PERSPECTIVES IN OPERATOR THEORY BANACH CENTER PUBLICATIONS, VOLUME 75 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007

A REDUCIBILITY PROBLEM FOR THE CLASSICAL RESIDUE FORMULA

YU. I. LYUBICH

Department of Mathematics, Technion, 32000 Haifa, Israel E-mail: lyubich@tx.technion.ac.il

Let z_1, \ldots, z_n be *n* distinct points in \mathbb{C} and let

$$G(z) = \prod_{k=1}^{n} (z - z_k)$$

Denote by Γ a simple contour surrounding $\{z_k\}_{k=1}^n$. The residue formula

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) \frac{G'(z)}{G(z)} dz = \sum_{k=1}^{n} f(z_k)$$
(1)

is valid in a class of analytic functions, in particular, it is true for all polynomials of degree $\leq 2n - 1$. In this sense (1) is a Gauss type quadratic formula of order n.

DEFINITION 1. Let *m* be an integer, $2 \leq m \leq n$. A configuration $\{z_k\}_{k=1}^n$ is called *m*-reducible if there exists another configuration $\{w_j\}_{j=1}^m$ such that

$$\frac{1}{n}\sum_{k=1}^{n}f(z_k) = \sum_{j=1}^{m}\alpha_j f(w_j), \qquad f \in \mathcal{P}ol(\mathbb{C}), \quad \deg f \le 2m-1,$$
(2)

with some complex coefficients $\alpha_1, \ldots, \alpha_m$. Obviously, (2) implies that $\sum_{j=1}^m \alpha_j = 1$.

REMARK. It does not make sense to extend Definition 1 to m = 1 since in this case the barycenter w_1 of the system $\{z_k\}$ satisfies (2) with $\alpha_1 = 1$. Thus one can say that every configuration is 1-reducible.

DEFINITION 2. A configuration $\{z_k\}_{k=1}^n$ is called *irreducible* if for each $m \in [2, n)$ it is not *m*-reducible.

Note that these properties are affine invariant, i.e. they are invariant with respect to transformations $z \mapsto az + b$.

It is shown in [1] that a triangle $\{z_k\}_{k=1}^3$ is irreducible if and only if it is either equilateral or isosceles with the angle between the equal sides which is equal to

$$\alpha = \frac{\pi}{2} + \arctan \frac{\eta}{\sqrt{4 - \eta^2}}$$

© Instytut Matematyczny PAN, 2007

where η is the unique real root of the cubic equation

$$4\eta^3 - 12\eta^2 + 9\eta + 2 = 0$$

(so that $\eta \approx 0,5283\pi$).

Also it turns out that for every $n \in \mathbb{N}$, $n \geq 3$ the regular *n*-gon is irreducible. It would be interesting to find other examples for $n \geq 4$ and, maybe, to describe explicitly all of them for small *n*. In general there is a characterization of irreducibility by a union of systems of algebraic equations. (This can be easily extracted from [1, Theorem 6].)

CONJECTURE. For every n the set of irreducible configurations is finite up to affine equivalence.

To support formally this conjecture let me indicate that each system mentioned above consists of n-2 equations. On the other hand, the affine class of *n*-configuration depends exactly on n-2 complex parameters.

References

 Yu. I. Lyubich, Gauss type quadrature formula, power moment problem and elliptic curves, Mat. Fizika, Analiz, Geometriya 9 (2002), 128–145.