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Abstract. We provide a survey of properties of the Cesàro operator on Hardy and weighted

Bergman spaces, along with its connections to semigroups of weighted composition operators.

We also describe recent developments regarding Cesàro-like operators and indicate some open

questions and directions of future research.

1. Introduction and history. If U is an open subset of the complex plane C, let H(U)

denote the space of complex-valued analytic functions on U , a Fréchet algebra when

endowed with the topology of uniform convergence on compact subsets of U . Let D denote

the open unit disk in C and, for f ∈ H(D) with power series expansion f(z) =
∑∞

n=0 anz
n,

define

Cf(z) =
∞∑

n=0

1

n+ 1

( n∑

k=0

ak

)
zn.

The operator C may also be represented as an integral operator:

Cf(z) =
1

z

∫ z

0

f(ω)

1 − ω
dω,

and in this form, it is easy to see that C : H(D) → H(D) is continuous. The classical

Hardy space H2(D) consists of those function in H(D) with square-summable Fourier

coefficients and is thus naturally isomorphic to the sequence space ℓ2(N0). In this setting,

the operator C takes the form

ℓ2(N0) ∋ (an)n≥0
C
−→

(
a0,

a0 + a1

2
, . . . ,

a0 + · · · + an

n+ 1
, . . .

)
,

which Brown, Halmos and Shields termed in 1965 the (discrete) Cesàro operator, [8].

It is they who are credited with beginning the study of this operator from a modern

2000 Mathematics Subject Classification: Primary 47B38, 47A10, 47A11, 47D03.
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perspective. That the Cesàro operator is bounded on H2(D) is actually due to Hardy,

[19], who was interested in simplifying the proof of an inequality by Hilbert. Brown,

Halmos and Shields described the spectrum and proved that C|H2 is hyponormal, i.e.,

C∗C−CC∗ is a positive operator on the Hilbert space H2(D). In 1971, Kriete and Trutt

[24] extended this result and proved that C|H2(D) is subnormal, that is, the restriction of

a normal operator to an invariant subspace. In fact, they constructed a measure σ on D

such that I −C is unitarily equivalent to the multiplication operator Mzf(z) = zf(z) on

the space H2(σ), the closure of the analytic polynomials in L2(σ).

The connection of the Cesàro operator to composition operators was first made by

Deddens in 1972, who used the result of Kriete and Trutt to show that, for ψr(z) =

rz + 1 − r, 0 < r ≤ 1, the operator f 7→ f ◦ ψr is co-subnormal on H2(D), [11]. In fact,

the collection St ∈ L
(
H2(D)

)
, Stf = f ◦ ψe−t , t ≥ 0, is a strongly continuous semigroup

of composition operators on H2(D). Cowen in [9] was the first to note that the Cesàro

operator can also be represented as the resolvent at 0 of the infinitesimal generator of the

adjoint semigroup (S∗
t )t≥0 and gave a direct proof of the subnormality of this semigroup.

From this, a theorem of Ito, [23, Theorem 4], enabled him to give an alternative proof

that C|H2(D) is subnormal. See the remarks following Theorem 2.3 below.

The Hilbert space H2(D) is generalized by the Hardy spaces Hp(D), 1 ≤ p < ∞,

consisting of functions f ∈ H(D) such that

||f ||pHp = sup
0≤r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

We also consider certain weighted Bergman spaces: let µ denote normalized planar mea-

sure on D, and, for −1 < α, define dµα(z) = (α+ 1)(1− |z|2)α dµ(z). The corresponding

weighted Bergman space Lp,α
a , 1 ≤ p < ∞, is defined to be the space of all functions

f ∈ H(D) such that

‖f‖p
p,α =

∫

D

|f(z)|p dµα(z) <∞.

Each Lp,α
a is a closed subspace of Lp(µα) in which the polynomials are dense; see for

example [21]. It is not hard to see that the measures µα converge weak-∗ to normalized

Lebesgue measure on ∂D as α → −1+, and in many ways, the classical Hardy space

Hp(D) is the limiting case of the weighted Bergman spaces Lp,α
a as α → −1+. Allow us

to write Lp,−1 = Hp(D), and, for f ∈ Hp(D),

‖f‖p
p,−1 = ‖f‖p

Hp =
1

2π

∫ 2π

0

|f(eiθ)|p dθ = lim
α→−1+

‖f‖p
p,α,

where, as usual, we identify a function in Hp(D) with its boundary values on ∂D.

Siskakis, [35], investigated the semigroups associated with the Cesàro operator in the

setting of Hp(D), and used estimates on the resolvents to calculate the norm and the

spectrum when 2 ≤ p <∞, and obtained bounds for these in the case 1 ≤ p < 2. He then

applied similar techniques to study the Cesàro operator on the weighted Bergman spaces

Lp,α
a , α > −1, determining the exact norm and spectrum in the case p ≥ 4 and upper

bounds for 1 ≤ p < 4, [37], [38]. Using ideas of Hardy and Littlewood found in [20], Miao

was able to show that the Cesàro operator is bounded on Hp(D) for 0 < p < 1, [26].
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Siskakis’s techniques were later exploited in [30] and [27] to obtain a complete spec-

tral picture of the Cesàro operator on the Hardy spaces Hp(D), for p > 1, and on the

Bergman spaces Lp,0
a for p > 2. However, due to the existence of eigenvalues, it seems to

be impossible to go beyond the limiting case p = 2 in the Bergman space setting using

the methods of composition semigroups. The reason for this is that one needs resolvent

estimates around the eigenvalues, while the composition semigroups only give such esti-

mates for larger regions of the spectrum. Dahlner, [10], uses an alternative approach to

replicate the spectral results of [30] and [27] for C|Lp,α
a

, for all p and α, 1 < p, −1 < α.

Very recently, Anna-Maria Persson has shown in her PhD thesis under Alemann’s di-

rection that the Cesàro operator is subdecomposable on H1 and on the standard weighted

Bergman spaces L1,α
a , α ≥ 0. Her method combines some ideas of Dahlner with a tech-

nique based on different semigroups of composition operators.

We denote the spectrum of a bounded linear operator T ∈ L(X) on a Banach space X

by σ(T ), and its point spectrum and approximate point spectrum by σp(T ) and σap(T ),

respectively. The left resolvent set for T is the open set ρℓ(T ) consisting of the points

λ ∈ C for which there exists an operator L ∈ L(X) such that L(λ−T ) = I. Equivalently,

λ ∈ ρℓ(T ) provided λ− T is bounded below and the range, ran(λ− T ), is complemented

in X. The left spectrum of T is the set σℓ(T ) = C \ ρℓ(T ). T is said to be a Fredholm

operator provided that its null space, ker(T ), is finite dimensional and its range, ran(T ),

has finite codimension. This last condition implies that ran(T ) is closed. The index of

a Fredholm operator T is defined to be ind(T ) = dim(ker(T )) − dim(X/ ran(T )). Recall

that the function λ 7→ ind(λ−T ) is constant on each component of the essential resolvent

set ρe(T ) = {λ ∈ C : λ − T is Fredholm}, an open subset of the complex plane whose

complement, σe(T ), is the essential spectrum of T . See for example Section 3.7 of [25]. It

is straightforward to check that σℓ(T ) ⊆ σp(T ) ∪ σe(T ) for arbitrary T ∈ L(X).

We denote by V (λ, r) and ∇(λ, r) respectively the open and closed balls with center

λ ∈ C and radius r > 0. If |λ| > 0, let D(λ) = V (λ, |λ|). The following theorem sum-

marizes the spectral properties of the Cesàro operator on the spaces Lp,α
a , [35], [37], [30],

[27], [28] and [10].

Theorem 1.1. If 1 < p <∞ and −1 ≤ α, then

(1) σp(C|Lp,α
a

) = { 1
n : n ∈ N, n < 2+α

p }, and each eigenvalue is simple.

(2) σ(C|Lp,α
a

) = D( p
2(2+α) ) ∪ σp(C|Lp,α

a
).

(3) σap(C|Lp,α
a

) = σp(C|Lp,α
a

) ∪ ∂D( p
2(2+α) ).

(4) σe(C|Lp,α
a

) = ∂D( p
2(2+α) ), moreover, ind(λ− C|Lp,α

a
) = −1 for all λ ∈ D( p

2(2+α) ).

(5) There is an analytic function Λ : C \ σap(C|Lp,α
a

) → L(Lp,α
a ) such that Λ(λ)(λ−C)

= I for all λ 6∈ σap(C|Lp,α
a

) and for which there exist constants a1, a2 ≥ 0 and a

decreasing function f : (0,∞) → (0,∞) such that
∫ 1

0
log |f(t)| dt <∞, and

‖Λ(λ)‖p,α ≤ a1 exp(a2|λ|
−1)f(dist(λ, σap(C|Lp,α

a
)))

for all λ 6∈ σap(C|Lp,α
a

).

In the Hardy space case α = −1, the analyticity of the left resolvent function Λ above

is due to Didas, [12, Theorem 4.2.4]. Also note that the case p = 1 is completely open for
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all α. The proof in the Hardy spaces, p > 1, makes fundamental use of a theorem of Marcel

Riesz which implies that the projections Tnf(z) =
∑

|k|≤n f̂(k)zk are uniformly bounded

on each Lp, 1 < p < ∞. It follows that for each f ∈ Lp, the trigonometric polynomials

Tnf converge to f in norm and that (Hp)∗ is conjugate isomorphic to Hq, 1/p+1/q = 1,

via 〈f, g〉 = 1
2π

∫ 2π

0
f(eiθ)g(eiθ) dθ, [17, page 109], but M. Riesz’s theorem fails in the

p = 1 case. Moreover, the construction of the left inverse Λ : D
(

p
2

)
→ L(Hp(D)) makes

explicit use of the continuity of the integral operator

Af(z) =
1

z − 1

∫ z

1

f(ω) dω (f ∈ Hp(D)).

In fact, A|Hp(D) is the dual of the Cesàro operator C|Hq(D), 1/p + 1/q = 1, but A is

unbounded on H1(D), see Theorem 2.2 below. Dahlner’s proof also breaks down for

p = 1; specifically, Lemma 4.7 of [10] fails for every L1,α
a , α ≥ 1.

2. Semigroups associated with the Cesàro operator. The study of semigroups of

composition operators on spaces of analytic functions was initiated by Berkson and Porta,

[6]. The resolvent of the generator of such semigroups is typically an averaging integral

operator, [36], which we refer to as a generalized Cesàro operator; see Section 4. In this

section we recall some basic facts regarding operator semigroups and then identify the

semigroups of weighted composition operators investigated by Deddens [11] and Cowen

[9] in the H2(D) setting and by Siskakis in the weighted Bergman spaces Lp,α
a , 1 ≤ p <∞,

−1 ≤ α, [35], [37] and [38]. We indicate some open problems regarding these semigroups

in Section 3.

A semigroup of operators on a Banach space X is a net {St}t≥0 in L(X) such that

S0 = I and StSs = St+s, whenever t, s ∈ [0,∞). The semigroup {St}t≥0 is strongly

continuous (C0) provided that, for each x ∈ X, the function t→ Stx is norm continuous

on [0,∞). In this case, there is a closed, densely defined operator A on X defined by

Ax = lim
t→0+

(St − I)x

t
=
∂Stx

∂t

∣∣∣∣
t=0

,

with domain D(A) = {x : limt→0+
(St−I)x

t exists}. This operator is always closed, i.e., A

has closed graph, and is called the (infinitesimal) generator of the semigroup {St}t≥0.

The resolvent set of A is the set of λ ∈ C for which there exists R(λ,A) ∈ L(X)

such that R(λ,A)X = D(A), R(λ,A)(λ − A) = I|D(A), and (λ − A)R(λ,A) = IX . We

define σ(A) = C \ ρ(A), a closed subset of the plane since A is closed. If C∞ denotes

the Riemann sphere, and A is a closed operator on X, let σ∞(A) = {∞} ∪ σ(A) if A is

unbounded; otherwise σ∞(A) = σ(A).

The type of the semigroup is defined to be

ω := lim
t→∞

log ‖St‖

t
,

where −∞ ≤ ω <∞. If Re(λ) > ω, then λ ∈ ρ(A) and the Laplace formula holds:

R(λ,A)x =

∫ ∞

0

e−λtStxdt.
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In particular, if ‖St‖ ≤ Meωt for every t ≥ 0, then a consequence of the Hille-Yosida-

Phillips theorem is that ‖R(λ,A)n‖ ≤ M
(Reλ−ω)n for all λ, Re(λ) > ω and n ≥ 0. A spectral

mapping theorem holds in setting of the Riemann sphere, [14, VII.9.2]: if λ ∈ ρ(A), then

f(z) = (λ− z)−1 is analytic in a neighborhood of σ∞(A) and

σ
(
R(λ,A)

)
= f

(
σ∞(A)

)
.

The semigroup {St}t≥0 is norm continuous if and only if the generator A is bounded,

and in this case St = eAt for all t ≥ 0. With suitable interpretation, this formula remains

true in the strongly continuous case. In particular, a spectral inclusion is valid for (C0)

semigroups, [18, Section 1.9.3]:

exp
(
tσ∞(A)) ⊆ σ(Tt) and (∗)

exp
(
tσp(A)) = σp(Tt) \ {0}

for all t ≥ 0. Generally, the containment in (∗) may be strict since σ(A) may in fact be

empty. [40, Example 5.4] provides an example that we will return to in Section 3. In the

case that equality is obtained for all t ≥ 0 in (∗), we say that the spectral mapping prop-

erty holds for the semigroup {St}t≥0. Standard references for semigroup theory include

Chapter VIII of [14], [18], and [22]; we also refer to [34, Chapter 13].

The following theorem follows from Littlewood’s subordination theorem and a result

of Berkson and Porta [6] in the Hardy space case and is due to Siskakis, [37], for the

spaces Lp,α
a , α > −1.

Theorem 2.1. If {ψt}t≥0 is a semigroup of analytic functions ψt : D → D such that

(t, z) 7→ ψt(z) is continuous on [0,∞) × D, then, for every p ≥ 1 and α ≥ −1, the

corresponding composition operators Ttf = f ◦ψt are each continuous on Lp,α
a . Moreover,

{Tt}t≥0 is a strongly continuous semigroup in L(Lp,α
a ).

A fundamental example is the semigroup of composition operators corresponding to

the functions ψt(z) = e−tz + 1 − e−t, t ≥ 0. Notice that 1 is a fixed point for each ψt,

and that ψt → 1 uniformly on D as t → ∞. The spectral properties of a corresponding

semigroup of weighted composition operators were obtained by Siskakis in [35] and [37]

and are summarized in the following theorem.

Theorem 2.2. Let p ≥ 1 and α ≥ −1 and define St ∈ L(Lp,α
a ) to be the weighted

composition operator Stf = e−tf ◦ ψt. Then

(1) {St}t≥0 is a strongly continuous semigroup of type ω = limt→∞
log ‖St‖

t = −1+ 2+α
p .

(2) The generator Ψ of {St}t≥0 is given by Ψf(z) = (1 − z)f ′(z) − f(z) with domain

D(Ψ) = {f ∈ Lp,α
a : (1 − z)f ′(z) ∈ Lp,α

a }

(3) σ(Ψ) = {z : Re(z) ≤ −1 + 2+α
p } and every point of the interior of σ(Ψ) is a simple

eigenvalue with ker(λ− Ψ) = span(1 − z)−(1+λ).

(4) The operator Af(z) = 1
1−z

∫ z

1
f(ζ) dζ is bounded on Lp,α

a if and only if α+2 < p. In

this case A = R(0,Ψ), and A has spectrum and point spectrum σ(A) = D( p
2(p−2−α) )

and σp(A) = D( p
2(p−2−α) ), respectively.
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(5) The spectral mapping property holds for each St:

σ(St) = {exp(λt) : λ ∈ σ∞(Ψ)} = ∇(0, et(−1+(2+α)/p)) and

σp(St) = V (0, et(−1+(2+α)/p)) \ {0}.

In the Hardy space case, 1 < p < ∞,the operator A|Hq(D), where 1/p + 1/q = 1, is

similar to the adjoint of the Cesàro operator C|Hp(D). In the unweighted Bergman space

setting, Theorem 2.2 implies that A|Lp,0
a

is bounded only if p > 2, and in this case, a

computation, [27], shows that

AJ = J(C|
L

p/(p−1),0
a

)∗,

where J is the Voltera operator Jf(z) = 1
z

∫ z

0
f(ζ) dζ, which is compact on every Lp,α

a , p ≥

1, α ≥ −1 by [4] and [5].

The semigroup first studied by Cowen is

Ttf(z) =
ϕt(z)

z
f(ϕt(z)),

where

ϕt(z) =
e−tz

(e−t − 1)z + 1
,

for all t ≥ 0. {ϕt}t≥0 is a semigroup of analytic functions ϕt : D → D satisfying the

hypotheses of Theorem 2.1 and with common fixed points 0 and 1. Moreover, for each

t ≥ 0, ϕt(D) is a disk internally tangent to ∂D at 1, ϕt(D) → D( 1
2 ) as t → ∞, and

the function z 7→ ϕt(z)
z is bounded with positive real part. The strong continuity of the

semigroup {Tt}t≥0 ⊂ L(Lp,α
a ) follows from Theorem 2.1; and the generator was shown in

[35] and [37] to be

Φf(z) = (z − 1)(zf(z))′,

with domain D(Φ) = {f ∈ Lp,α
a : (z − 1)(zf(z))′ ∈ Lp,α

a }, p ≥ 1 and α ≥ −1. Thus

C|Lp,α
a

= R(0,Φ), and so Theorem 1.1 gives us the spectrum and point spectrum of Φ.

For the cases α = −1 and α = 0, sharper estimates of ‖Tt‖Lp,α
a

exist for p ≥ 2(2 + α),

[35], [37], and we can identify the spectrum of Tt in these cases.

Theorem 2.3. Let p > 1 and α ≥ −1. Then

(1) Φ on Lp,α
a has spectrum the half plane σ(Φ|Lp,α

a
) = {z : Re(z) ≤ − 2+α

p } and point

spectrum σp(Φ|Lp,α
a

) = {−n : n ∈ N, n < 2+α
p }. Moreover, each eigenvalue is

simple.

(2) σ(Tt|Lp,α
a

) ⊇ ∇(0, e−t(2+α)/p) for all t ≥ 0.

(3) For α = −1, 0 and p ≥ 2(2 + α), ‖Tt‖Lp,α
a

= e−t(2+α)/p and the spectral mapping

property holds:

σ(Tt|Lp,α
a

) = exp(t σ∞(Φ|Lp,α
a

)).

If H is a Hilbert space and if {St}t≥0 is a strongly continuous semigroup of subnormal

operators onH, then there is a Hilbert space K ⊃ H and a strongly continuous semigroup

of normal operators {Tt}t≥0 ⊂ L(K) such that Tt|H = St for each t, [23, Theorem 4].

It follows by a classical result of M. H. Stone, [34, Theorem 13.38], that the generator

N of {Tt}t≥0 is normal; consequently, the generator A of {St}t≥0 is subnormal, and
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each resolvent R(λ,A) ∈ L(H) is subnormal as well. In particular, subnormality of the

semigroup {Tt}t≥0 ⊂ H2(D) in the previous theorem implies that the Cesàro operator is

subnormal, see [9].

Conversely, if A is subnormal and generates a (C0) semigroup {St}t≥0, then R(λ,A)

is subnormal for each λ ∈ ρ(A), and thus the proof of the Hille-Yosida-Phillips Theorem,

[14, VIII.1.13], together with the fact that the set of subnormal operators is SOT-closed in

L(H), [7], implies that each St is itself subnormal. In particular, the subnormality of the

Cesàro operator on H2(D) implies that, for ψt(z) = e−tz+1−e−t, the composition opera-

tors f 7→ f ◦ψt are co-subnormal on H2(D), a result originally obtained by Deddens, [11].

3. Subdecomposable operators. In attempts to extend the spectral theory of normal

operators to the setting of Banach spaces, a variety of classes of operators have been in-

vestigated since the 1950s. An operator T ∈ L(X) is decomposable in the sense of Foiaş if,

for any open cover {U1, U2, . . . , Un} of the spectrum, σ(T ), there exist closed, T -invariant

subspaces X1, X2, . . . , Xn ⊂ X so that X = X1 + X2 + · · ·Xn and σ(T |Xj
) ⊂ Uj for

each j, 1 ≤ j ≤ n, [25], [39]. While decomposable operators typically have no functional

calculus beyond the Riesz analytic functional calculus, many of the spectral properties

of normal operators in fact hold for decomposable operators. Besides normal operators,

or more generally, operators with a rich functional calculus, the class of decomposable

operators contains all operators with totally disconnected spectrum; specifically, compact

Banach space operators are decomposable.

An operator is said to be subdecomposable provided that it is the restriction of a

decomposable operator to a closed invariant subspace. Examples of subdecomposable op-

erators include hyponormal operators on Hilbert spaces, [33] and Banach space isometries,

[25, 5.1.4] and [13]. If decomposability is the appropriate generalization of normal oper-

ators to Banach spaces, the relation between subnormal and subdecomposable operators

is perhaps even stronger. Several results first established for subnormal operators have

been shown to hold for subdecomposable operators. As an especially striking example,

Eschmeier and Prunaru applied the Scott Brown technique, originally used to show the

existence of invariant subspaces for subnormal operators, to prove that subdecomposable

operators with thick spectra have invariant subspaces, [16].

Moreover, just as for subnormality, there is an intrinsic characterization of subdecom-

posability. Let H(U,X) denote the Fréchet space of analytic, X-valued functions defined

on an open subset U ⊂ C, again with the topology of uniform convergence on compact

subsets. Every operator T ∈ L(X) induces a continuous mapping TU on H(U,X) given

by (TUf)(λ) = (λ − T )f(λ) for all f ∈ H(U,X) and λ ∈ U . The operator T ∈ L(X) is

said to have Bishop’s property (β), [7], provided that for every open U ⊂ C, the mapping

TU is injective and has closed range. Thus, T has property (β) if, whenever (fn)n is a

sequence of analytic X-valued functions such that (λ − T )fn(λ) → 0 uniformly on the

compact subsets of an open U ⊆ C, then fn(λ) → 0 uniformly on the compact subsets of

U . This seemingly technical property in fact completely characterizes the restrictions of

bounded decomposable operators to invariant subspaces, and T ∈ L(X) is decomposable

if and only if both T and T ∗ have property (β), [1], [25].
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The notions of decomposability and property (β) extend to the setting of Cd(X), the

space of closed, densely defined operators on a Banach space X. An operator A∈Cd(X)

is said to have the Spectral Decomposition property (SDP) provided that, whenever

U0, U1, . . . Un is an open cover of σ∞(A) such thatUj is bounded for every j, 1≤j≤n, there

exist closed, A-invariant subspaces X0, X1, . . . , Xn such that X=X0 +X1 + · · ·+Xn and

σ∞(A|Xj
)⊂Uj for each j≥0.Note that in the terminology ofVasilescu, an operatorwith the

SDP is referred to as being {∞}-decomposable, [39, IV.4.12]. Clearly, in the case of bounded

operators, SDP is equivalent to decomposability. Moreover, by [39, IV.4.16], every A∈

Cd(X) satisfies a version of property (β): if U is an open subset C and (fn)n≥1 is a sequence

of analytic functions in D(AU ) such that AUfn→0 in H(U,X), then fn→0∈H(U,X).

Just as in the bounded case, if A ∈ Cd(X) and U is an open subset of C, we define

AU on H(U,X) by AUf(λ) = (λ−A)f(λ), with domain D(AU ) = {f ∈ H(U,X) : Af ∈

H(U,X)}. It is easy to see that A closed implies that AU is a closed operator on H(U,X);

moreover, the fact that H(U,X) is isomorphic to the completion of the projective tensor

product of H(U) and X, [25, A.3.5], implies that AU is densely defined on H(U,X)

whenever D(A) is dense in X. Also notice that by the closed graph theorem, [34, 2.15], a

closed Fréchet space mapping is injective and with closed range precisely when it is the

inverse of a continuous map.

Proposition 3.1. Suppose that A ∈ Cd(X) and that U and V are open subsets of C. If

both AU and AV are injective with closed range, then AU∪V is injective and has closed

range as well.

Proof. Without loss of generality, we assume that U∩V 6= ∅. Define continuous mappings

r : H(U ∪ V,X) → H(U,X) ⊕ H(V,X) and q : H(U,X) ⊕ H(V,X) → H(U ∩ V,X) by

rf = (f |U , f |V ) and q(f, g) = (f − g)|U∩V . Then the sequence

0 → H(U ∪ V,X)
r
→ H(U,X) ⊕H(V,X)

q
→ H(U ∩ V,X) → 0

is exact by [25, 2.1.7]; in particular, r is injective with closed range. Moreover, r(D(AU∪V ))

= D(AU ⊕ AV ) ∩ ran(r), and rAU∪V = (AU ⊕ AV )r. Clearly, AU∪V is injective if both

AU and AV are injective. Thus, we need only show that ran(AU∪V ) is closed, and since

r is injective with closed range, this is equivalent to showing ran(rAU∪V ) is closed. If

(fn)n≥1 ⊂ D(AU∪V ) is such that (AU⊕AV )rfn → (g1, g2) ∈ H(U,X)⊕H(V,X), then the

assumption thatAU and AV are closed, injective mappings with closed ranges implies that

(rfn)n≥1 converges to an (h1, h2) ∈ D(AU ⊕AV ) such that (AU ⊕AV )(h1, h2) = (g1, g2).

But, in this case, (h1, h2) ∈ ran(r) ∩D(AU ⊕AV ) = r(D(AU∪V )), and so ran(rAU∪V ) =

(AU ⊕AV )r(D(AU∪V )) is closed, as desired.

Theorem 3.2. Suppose that A ∈ Cd(X) and that U is an open subset of C.

(1) AU is injective with closed range in H(U,X) if and only if fn → 0 in H(U,X)

whenever (fn)n≥1 ⊂ D(AU ) such that AUfn → 0. In particular, A has Bishop’s

property (β) if and only if AU is injective with closed range for every open U ⊂ C.

(2) If λ ∈ ρ(A), then A has property (β) if and only if the resolvent R(λ,A) has property

(β).

(3) A has the SDP if and only if both A and A∗ have Bishop’s property (β).
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Proof. The third statement is due to I. Erdelyi and S. Wang, [15]. We sketch a proof of

(1) and (2) for the convenience of the reader. If A has property (β) and (fn)n ⊂ D(AU )

is such that AUfn → g in H(U,X), then property (β) implies that (fn)n is a Cauchy

sequence. Indeed, if d is a metric on H(U,X) compatible with the Fréchet topology,

then (fn)n non-Cauchy implies that there is a δ > 0 and a subsequence (fnk
)k so that

d(fnk
, fnk+1

) ≥ δ for all k. But, in this case, since AU (fnk
− fnk+1

) → 0, property (β)

implies that fnk
− fnk+1

→ 0, a contradiction. Now, if fn → f , then (fn, AUfn) → (f, g)

in H(U,X) × H(U,X); Since AU is a closed operator, it follows that f ∈ D(AU ) and

AUf = g. The converse follows from the closed graph theorem.

To prove (2), we may assume that λ = 0; write R = R(0, A) and let U ⊂ C be open.

We consider the cases 0 6∈ U and 0 ∈ U . In the first case, define h(z) = −1/z and let

V = h(U). Then V is an open subset of C\{0} and the composition operator Chf = f ◦h

is an isomorphism between H(U,X) and H(V,X). Let µ = h(λ) for λ ∈ U . Then, for

f, g ∈ H(U,X),

RUf = g ⇔ (λ−R)f(λ) = g(λ) (λ ∈ U)

⇔ (−λA− I)Rf(λ) = g(λ) (λ ∈ U)

⇔ (µ−A)(h(µ)Rf ◦ h(µ)) = g ◦ (µ) (µ ∈ V ).

Thus g ◦ h ∈ ranAV whenever g ∈ RUH(U,X). Conversely, if g ◦ h = AV h for some

f ∈ D(AV ) then, with k = −Af and λ = h(µ),

g(λ) = g ◦ h(µ) = (µ−A)Rk(µ) = (λ−R)(−λ(k ◦ h)(λ));

thus g ∈ ranRU and we have that ranAV = Ch ranRU ; in particular, ranAV is closed if

and only if ranRU is closed. Similarly, AV is injective if and only if RU is injective, and

therefore, AU is injective and with closed range for every open subset U ⊆ C \ {0} if and

only if RU is injective and with closed range for every U ⊆ C \ {0}.

Now, consider U open with 0 ∈ U and suppose that AU has property (β) and that

RUfn → 0 in H(U,X). Fix K compact in U and let ǫ > 0 be such that V (0, 2ǫ) ⊂ U .

If G = V (0, 2ǫ) \ ∇(0, 3/2ǫ), then RGfn → 0 and the argument above implies that

fn → 0 in H(G,X). By Cauchy’s formula, it follows that fn → 0 uniformly on ∇(0, ǫ).

If H = U \ ∇(0, ǫ/2), then the argument of the last paragraph again implies that RH

is injective with closed range. Since RHfn → 0, fn → 0 uniformly on K \ V (0, ǫ) ⊂ H.

Therefore fn → 0 uniformly on K, and, since K was an arbitrary compact subset of U ,

it follows that fn → 0 in H(U,X). Thus R has property (β) whenever A does. The other

implication follows by a similar argument.

Growth conditions on the resolvent of an operator have long been recognized as an

important tool in spectral theory, and log-log integrability criteria provide sufficient con-

ditions for Bishop’s property (β). Here is a version relevant to our setting; see [25, 1.7.4].

Theorem 3.3. Suppose that T ∈ L(X) with σ(T ) a closed disk. Let V be an open neigh-

borhood of σ(T ), and suppose there exists a set F that accumulates only on a compact,

totally disconnected subset E of ∂σ(T ), a locally bounded function ω : V \ F → (0,∞),

and a decreasing function f : (0,∞) → (0,∞) such that
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∫ 1

0

log+ log+ f(t) dt <∞ and ‖x‖ ≤ ω(λ)f(dist(λ, ∂σ(T ))‖(λ− T )x‖

for all x ∈ X and λ ∈ V \ (F ∪ ∂σ(T )). Then T has Bishop’s property (β).

In conjunction with Theorem 1.1, this immediately implies the following.

Theorem 3.4. For every p > 1 and α ≥ −1, the Cesàro operator C ∈ L(Lp,α
a ) has

Bishop’s property (β).

Since C is the resolvent R(0,Φ) of Φf(z) = (z − 1)(zf(z))′, it therefore follows from

Theorem 3.2 that Φ ∈ Cd(L
p,α
a ) has Bishop’s property (β) as well, p > 1, α ≥ −1.

In light of the results for subnormal semigroups, it is natural to investigate condi-

tions under which subdecomposability of a semigroup implies that of its generator, and

conversely. The uniformly continuous case is straightforward: {St}t≥ ⊂ L(X) is a uni-

formly continuous semigroup if and only if its generator, A, is bounded, and in this case,

St = exp(At) for each t. It therefore follows from [25, 3.3.9] that A is subdecomposable

if and only if St0 is subdecomposable for some t0 > 0, equivalently, if St is subdecompos-

able for all t > 0. Shengwang Wang has shown that at least one implication holds more

generally, [40].

Theorem 3.5. Let X be a complex Banach space and suppose that {Tt}t≥0 is a (C0)

semigroup in L(X) with generator A. If Tt0 , respectively T ∗
t0 , has Bishop’s property (β) for

some t0 > 0 then A, respectively A∗, does as well. In particular, A is {∞}-decomposable

provided Tt0 is decomposable for some t0 > 0.

[40, Example 5.4] provides an example of a (C0) semigroup {Tt}t≥0 such that Tt fails

to be decomposable for each t > 0 but for which the generator has empty spectrum and

therefore trivially the SDP. Notice that the spectral mapping property fails spectacularly

in this example. Also, recall that the proof that subnormality of the generator of a (C0)

semigroup {Tt}t≥0 implies that each Tt is subnormal makes use of the fact that the set of

subnormal operators is SOT-closed in L(H), while the set of subnormal, and thus sub-

decomposable operators, is SOT-dense, [32]. Thus some stronger regularity assumption

of {Tt}t≥0 seems to be necessary in order to obtain a converse of Wang’s theorem.

The work of Deddens and Cowen concerning subnormality of the semigroup {Tt}t≥0 ⊂

L(H2(D)), where Ttf(z) = ϕt(z)
z f(ϕt(z)), suggests the question of whether these opera-

tors are subdecomposable on the Hardy spaces Hp(D), p 6= 2, or, more generally, on Lp,α
a ,

p > 1, α ≥ −1. Indeed, this was the impetus for the original work establishing property

(β) for the Cesàro operator. But subdecomposability of the operators Tt remains open in

every case. Since the spectral mapping property holds for {Tt}t≥0 ⊂ L(Lp,α
a ), perhaps a

converse of Wang’s theorem can be shown to hold in this special case.

4. Generalized Cesàro operators. Given g ∈ H(D), we define the corresponding

generalized Cesàro operator Sg : H(D) → H(D) by

Sgf(z) =
1

z

∫ z

0

f(ω)g(ω) dω

for all z ∈ D. Since H(D) is a Fréchet algebra, each Sg is continuous on H(D).
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In [36], Siskakis considered a class of generalized Cesàro operators associated with

semigroups of weighted composition operators on Hp(D), 1 ≤ p < ∞. Specifically, Sg

is the resolvent of the generator of a (C0) semigroup of weighted composition operators

Ttf(z) = φt(z)
z f(φt(z)) for some continuous semigroup of functions φt : D → D with

φt(0) = 0, if and only if Re(g(z)) > 0 for all z ∈ D. In this case, Sg is bounded on

each Hp(D), 1 ≤ p, and compactness of Sg is characterized in terms of the Herglotz

representation of g. In the process, Siskakis identified the spectrum of the operator Sg|Hp

for the particular case g(z) = (1 + z)/(1 − z).

For general g ∈ H(D), continuity of Sg on Lp,α
a is characterized in terms of function-

theoretic properties of g. If G(z) =
∫ z

0
g(w) dw, then Pommerenke [31] showed that Sg

is bounded on the Hilbert space H2(D) if and only if G ∈ BMOA. Aleman and Siskakis

[4] extended Pommerenke’s result to the Hardy spaces Hp(D) for all p, 1 ≤ p < ∞, and

showed that Sg is compact on Hp(D) if and only if G ∈ VMOA. The case 0 < p < 1

was subsequently settled by Aleman and Cima [3]. In the weighted Bergman spaces Lp,α
a ,

α > −1 and p ≥ 1, Aleman and Siskakis [5] have shown that Sg is bounded, respectively,

compact if and only if the primitive G is in the Bloch, resp. little Bloch, space.

In [41] and [42], Young began the study of spectral properties of generalized Cesàro

operators on the Hardy space H2(D) and the unweighted Bergman space L2,0
a , and his

results have recently been extended to the weighted Bergman spaces Lp,α
a , α ≥ −1 and

1 < p <∞, [2], from which the following is derived.

We consider the operators Sg on Lp,α
a , p ≥ 1 and α ≥ −1, corresponding to functions

g = q + h, where q is rational and h ∈ H∞(D), the space of bounded analytic functions

on D. In order for Sg to be bounded on Lp,α
a , it is necessary that q be analytic on D and

that all of the poles of q on ∂D be simple. Thus we may write

g(z) =

m∑

j=1

aj

1 − bjz
+ h(z),

where h ∈ H∞(D), |bj | = 1 for each j, 1 ≤ j ≤ m, bj 6= bk if j 6= k and where each

aj 6= 0. Thus

Sg =
m∑

j=1

aj S1/(1−bjz) + Sh.

Notice that if |b| = 1, then the composition operator Ubf(z) = f(bz) is a surjective

isometry on each Lp,α
a , p ≥ 1 and α ≥ −1. Since S1/(1−bz) = UbCUb̄, it follows that

S1/(1−bz) and C have equal spectra, (approximate) point spectra and essential spectra.

The key to determining the spectral picture of such operators is the following, [2], together

with Theorem 1.1.

Lemma 4.1. Let h be an absolutely continuous function on the interval [0, 1] and define

Kh on H(D) by

Khf(z) =

∫ 1

0

f(tz)h(t) dt (z ∈ D).

Then Kh : Lp,α
a → Lp,α

a is compact for all p ≥ 1 and α ≥ −1. In particular, if ϕ ∈ H∞(D),

then Sϕ is compact on each Lp,α
a . Moreover, if b1 and b2 are distinct points on ∂D, then

the product S1/(1−b1z)S1/(1−b2z) is compact.
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Let XS denote the characteristic function of a subset S and recall our notation D(λ) =

V (λ, |λ|) for all λ 6= 0.

Theorem 4.2. Suppose that g(z) =
∑m

j=1
aj

1−bjz +h(z) where bj, 1 ≤ j ≤ m, are distinct

points on the unit circle ∂D, |aj | > 0 for each j, and h ∈ H∞(D). Then for every α ≥ −1

and p > 1,

(1) Sg ∈ L(Lp,α
a ) has point spectrum

σp(Sg|Lp,α
a

) =

{
g(0)

n
: ℜ

(
aj

g(0)

)
<

2 + α

np
, 1 ≤ j ≤ m

}
,

each eigenvalue of Sg is simple, and if h(0) = 0, then σp(Sg|Lp,α
a

) is finite.

(2) σ(Sg|Lp,α
a

) = σp(Sg|Lp,α
a

)∪
⋃m

j=1Dj , where Dj = D(
p aj

2(2+α) ), for each j, 1 ≤ j ≤ m.

(3) Sg ∈ L(Lp,α
a ) has essential spectrum σe(Sg) =

⋃m
j=1 ∂Dj . Moreover, if λ ∈ ρe(Sϕ),

then ind(λ− Sg) = −
∑m

j=1 XDj
(λ).

(4) The left spectrum is σℓ(Sg|Lp,α
a

) ⊆ σp(Sg|Lp,α
a

) ∪
⋃m

j=1 ∂Dj .

In [36], Siskakis raised the question of determining subnormality or hyponormality of

the operators Sg ∈ H2(D). Subnormality of the operators Sa/(1−bz) ∈ L(H2(D), |b| = 1,

a 6= 0, follows trivially from the fact that the Cesàro operator is subnormal on H2(D);

no other examples are known, and these in fact were the only known examples of hy-

ponormal generalized Cesàro operators until it was shown in [2] that S(1+z)/(1−z) is

hyponormal on H2(D). This was done by showing that the principal minors of the ma-

trix for S∗
(1+z)/(1−z)S(1+z)/(1−z)−S(1+z)/(1−z)S

∗
(1+z)/(1−z) corresponding to the canonical

basis for H2(D) are all positive definite, and this method also applies in the unweighted

Bergman space L2,0
a . It is well known that if T ∈ L(H) is hyponormal, then ‖T‖ = r(T ),

the spectral radius of T . Since, by Theorem 1.1, r(C|L2,0
a

) = 1 while C1(z) =
∑∞

0
1

n+1z
n

has norm ‖C1‖2
2,0 =

∑∞
n=0

1
(n+1)2 > 1, it follows that C ∈ L(L2,0

a ) is not hyponormal. A

similar argument applies to the operators S1/(1−zn), n ≥ 2, on each L2,α
a , α ≥ −1, [2].

Indeed, if p is a polynomial of degree n ≥ 2 with distinct zeros ζ1, ζ2, . . . , ζn, then the

partial fraction decomposition of 1/p is

1

p(z)
=

n∑

k=1

1

p′(ζk)(z − ζk)
,

and therefore,

1

1 − zn
=

1

n

n−1∑

k=0

1

1 − e−2kπi/nz
.

By Theorem 4.2, S1/(1−zn)|L2,α
a

has spectrum D( 1
n(2+α) ) ∪ { 1

k : k < (2+α)n
2 } and thus

spectral radius at most 1. On the other hand,

‖S1/(1−zn)1‖
2
2,α =

∞∑

k=0

1

(1 + nk)2
‖znk‖2

2,α > 1,

and therefore S1/(1−zn) fails to be hyponormal on L2,α
a for each α ≥ −1.

These examples suggest that a characterization of hyponormality of operators Sg ∈

L(L2,α
a ) may be difficult. On the other hand, a start has been made on the question of
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subdecomposability for the operators Sg ∈ L(Hp(D)) related to the Cesàro operator by

compact perturbations. While local spectral properties are generally unstable under finite

rank perturbations, [39, V.6.29], growth conditions do however behave reasonably under

suitable perturbations.

Let F denote the collection of finite rank operators. If T ∈ L(X), define an(T ) =

inf{‖T − A‖ : dim ranA < n} for each n ≥ 1. Also, for every r > 0, define nT (r) =

inf{n : an+1(T ) < 1/r}. This is a measure of how well T can be approximated by finite

rank operators. With control on nK , growth conditions as in Theorem 3.3 are inherited

by T +K. The following is a version of [29, 2.3].

Theorem 4.3. Suppose that T ∈ L(X), K ∈ F and that there exist a closed disk ∇ and

a set F ⊂ C \ ∂∇ that accumulates only on a totally disconnected compact subset E of

∂∇ such that

(1) σ(T ) ∪ σ(T +K) ⊆ F ∪∇;

(2) σℓ(T ) ⊆ F ∪ ∂∇ =: C, and

(3) T has an analytic left resolvent L on C \ C such that I −KL(λ) is invertible for all

λ 6∈ C.

Assume further that there exist a neighborhood W of ∇, a locally bounded function ω :

W \ E → [0,∞) and a decreasing function f : (0,∞) → (0,∞) such that
∫ 1

0

log+ log+ f(t) dt <∞ and ‖L(λ)‖ ≤ ω(λ) f(dist(λ, C))

for all λ in W \ C. If K is such that
∫ 1

0

log+ nK(2f(t)) dt <∞,

then T +K has Bishop’s property (β).

As a consequence, we obtain the following, [29].

Theorem 4.4. For each of the symbols g(z) = 1/(1− z2), g(z) = zm/(1− z) and g(z) =

f(z)/(1−z), for any function f analytic in a neighborhood of D with Re(f(z)) > 0 for all

z ∈ D, the corresponding operator Sg has Bishop’s property (β) on every Hp, 1 < p <∞.

The study of spectral and local spectral properties of generalized Cesàro operators is

in its infancy. For functions g other than the rational functions considered in this section,

spectral properties of the corresponding generalized Cesàro operators are completely un-

known, and nothing is known about subdecomposability beyond the specific examples of

the last theorem. In particular, it is an open question whether Sg has property (β) on

Hp(D) for every rational function g.

Since Re(1/(1 − z2)) > 0 and Re((1 + z)/(1 − z)) > 0 for all z ∈ D, the subdecom-

posable operators S1/(1−z2) and S(1+z)/(1−z) in L(Hp(D)), p > 1, are resolvents of gener-

ators of (C0) semigroups of weighted composition operators, [36]. Specifically, if ht(z) =

e−tz/
√

(e−2t − 1)z + 1, then the operators Utf(z) = ht(z)/zf(ht(z)) form a semigroup

in L(Hp(D)) with generator Uf(z) = (z2−1)(zf(z))′, so S1/(1−z2) = R(0,U). In the case

of the function g(z) = (1 + z)/(1 − z), consider the Koebe function, k(z) = z/(1 − z)2,
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and define kt(z) = k−1(e−tk(z)). Then Vtf(z) = kt(z)/zf(kt(z)) defines a semigroup in

L(Hp(D)) with generator Vf(z) = −1/g(z)(zf(z))′. Just as for the semigroup associated

with the Cesàro operator, it would be natural to investigate (local) spectral properties of

these semigroups as well as those associated with other functions g such that Re(g) > 0

on D.
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[9] C. C. Cowen, Subnormality of the Cesàro operator and a semigroup of composition oper-

ators, Indiana Univ. Math. J. 33 (1984), 305–318.

[10] A. Dahlner, Decomposable extension of the Cesàro operator on the weighted Bergman
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[28] T. L. Miller and V. G. Miller, The Cesàro operator on the Bergman space A2(D), Arch.

Math. (Basel) 78 (2002), 409–416.

[29] T. L. Miller, V. G. Miller and M. M. Neumann, Growth conditions, compact perturba-

tions and operator subdecomposability, with applications to generalized Cesàro operators,
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