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Abstract. A review of recent reflexivity and hyperreflexivity results is presented. We concentrate

particularly on a finite-dimensional situation, Toeplitz operators and partial isometries. Open

problems in this area are given.

1. Introduction. Let H be a complex Hilbert space and let L(H) denote the algebra of

all bounded linear operators on H. Consider a subalgebra W of L(H) with an identity I.

Then we can investigate the lattice of invariant subspaces:

LatW = {L ⊂ H : AL ⊂ L for all A ∈ W}.

Now the set of those operators which leave invariant all subspaces from LatW can be

defined:

Alg LatW = {B ⊂ L(H) : BL ⊂ L, L ∈ LatW}.

The set Alg LatW is always an algebra which is closed in the weak operator topology

and which contains the identity IH. There are the following inclusions:

W ⊂ Alg LatW ⊂ L(H). (1)

In general the above inclusions may be proper.

Following [34] we call the algebra W reflexive if W = Alg LatW , i.e., the first inclusion

becomes an equality. The algebra is said to be transitive if Alg LatW = L(H), i.e., the se-

cond inclusion becomes an equality. The classical definition of a transitive algebra requires

that LatW = {H, {0}}, but it is equivalent to the condition Alg LatW = L(H).
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The theory of reflexive algebras has its roots in von Neumann algebras. They are

defined as star algebras which are closed in the strong (weak) operator topology. For

such an algebra N we consider the commutant N ′. Recall first that the projections in

N ′ generate N ′. The projections in N ′ commute with all operators from N , i.e., the

subspaces which are ranges of such projections reduce all the operators in N . When we

take an unstarred algebra W it is natural to consider invariant subspaces in LatW instead

of reducing ones. For a von Neumann algebra we consider also its double commutant N ′′.

Since the commutant N ′ is generated by its projections the double commutant can be

defined as the set of those operators which are reduced by those subspaces which reduce

all the operators from N . Hence for an unstarred algebra W it is natural to consider

Alg LatW instead of its double commutant. The classical double commutant theorem

says that a von Neumann algebra N is equal to its double commutant. Hence the reflexive

algebras are those which fulfil an “unstarred version of the double commutant theorem”.

For a given algebra (or a subspace) W ⊂ L(H) and an operator A ∈ L(H) the usual

distance from A to W is given as

dist(A,W) = inf{‖A − T‖ : T ∈ W}. (2)

On the other hand, we can define the distance “determined by its invariant subspaces”

as

α(A,W) = sup{‖P⊥AP‖ : P ∈ LatW}. (3)

We have the following inequality

α(A,W) 6 dist(A,W) for all A ∈ L(H). (4)

Indeed, for T ∈ W , P ∈ LatW and any operator A ∈ L(H) we have

‖P⊥AP‖ = ‖P⊥(A − T )P‖ 6 ‖A − T‖.

Hence α(A,W) 6 ‖A − T‖ and (4) holds.

Usually we do not have an equality in (4). A natural question is whether we can control

the usual distance dist by the α distance. Arveson [3] called an algebra hyperreflexive if

there is a constant k such that for all A ∈ L(H)

dist(A,W) 6 k α(A,W). (5)

Reflexivity and hyperreflexivity are also studied when the operators which generate

an algebra are given. For a set of operators S ⊂ L(H) we denote by W(S) the smallest

algebra containing the set S and the identity operator I which is closed in the weak

operator topology.

2. Definitions for subspaces of operators. Both definitions, reflexivity and hyper-

reflexivity, can be generalized to subspaces of operators. Let M ⊂ L(H) be a subspace.

The set

refM = {B ∈ L(H) : Bx ∈ [Mx]− for all x ∈ H} (6)

is called the reflexive closure of M. If M is an algebra with identity I, then refM =

Alg LatM.
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Note also that we have similar inclusion as in (1)

M ⊂ refM ⊂ L(H). (7)

Following Loginov and Shulman [28] we will call a subspace M reflexive if M = refM

and M is transitive if the second inclusion in (7) becomes an equality, i.e., refM = L(H).

For a subspace M and an operator A ∈ L(H) the usual distance dist(A,M) is natu-

rally given by (2). The α distance can be defined as follows (see [27])

α(A,M) = sup{‖Q⊥AP‖ : Q⊥MP = 0, Q, P projections}. (8)

A subspace M is called hyperreflexive if there is a constant k such that

dist(A,M) 6 k α(A,M) for all A ∈ L(H). (9)

The smallest constant k fulfilling (9) is called constant of hyperreflexivity and is denoted

by kM.

As we have seen above there is no need to have an algebra structure in order to define

reflexivity and hyperreflexivity. When a subspace of operators is an algebra then the

definitions coincide. On the other hand, given a subspace M ⊂ L(H) we can define an

algebra associated with this subspace by the natural embedding

WM =

{[

αI T

0 βI

]

: T ∈ M, α, β ∈ C

}

.

Then we have the following

Theorem 2.1 ([8, 27]). Let M ⊂ L(H) be a subspace of operators. Then M is reflexive

(hyperreflexive) if and only if the algebra WM is reflexive (hyperreflexive).

3. Duality. A duality between the trace class operators τc(H) and the algebra L(H) is

given by

〈A, t〉 = tr (A t) for A ∈ L(H), t ∈ τc(H).

An important role in reflexivity and hyperreflexivity is played by rank one operators; for

x, y ∈ H we define (x⊗ y)z = (z, y)x for z ∈ H. The action of a rank one operator x ⊗ y

on any operator A ∈ L(H) can be expressed as

〈A, x ⊗ y〉 = tr (A(x ⊗ y)) = (Ax, y).

Let M ⊂ L(H) be a subspace, then we denote the preannihilator of M by ⊥M ⊂ τc(H)

and the unit ball in ⊥M by ball⊥M. Reflexivity and transitivity can be described by

rank one operators. It is easy to note that a subspace is transitive if there is no rank

one operator (except the zero operator) in its preannihilator and a w∗-closed subspace is

reflexive if the rank one operators in the preannihilator span the preannihilator.

Assume that a subspace M ⊂ L(H) is w∗-closed. Then, by duality, the distance dist

can be calculated by means of trace class operators, i.e.

dist(A,M) = sup{|〈A, t〉| : t ∈ τc, t ∈ ball⊥M} for all A ∈ L(H).

On the other hand, the distance α can be calculated using only rank one operators, see

[14]. Namely

α(A,M) = sup{|(Ax, y)| = |〈A, x ⊗ y〉| : x ⊗ y ∈ ball⊥M}. (10)
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Now the inequality

α(A,M) 6 dist(A,M)

is more transparent. Hence hyperreflexivity of a subspace M means that the distance

from an operator to M can be controlled by the distance calculated using rank one

operators. The distance α can also be calculated as

α(A,M) = sup{dist(Ax,Mx) : x ∈ H, ‖x‖ = 1}. (11)

The reason why we call a subspace hyperreflexive can be seen by the following.

Proposition 3.1. Let M ⊂ L(H) be a norm-closed subspace. If M is hyperreflexive then

M is reflexive.

Proof. Assume that A ∈ refM. Using (10) it is clear that α(A,M) = 0. Thus by hyper-

reflexivity dist(A,M) = 0 and by norm-closedness A ∈ M.

The inverse implication is not true.

Example 3.2. To construct a subspace which is reflexive, but not hyperreflexive, it is

enough to take a sequence of hyperreflexive subspaces Mn ⊂ L(Hn) with unboundedly

increasing constants of hyperreflexivity (see Example 5.2). We can do this even if each

underlying Hilbert space Hn is two-dimensional. Then we take M =
⊕∞

n=1 Mn and it is

not hard to show that M is reflexive, but not hyperreflexive.

4. The finite-dimensional case. If the underlying Hilbert space is finite-dimensional

then reflexivity and hyperreflexivity are equivalent.

Theorem 4.1. Let H be a finite-dimensional Hilbert space. If M ⊂ L(H) then M is

reflexive if and only if M is hyperreflexive.

The theorem above is clear since dim L(H)/M < ∞. Indeed, since M is reflexive then

T + M 7→ α(T,M)

and

T + M 7→ dist(T,M)

are norms on L(H)/M. Since L(H)/M is finite-dimensional all the norms are equivalent

and we get hyperreflexivity of M.

The notion of reflexivity is interesting even in the finite-dimensional case.

Example 4.2. The algebra W1 =

{ [

α β

0 α

]

: α, β ∈ C

}

is not reflexive since LatW1 =

{

C⊕ C,C⊕ {0}, {0}
}

and Alg LatW1 =

{[

α β

0 γ

]

: α, β, γ ∈ C

}

.

On the other hand the algebra W2 =

{[

α β

0 α

]

⊕ [α] : α, β ∈ C

}

is reflexive. This can

easily be verified if we note that the following subspaces are in LatW2: C
2 ⊕ {0}, {0} ⊕

{0} ⊕ C,C⊕ {0} ⊕ {0}, {(x, 0, x) : x ∈ C}, {(0, x, x) : x ∈ C}.
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Note that both algebras are simply generated and

W1 = W

( [

0 1

0 0

] )

, W2 = W

( [

0 1

0 0

]

⊕ [0]

)

.

Deddens and Fillmore [20] gave a full characterization when an algebra generated by

a nilpotent in a finite-dimensional space is reflexive.

Theorem 4.3 ([20]). Let T be a nilpotent in a finite-dimensional Hilbert space. The

algebra W(T ) is reflexive if and only if the sizes of the two largest blocks in the Jordan

decomposition differ by no more than one.

Analysis of the above condition leads us to a connection between block sizes and

operators of rank two.

Remark. The algebra W(T ) is reflexive if and only if each rank two operator A ∈ W(T )

generates a one-dimensional ideal (i.e., dimAW(T ) 6 1).

One can ask about characterizations for algebras generated by more than one operator.

In [7] families of doubly commuting nilpotent operators were considered. It turns out that

the same characterization also works for more general situations.

Theorem 4.4 ([7]). Suppose W is an operator algebra generated by a family of doubly

commuting nilpotents. Then, in order for W to be reflexive, it is necessary and sufficient

that each rank two member of W generates a one–dimensional ideal.

Remark. It is also possible to give a necessary and sufficient condition for reflexivity

of a family of doubly commuting nilpotents in finite dimensional Hilbert space using the

sizes of blocks (see [7]).

5. Finite-dimensional subspaces of operators. Now one can ask whether reflexivity

and hyperreflexivity are equivalent if the operators act on infinite-dimensional Hilbert

space but the dimension of the subspace of operators is finite. The problem was stated

by Larson and Kraus in [27].

In [4] it was shown that one-dimensional subspaces are always reflexive. Hyperrefle-

xivity of one-dimensional spaces was shown in [27] with a constant of hyperreflexivity

smaller than 4. The optimal constant 1 was found in [29]. A first approach to hyperrefle-

xivity of one-dimensional subspaces was carried out in [2], where hyperreflexivity of the

subspace generated by the identity operator was presented.

A positive answer for the problem of Larson and Kraus was given in [30]. In fact it

was obtained in the more general setting of Banach spaces.

Let X, Y be Banach spaces and let L(X, Y ) denote the algebra of all bounded linear

operators from X to Y . Let M be a subspace of L(X, Y ). The reflexive closure of M can

be defined as in (6)

ref M = {B ∈ L(X, Y ) : Bx ∈ [Mx]− for all x ∈ X}

and M is called reflexive if and only if M = ref M.

Let A ∈ L(X, Y ). We recall that

dist(A,M) = inf{‖A − T‖ : T ∈ M}.
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To define the α distance in the Banach space case we can use the formula (11):

α(A,M) = sup{dist(Ax,Mx) : x ∈ X, ‖x‖ = 1}.

Similarly M is called hyperreflexive if there is a constant k such that

dist(A,M) 6 k α(A,M).

Theorem 5.1 ([30]). Let X, Y be Banach spaces and let M ⊂ L(X, Y ) be a linear sub-

space with dimM < ∞. Then M is hyperreflexive if and only if M is reflexive.

Example 5.2. Since each reflexive finite-dimensional subspace of operators is hyper-

reflexive, one might expect that the hyperreflexivity constant can depend only on the di-

mension of the subspace. This is not true. Following [30] define Mn =

{[

α β

0 α

]

⊕
[

1
n
α
]

:

α, β ∈ C

}

. Then dimMn = 2 and Mn is reflexive thus hyperreflexive, but the hy-

perreflexivity constant satisfies kMn
> n

2 . A different example was given in [27]: If

Mn =

{[

0 α

β −n(α + β)

]

: α, β ∈ C

}

, then Mn is reflexive and kMn
>

n
3 .

6. Toeplitz operators. Let H2 and H∞ denote the classical Hardy spaces on the unit

disc D. We denote the unit circle by T and we write L2 instead of L2(T, m). We denote

the projection from L2 onto H2 by PH2 : L2 → H2 . The unilateral shift can be seen as

an operator S ∈ L(H2), (Sf)z = z f(z) for f ∈ H2.

For a given function ϕ ∈ L∞ we can define a Toeplitz operator with the symbol ϕ as

Tϕf = PH2(ϕf) for f ∈ H2.

We will denote by A = {Tϕ : ϕ ∈ H∞} the set of all analytic Toeplitz operators. This

is an algebra, and indeed A = W(S). We denote the space of all Toeplitz operators by

T = {Tϕ : ϕ ∈ L∞}.

The first reflexivity result concerning Toeplitz operators was shown by Sarason.

Theorem 6.1 ([34]). If S is the unilateral shift then W(S) is reflexive.

Proof. Note that the vectors kλ = 1
1−λ z

, λ ∈ D, are eigenvectors of the backward shift

(i.e. S∗kλ = λ kλ). Moreover, the set {kλ : λ ∈ D} is linearly dense in the Hardy space

H2.

Now when we take an operator A ∈ Alg LatW(S) = Alg LatS, then A∗ ∈ Alg LatS∗.

Since the one-dimensional subspace C kλ belongs to LatA∗ the operator A∗ commutes

with S∗ on C kλ for λ ∈ D. By the density of {kλ : λ ∈ D} in H2 we get commutativity

of A∗ and S∗. Hence S and A commute and by the description of the commutant of S

we get that A ∈ W(S).

Davidson improved this result.

Theorem 6.2 ([17]). Let S be the unilateral shift. Then W(S) is hyperreflexive and kW(S)

< 19.

There was an improvement of the hyperreflexivity constant in [25], kW(S) < 13. The

proof of this theorem is not as elementary as in the reflexive case. Nehari’s theorem is
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strongly used. It says that

‖Hϕ‖ = dist(ϕ, H∞) for ϕ ∈ L∞, (12)

where Hϕ ∈ L(H2, L2 ⊖ H2) is the Hankel operator defined as Hϕf = PL2⊖H2(ϕf) for

f ∈ H2.

In general reflexivity and hyperreflexivity are not hereditary, but, in this case, using

property A and A1(1) (see [14]), it is not hard to show that

Proposition 6.3 ([34]). Let M ⊂ A be a w∗-closed subspace. Then M is reflexive and

hyperreflexive.

On the other hand

Proposition 6.4 ([6]). The space of all Toeplitz operators T is transitive.

Proof. Let f, g ∈ H2 and f ⊗ g ∈ ⊥T . Then, for all ϕ ∈ L∞, we have

0 = 〈Tϕ, f ⊗ g〉 = (Tϕf, g) =

∫

ϕfg dm.

Since this holds for all functions ϕ ∈ L∞, it follows that f g = 0 as a function in L1.

Since f, g ∈ H2 both functions f, g cannot be equal to 0 on a set of positive measure in

T unless they are zero. Hence there is no rank one operator in ⊥T and T is transitive.

The following dichotomy result between transitivity and reflexivity of Toeplitz oper-

ators holds.

Theorem 6.5 ([6]). Let B ⊂ T be a w∗-closed subspace. Then the following are equivalent:

1. B is reflexive,

2. B is not transitive,

3. there exists f ∈ L1 such that log |f | ∈ L1 and
∫

fg dm = 0 for all g ∈ B.

The conditions 1 and 2 give the dichotomy while the condition 3 gives a full char-

acterization of reflexive subspaces of Toeplitz operators. There is also an extension of

Theorem 6.3.

Theorem 6.6 ([6]). Let B be a w∗-closed algebra such that A ⊂ B  T . Then B is

reflexive.

As a consequence of the above we obtain the following two results.

Example 6.7. The subspace

S∗nA = span{S∗n, S∗n−1, . . . , S∗, I, S, S2, . . . }

is reflexive.

Example 6.8. Let E ⊂ T such that 0 < m(E) < 1 and let χE denote the characteristic

function of the set E. Then TχE
A is not reflexive.

Comparing the above results the following problem arises:

Problem 6.9. Which reflexive subspaces of T are hyperreflexive?

It is worthwhile to add that, in the context of Theorem 6.5, the Bergman shift was

investigated in [15] and generalized Toeplitz operators were considered in [24].
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7. Toeplitz operators on the bidisc and the unit ball. We can also consider Hardy

spaces H2(D2), H∞(D2) on the bidisc D2 and the projection PH2(D2) : L2(T2) → H2(D2).

For ϕ ∈ L∞(T2) we define the Toeplitz operator with symbol ϕ as

Tϕf = PH2(D2)(ϕf) for f ∈ H2(D2).

Then the multiplication operators by the independent variables can be written as

(Tzi
f)(z1, z2) = zif(z1, z2) for f ∈ H2(D2), i = 1, 2.

We denote the space of all Toeplitz operators by T (D2) and the algebra of analytic

Toeplitz operators by A(D2) = {Tϕ : ϕ ∈ H∞(D2)}, which is equal to W(Tz1
, Tz2

).

Theorem 6.1 and Proposition 6.4 can be generalized to the bidisc situation.

Theorem 7.1 ([31, 33]).

1. The algebra A(D2) = W(Tz1
, Tz2

) is reflexive.

2. The subspace T (D2) is transitive.

The proof of reflexivity of A(D2) is similar to the disc case. Note that the set

{kλ1,λ2
= 1

1−λ1z1

1
1−λ2z2

: λ1, λ2 ∈ D} is dense in H2(D2) and that the function kλ1,λ2
is

an eigenvector for Tzi
, i = 1, 2.

Thus the following problem arises:

Problem 7.2. How can one characterize the reflexive subspaces of T (D2)?

In the context of Theorem 6.2 we can ask about the hyperreflexivity of A(D2). As we

have noticed, one of the tools for the proof of hyperreflexivity of A was Nehari’s Theorem.

In [9], [22] it was shown that Nehari’s Theorem cannot be extended to the case of the

bidisc. Thus we have the following problem.

Problem 7.3. Is A(D2) hyperreflexive?

The bidisc D2 is not the only possible multivariable generalization of the disc D, and

the two-dimensional unit ball B2 is equally significant.

Let H2(B2) and H∞(B2) be the Hardy spaces on the ball B2. Let PH2(B2) : L2(∂B2) →

H2(B2) be the projection. We can define Toeplitz operators similarly to the case of the

disc. For ϕ ∈ L∞(∂B2) we define an operator Tϕ by (Tϕf) = PH2(B2)(ϕf) for f ∈ H2(B2).

We keep the notations A(B2) for analytic and T (B2) for all Toeplitz operators in the

ball B2.

It is known that

Theorem 7.4 ([33, 32]).

1. The algebra A(B2) is reflexive.

2. The subspace T (B2) is transitive.

Moreover, we obtain the following from [10] and [Corollary 2.13 and 2.14, 21].

Theorem 7.6. The algebra A(B2) is hyperreflexive.

Now we can pose

Problem 7.5. How can one characterize the reflexive and hyperreflexive subspaces of

T (B2)?
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8. Isometries, quasinormal operators and power partial isometries. In [34] Sara-

son also proved that

Theorem 8.1 ([34]). The algebra generated by a normal operator is reflexive.

After Theorem 6.1 saying that the algebra generated by the unilateral shift is reflexive

and Theorem 8.1, a natural question concerns the reflexivity of an isometry. Each isometry

is an orthogonal sum of a unilateral shift and a unitary operator. Although the behavior

of reflexivity under orthogonal sums (see [36]) is not straightforward, we have

Theorem 8.2 ([19]). Let V be an isometry. Then the algebra W(V ) is reflexive.

This result was generalized to quasinormal operators.

Theorem 8.3 ([35]). Let T be a quasinormal operator. Then the algebra W(T ) is reflex-

ive.

Recently it was improved to hyperreflexivity.

Theorem 8.4 ([25]). Let T be a quasinormal operator. Then the algebra W(T ) is hyper-

reflexive and kW(T ) < 259.

Partial isometries are natural generalizations of isometries. Recall that an operator

W ∈ L(H) is a partial isometry if W ∗W is an orthogonal projection or equivalently

WW ∗W = W . An operator V is a power partial isometry if V n is a partial isometry

for all positive integers n. A simple Jordan block in a finite-dimensional Hilbert space

is a power partial isometry. Thus we cannot expect that all power partial isometries are

reflexive.

We have the following full characterization of reflexivity of power partial isometries.

Theorem 8.5 ([5]). Let V be a power partial isometry. Any of the following conditions

is sufficient for V to be reflexive:

1. V k+1V ∗k+1 � V kV ∗k for all k > 1,

2. V ∗k+1V k+1 � V ∗kV k for all k > 1,

3. V kV ∗k = V k+1V ∗k+1 for all k > 1 or V ∗kV k = V ∗k+1V k+1 for all k > 1,

4. there exists k > 2 such that V kV ∗k = V k+1V ∗k+1 and

dimR(V k0−1V ∗k0−1) ⊖ R(V k0V ∗k0) + dimR(V k0−2V ∗k0−2) ⊖R(V k0−1V ∗k0−1) > 3,

where k0 = inf{k : V kV ∗k = V k+1V ∗k+1},

5. there exists k > 2 such that V ∗kV k = V ∗k+1V k+1 and

dimR(V ∗k0−1V k0−1) ⊖R(V ∗k0V k0) + dimR(V k0−2V ∗k0−2) ⊖R(V k0−1V ∗k0−1) > 3,

where k0 = inf{k : V kV ∗k = V k+1V ∗k+1}.

Moreover, if none of the above conditions is fulfilled then V is not reflexive.

In [7] it was shown that reflexivity for large classes of operators can be characteri-

zed using rank two operators. A similar characterization can be made for power partial

isometries.

Theorem 8.6. Let S be a completely non-unitary power partial isometry. Then the

following are equivalent:
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1. W(S) is reflexive,

2. one of the conditions 1–5 of Theorem 8.5 is fulfilled,

3. for any operator B ∈ W(S) of rank two, B generates a one-dimensional ideal.

We can put forward the following

Problem 8.7. How can one characterize the reflexivity for partial isometries?

9. Final remarks. It has not been possible to present all reflexivity and hyperreflexivity

results in this article since the subject is very large. For example we have not discussed

results obtained by the Dual Algebra Technique which has given many interesting results

on invariant subspaces and reflexivity. We recall only a few papers where the reader can

find the most interesting results and references to other results [12, 11, 13, 16, 26, 1].

A hyperreflexivity result obtained by this technique was given in [10]. Isometries with

orthogonal ranges were considered in [18]. In [23] a more abstract definition of reflexivity

and hyperreflexivity was presented.
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