫ > M ,whih is a ontradition. This proves the theorem.We next show that the three-irles theorem may be used to give a stronger maximumpriniple than that in Lemma 3.Theorem 6 (Maximum priniple for the spetral radius). Let D be a onneted opensubset of C and let f : D → A be holomorphi. Suppose that there is some z0 ∈ D with
(ρf)(z) ≤ (ρf)(z0) for all z ∈ D. Then ρf is onstant on D.Proof. We �rst show that ρf is onstant on a neighbourhood of z0.Let R > 0 be suh that {z : |z−z0| ≤ R} ⊂ D. Let m = inf{(ρf)(z) : |z−z0| < R/2},let ǫ > 0 and hoose z1 with |z1−z0| < R/2 and suh that (ρf)(z1) < m+ǫ. Then use theupper-semiontinuity of ρ to hoose δ, with 0 < δ < |z1 − z0|, suh that (ρf)(z) < m + ǫfor all z with |z − z1| ≤ δ.Write M = (ρf)(z0), observe that (ρf)(z) ≤ M for all z with |z − z1| ≤ R/2 andapply Theorem 4 to an annulus entered at z1 with radii δ and R/2. Then, for a ertain
t ∈ (0, 1),

M = (ρf)(z0) ≤ (m + ǫ)tM1−t,whene M ≤ m+ǫ for all ǫ > 0. So m = M and thus (ρf)(z) is onstant for |z−z0| < R/2.Now de�ne
E = {z ∈ D : (ρf)(z) = (ρf)(z0)} = {z ∈ D : (ρf)(z) ≥ (ρf)(z0)}.By the upper-semiontinuity of ρ, E is relatively losed in D and, by the argument of thelast paragraph, E is open. Sine z0 ∈ E, then E 6= ∅ and so, by the onnetedness of D,

E = D and the theorem is proved.We now again use the three-irles theorem, this time to prove a lemma of Aupetit([3℄, Theorem 5.5.1) whih is a key step in his proof of Johnson's theorem.Reall that, if X, Y are Banah spaes and if T : X → Y is a linear mapping (notneessarily ontinuous), then the separating subspae, Σ(T ), of T is the set of all y ∈ Ysuh that Txn → y for some sequene (xn) in X for whih xn → 0 as n → ∞. It iselementary that Σ(T ) is a losed subspae of Y , and that T is ontinuous if and only if
Σ(T ) = {0} (whih is a formulation of the losed graph theorem).If A, B are unital Banah algebras and T : A → B is a unital homomorphism with
T (A) = B, then Σ(T ) is a proper losed ideal of B.



HOLOMORPHIC SPECTRAL THEORY 13Remark also that, if T : A → B is a unital homomorphism of Banah algebras and if
a ∈ A, then ertainly SpB(Ta) ⊆ SpA(a), so that ρB(Ta) ≤ ρA(a). Following Aupetit, wegive the following lemma for any linear mapping T : A → B for whih ρB(Ta) ≤ ρA(a)(a ∈ A); by the remark just made, this inludes the ase in whih T is a homomorphism.Theorem 7 (Aupetit). Let A, B be unital Banah algebras and let T : A → B be a linearmapping suh that ρB(Ta) ≤ ρA(a) for every a ∈ A. Then, for every a ∈ A and every
b ∈ Σ(T ),

ρB(Ta) ≤ ρB(T (a) + b).Remark. It appears that the more speial three-irles lemma of Ransford (Lemma 1)leads to the weaker inequality: ρB(Ta)2 ≤ ρA(a)ρB(Ta + b); but it should be remarkedthat this inequality is still su�ient for the dedution of Corollary 8. (That is the versionof the result given in [5℄, Theorem 5.1.9.)Proof of Theorem 7. Let 0 < r < 1 < R and let f : C → B be holomorphi. By Theorem 4,
(ρBf)(1) ≤ sup

|z|=r

(ρBf)(z)t sup
|z|=R

(ρBf)(z)1−t, (∗)where t = log R/(log R − log r).Let b ∈ Σ(T ), let a ∈ A and let ǫ > 0. By an elementary result (referred to in �1) wemay, by hoie of equivalent norm on B, suppose that ‖Ta+ b‖ < ρB(Ta+ b)+ ǫ. Choosea sequene (an) in A with an → 0 in A and Tan → b in B.For eah n = 1, 2, . . . , apply (∗) to fn(z) = T (a + an)− zTan. Then, sine ρB(Tx) ≤

ρA(x) for all x ∈ A,
ρB(Ta) = (ρBfn)(1) ≤ sup

|z|=r

ρB(T (a + an) − zTan)t sup
|z|=R

ρA(a + an − zan)1−t

≤ (‖T (a + an)‖ + r‖Tan‖)
t(‖a + an‖ + R‖an‖)

1−t.First let n → ∞ and dedue that
ρB(Ta) ≤ (‖Ta + b‖ + r‖b‖)t‖a‖1−t.Now, for eah �xed r > 0, let R → ∞ and note that then t = log R/(log R − log r) → 1,so that

ρB(Ta) ≤ ‖Ta + b‖ + r‖b‖,for every r > 0. Thus ρB(Ta) ≤ ‖Ta + b‖ < ρB(Ta + b) + ǫ. This holds for every ǫ > 0so that the result follows.Corollary 8 (Generalized Johnson theorem). Let A, B be Banah algebras and let T :

A → B be a linear mapping with ρB(Ta) ≤ ρA(a) for all a ∈ A. If T (A) = B then
Σ(T ) ⊆ J(B) (the Jaobson radial of B); in partiular, if B is semisimple then T isontinuous.Proof. Let b ∈ Σ(T ) and let c be any quasi-nilpotent element of B. Sine T (A) = B,there is an a ∈ A with Ta = c − b. From Theorem 7, ρB(c − b) ≤ ρB(c) = 0. By a wellknown result of Zemánek [10℄, b ∈ J(B).Corollary 9. Let A, B be unital Banah algebras and let T : A → B be a linear mappingsuh that ρB(Ta) ≤ ρA(a) for every a ∈ A. Let b ∈ Σ(T ); then for every sequene (bn)



14 G. R. ALLANin T (A) suh that bn → b (or even suh that, merely, ρB(bn − b) → 0), it follows that
ρB(bn) → 0.Finally, we reall the notorious unsolved problem in this area:Let A, B be Banah algebras, with B semisimple, and let T : A → B be a homomor-phism with T (A) = B. Is it true that T is neessarily ontinuous?Remarks1. It is equivalent to drop the requirement that B be semisimple, and then to ask whether
Σ(T ) ⊆ J(B).2. An equivalent formulation is to ask whether Sp(b) = {0} for every b ∈ Σ(T ). It isknown (and quite easy to prove) that Sp(b) is onneted, and, of ourse, 0 ∈ Sp(b).3. We may divide the problem into two parts:(i) show that kerT is losed;(ii) with the additional hypothesis that ker T is losed, prove that T is ontinuous.Then eah of these two sub-problems appears to be open.4. If we just assume (with B semisimple) that T : A → B is linear with ρB(Ta) ≤ ρA(a)for every a ∈ A and that T (A) = B, then it is not the ase that T need be ontinuous(see e.g. [5℄, following Theorem 5.1.9; it is easy to see that, in this example, ker T is noteven losed). But it appears that the question of whether every element of Σ(T ) need bequasi-nilpotent may still be open in this more general ase.We onlude with a simple result that, just possibly, might have relevane to theunsolved problem under disussion (see Remark 2 above).Corollary 10. Let A, B be Banah algebras and let T : A → B be a linear mappingwith ρB(Ta) ≤ ρA(a) for all a ∈ A and T (A) = B. Let b be an element of the separatingsubspae Σ(T ). Suppose that, for some open neighbourhood D of 0 in C, there is a holo-morphi funtion f : D → B with f(0) = b and suh that f(z) ∈ T (A) for all z ∈ U \{0}.Then b is quasi-nilpotent.Proof. Sine f(z) → f(0) = b as z → 0 in D, it follows from Corollary 9 that for every
ǫ > 0 there exists δ > 0 suh that ρB(f(z)) < ǫ for all z ∈ U with 0 < |z| ≤ δ. It thenfollows from the weak maximum priniple (Lemma 3) that ρB(b) = 0.
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