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Abstract. Suppose that A generates a C0-semigroup T on a Banach space X. In 1953 R. S.

Phillips showed that, for each bounded operator B on X, the perturbation A+B of A generates

a C0-semigroup on X, and he considered whether certain classes of semigroups are stable under

such perturbations. This study was extended in 1968 by A. Pazy who identified a condition on

the resolvent of A which is sufficient for the perturbed semigroups to be immediately differen-

tiable. However, M. Renardy showed in 1995 that immediate differentiability is not stable under

bounded perturbations.

We give a survey account of the partial answers already given to the question of differen-

tiability of perturbed semigroups. Furthermore, we show that Pazy’s condition is necessary, as

well as sufficient, if one adds a natural requirement of uniformity for the differentiability of the

perturbed semigroups. We also present an account of the corresponding theory for delay semi-

groups associated with A, based on an earlier paper of ours but with improved formulation. The

necessary and sufficient condition for eventual differentiability of the delay semigroups is that

the resolvent of A should have polynomial decay on vertical lines. We also give a brief account

of the consequences for asymptotics of individual mild solutions of abstract Cauchy problems

and delay differential equations.

1. Background. Let A be the generator of a C0-semigroup T = {T (t) : t ≥ 0} on a

complex Banach space X, and let B be a bounded linear operator on X. Phillips [21]

showed that A + B generates a C0-semigroup SB on X (see [1], [13] or [20] for general

background information on C0-semigroups and this result in particular). He raised the

question which properties of semigroups are “stable” in the sense that if T has the

property then SB also has it for all B ∈ B(X). He argued that the stable properties are

more significant, on both practical and mathematical grounds, than other properties.
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In particular, Phillips established stability of the class of holomorphic semigroups, i.e.

those semigroups T which extend to holomorphic mappings on a sector in C containing

(0,∞) with appropriate continuity properties at 0. This class includes many semigroups

generated by elliptic differential operators.

Theorem 1.1 (Phillips [21]). If T is holomorphic, then SB is holomorphic whenever B ∈

B(X).

The proof of Theorem 1.1 may be found in [1, Theorem 3.7.23], [13, Proposition

III.1.12] and [20, Corollary 3.2.2]. It relies on the following two standard facts. Here and

later, we write R(λ,A) for (λI −A)−1 when λ belongs to the resolvent set ρ(A) of A.

1. A densely defined operator A generates a holomorphic C0-semigroup if and only

if there exist r > 0 and c > 0 such that λ ∈ ρ(A) and ‖λR(λ,A)‖ ≤ c whenever

Reλ > 0 and |λ| > r.

2. If λ ∈ ρ(A) and ‖B‖ ‖R(λ,A)‖ < 1, then λ ∈ ρ(A+B) and

(1.1) ‖R(λ,A+B)‖ =
∥∥∥R(λ,A)

∞∑

n=0

(BR(λ,A))n
∥∥∥ ≤

‖R(λ,A)‖

1 − ‖B‖ ‖R(λ,A)‖
.

Phillips also addressed stability of norm-continuity of semigroups. A C0-semigroup T

is said to be eventually norm-continuous if there exists t0 ≥ 0 such that T is continuous

from (t0,∞) to B(X) with respect to the operator norm; T is said to be immediately

norm-continuous if one can take t0 = 0. Many semigroups associated with delay equations

are eventually, but not immediately, norm-continuous (see Section 4).

Theorem 1.2 (Phillips [21]). If T is immediately norm-continuous, then SB is immedi-

ately norm-continuous whenever B ∈ B(X).

The proof of Theorem 1.2 is given in [13, Theorem III.1.16]. In contrast to Theo-

rem 1.1, it does not rely on a characterization of the generators of immediately norm-

continuous semigroups. Indeed, no characterization is known even now. A simple appli-

cation of the Riemann-Lebesgue Lemma shows that if T is immediately norm-continuous

then

(1.2) lim
|s|→∞

‖R(a+ is, A)‖ = 0

for a > ω0(T ), the exponential growth bound of T (see Section 5). Putting B = (a− a′)I

in (1.1) shows that

(1.3) ‖R(a′ + is, A)‖ ≤ 2‖R(a+ is, A)‖ if |a′ − a| ≤ (2‖R(a+ is, A)‖)−1,

so (1.2) is independent of a, and for simplicity we shall take a = 0 in later results.

It is known that (1.2) is equivalent to immediate norm-continuity of T if X is a Hilbert

space (see [1, Theorem 3.13.2], [13, Theorem II.4.20]). However the following question is

still open in Banach spaces.

Open Question 1. If A generates a C0-semigroup T on a Banach space and (1.2) holds,

is T immediately norm-continuous?

It follows easily from (1.1) that (1.2) is stable under bounded perturbations, so a

positive answer to Open Question 1 would provide an alternative proof of Theorem 1.2.
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On the other hand, eventual norm-continuity is unstable.

Example 1.3 ([21]). Let X = L1(0, 1) and define

(T (t)f)(s) =

{
f(s+ t) (s+ t ≤ 1),

0 (s+ t > 1),

(Bf)(s) =

{
f(s− 1

2 ) (s > 1
2 ),

0 (s ≤ 1
2 ).

Then T (t) = 0 for t ≥ 1, but SB is not eventually norm-continuous. We refer the reader

to [21, Theorem 5.2] for a proof of this.

Stability of properties of semigroups was considered again by Pazy [19]. He showed

that immediate compactness of a semigroup is stable, and he also considered the question

whether immediate differentiability is stable. It is this question which is the main subject

of this article.

2. Differentiability of semigroups. Let T = {T (t) : t ≥ 0} be a C0-semigroup, with

generator A, on a complex Banach space X. For x ∈ X, let

ux(t) = T (t)x (t ≥ 0).

For x ∈ D(A), u = ux is a classical solution of the abstract Cauchy problem

(ACP) u′(t) = Au(t) (t ≥ 0), u(0) = x.

For x ∈ X, ux is the unique mild solution of (ACP); that is, u = ux satisfies
∫ t

0

u(s) ds ∈ D(A) and u(t) = x+A

(∫ t

0

u(s) ds

)
(t ≥ 0).

Thus differentiability of the orbits of a semigroup corresponds to mild solutions becoming

classical solutions.

The following proposition is elementary.

Proposition 2.1. Let t0 ≥ 0. The following are equivalent:

(i) For each x ∈ X, the function ux is differentiable on (t0,∞);

(ii) For each t > t0, T (t) maps X into D(A);

(iii) The function T is differentiable on (t0,∞) with respect to the operator norm.

When these conditions are satisfied, the derivative T ′(t) = AT (t) for t > t0. Moreover,

for n ≥ 1, T is n-times differentiable on (nt0,∞) and T (n)(t) = AnT (t) for t > nt0.

The C0-semigroup T is said to be eventually differentiable if the equivalent conditions

of Proposition 2.1 are satisfied for some t0; T is immediately differentiable if the conditions

are satisfied for t0 = 0. Clearly any holomorphic semigroup is immediately differentiable.

The following simple question seems to be open. It is not directly relevant to the rest

of this article, but a solution would be of some interest.

Open Question 2. Suppose that, for each x ∈ X, there exists tx such that ux is differ-

entiable on (tx,∞). Is T eventually differentiable?



42 C. J. K. BATTY

Pazy [19] characterized the generators of eventually, or immediately, differentiable

semigroups as follows. For β > 0 and c ∈ R, let

Dβ,c = {λ ∈ C : Reλ ≥ c− β log | Imλ|}.

For β > 0, κ > 0 and m ≥ 0, consider the following condition:

(Qβκm) There exists c such that Dβ,c ⊆ ρ(A) and ‖R(λ,A)‖ ≤ κ| Imλ|m (λ ∈ Dβ,c).

Theorem 2.2 (Pazy [19]). The C0-semigroup T is eventually (resp., immediately) dif-

ferentiable if and only if, for some (resp., all) β > 0, there exist κ, m such that (Qβκm)

holds. More precisely, if T is differentiable on (t0,∞), then (Qβκ1) holds for some κ

whenever β ∈ (0, 1/t0). If (Qβκm) holds, then T is differentiable on ((m+ 2)/β,∞).

This characterization seems rather curious in two respects. Firstly, the regions Dβ,c

are bounded by curves with exponential growth; secondly, polynomial growth of the

resolvent is allowed, but one can always arrange linear growth. However, the resolvent

of an eventually norm-continuous semigroup may not be bounded in any of the regions

Dβ,c. Indeed, this occurs for the shift semigroup on C[0, 1] given by

(T (t)f)(s) =

{
f(s+ t) (s+ t ≤ 1),

f(1) (s+ t > 1).

This is essentially due to Pazy [19, p. 1136].

The proof of Theorem 2.2 can be found in [20, Theorem 2.4.7]. It is based on the

following formulae:

AT (t) =
1

2πi

∫

Γ

λeλtR(λ,A) dλ;(2.1)

λeλtR(λ,A) = AT (t)R(λ,A) + T (t) + λeλt

∫ t

0

e−λsT (s) ds.(2.2)

In (2.1), it is assumed that (Qβκm) holds and then (2.1) is valid for a suitable contour Γ.

The formula (2.2) is valid for any C0-semigroup T and any λ ∈ ρ(A).

When T is immediately differentiable, these formulae lead to estimates for ‖AT (t)‖

in terms of ‖R(λ,A)‖, and vice versa. In particular, (2.2) provides the estimate

(2.3) ‖R(λ,A)‖ ≤
Mt(1 + |λ|eRe λt

∫ t

0
e−Re λs ds)

|λ|eRe λt − ‖AT (t)‖
if ‖AT (t)‖ < |λ|eRe λt,

where Mt = sup{‖T (s)‖ : 0 ≤ s ≤ t}. If one knows estimates for ‖AT (t)‖, one can

then choose t, depending on λ, in such a way as to provide the sharpest estimates for

‖R(λ,A)‖. We now recall two cases in the literature where this has been done. These

involve simpler estimates for the resolvent than in Theorem 2.2.

Firstly, Yosida [26] (see also [27]) considered the case when there exist α > 0 and c

such that

(2.4) ‖AT (t)‖ ≤ ceα/t for all sufficiently small t > 0.

Putting λ = is where s is real, and t = κ(log |s|)−1 for κ > α in (2.3) leads to

(2.5) ‖R(is, A)‖ ≤
γ

log |s|
whenever |s| is sufficiently large,

provided that γ > αM0+, where M0+ = lim supt→0+ ‖T (t)‖.
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Conversely, the validity of (2.5) for some γ implies, via (1.3), that (Qβκ0) holds when

β < 1/γ, and then it follows from Theorem 2.2 that T is eventually differentiable, and

immediately differentiable if (2.5) holds for each γ > 0. However, even if T is immediately

differentiable, (2.5) does not imply any estimate for ‖AT (t)‖ (see [15]).

Secondly, Crandall and Pazy [7] considered the more special case when there exist

α ≥ 1 and c such that

(2.6) ‖AT (t)‖ ≤ ct−α for all sufficiently small t > 0.

Putting λ = is and t = κ|s|−1/α for κ > c1/α in (2.3) shows that

(2.7) ‖R(is, A)‖ ≤
γ

|s|1/α
whenever |s| is sufficiently large,

for some γ. On the other hand, the formula (2.1) was used in [7] to show that (2.7) implies

that there exists c′ such that

‖AT (t)‖ ≤ c′t−(2α−1) for all sufficiently small t > 0.

A moment inequality was used in [12] to improve this to

‖AT (t)‖ ≤ c′εt
−(α+ε) for all sufficiently small t > 0,

for each ε > 0. The class of semigroups satisfying (2.6), or equivalently a resolvent

estimate of the form (2.7), will be considered again in Section 4.

A third, more general, case when an estimate for ‖AT (t)‖ implies a resolvent estimate

will be considered in Proposition 3.8.

3. Bounded perturbations. In the spirit of Phillips, Pazy [19] asked the following

question.

Pazy’s question, original version. Is the class of immediately differentiable C0-

semigroups stable under bounded perturbations?

This question was open for a long time, until Renardy showed that the answer is

negative.

Example 3.1 ([22]). There is an immediately differentiable semigroup T on a Hilbert

space, and a bounded operator B such that SB is not eventually differentiable. In the

example given in [22], A is a direct sum of n × n matrices An (n = 1, 2, . . . ) chosen in

such a way that (Qβκ1) holds for An uniformly in n, but ‖R(λn, An)‖ ≥ 1 for a sequence

of points λn ∈ C such that {λn : n ≥ 1} is not contained in any set of the form Dβ,c for

β > 0. Then there exist n× n matrices Bn of rank one such that ‖Bn‖ ≤ 1 and λn is an

eigenvalue of An +Bn. Taking B to be the direct sum of the perturbations Bn provides

the counterexample. We refer the reader to [22] for the details.

So Pazy’s question can be modified to the following.

Pazy’s question, second version. For which semigroups T is it true that SB is im-

mediately (or eventually) differentiable for all B ∈ B(X)?

It is this question, or a slight variant of it, which we shall discuss in this section.

An answer in terms of properties of A is more useful for applications than an answer
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involving conditions on T . Pazy himself had deduced a positive result in this direction

from his criterion for differentiability of semigroups.

Let β > 0, and consider the following condition:

(Pβ) There exists c such that Dβ,c ⊆ ρ(A) and lim
λ∈Dβ,c

| Im λ|→∞

‖R(λ,A)‖ = 0.

It is clear that (Pβ) implies (Qβκ0) for every κ > 0. On the other hand, if there exists

β such that (Qβκ0) holds for every κ > 0, then (Pβ′) holds whenever β′ ∈ (0, β) (see

the proof of Corollary 3.6 below). It is immediate from (1.1) that (Pβ) is invariant under

bounded perturbations of A and then Theorem 2.2 implies the following.

Theorem 3.2 (Pazy [19]). If A satisfies (Pβ) for some β > 0, then SB is differentiable

on (2/β,∞) for every B ∈ B(X). In particular, if A satisfies (Pβ) for every β > 0, then

SB is immediately differentiable.

A more precise version is the following.

Proposition 3.3. If A satisfies (Qβκ0) for some β > 0 and κ > 0, then SB is differen-

tiable on (2/β,∞) whenever ‖B‖ < κ−1.

In the situation of Theorem 3.2 and Proposition 3.3, the eventual differentiability of

SB is uniform with respect to B in both of the following respects:

(U1) There exists t0, independent of B, such that SB is differentiable on (t0,∞) for all

relevant B;

(U2) For each relevant γ, there exists gγ : (t0,∞) → R such that ‖(A+B)SB(t)‖ ≤ gγ(t)

for all t > t0 and for all B with ‖B‖ ≤ γ.

In (U2), γ is arbitrary in the context of Theorem 3.2, but there is a restriction that

γ < κ−1 in the context of Proposition 3.3.

The uniformity (U1) is explicit in the statements of Theorem 3.2 and Proposition 3.3,

with t0 = 2/β. The uniformity (U2) can be seen either by examining the proofs of those

results or by applying the results themselves to direct sums of copies of T . We shall show

in Theorem 3.5 and its corollaries that converses of Theorem 3.2 and Proposition 3.3

hold if we assume both of these uniformities. It is possible that either or both of these

uniformities may be automatic; see Open Question 3 below.

In order to give the converses of Pazy’s results Theorem 3.2 and Proposition 3.3, we

need the following elementary lemma.

Lemma 3.4. Let λ ∈ C and γ > 0. The following are equivalent:

(i) λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ γ−1;

(ii) λ ∈ ρ(A+B) whenever B ∈ B(X) and ‖B‖ < γ;

(iii) λ ∈ ρ(A+B) whenever B is of rank one and ‖B‖ < γ.

Proof. It is immediate from (1.1) that (i) implies (ii), and it is trivial that (ii) implies (iii).

Suppose that (iii) holds. Then λ ∈ ρ(A). Suppose that ‖R(λ,A)‖ > γ−1. Then there

exists x ∈ X with ‖x‖ = 1 and ‖R(λ,A)x‖ > γ−1, and there exists ψ ∈ X∗ with ‖ψ‖ < γ

and ψ(R(λ,A)x) = 1. Define By = ψ(y)x (y ∈ X). Then B is rank one, ‖B‖ < γ and

(λ−(A+B))R(λ,A)x = 0. This would contradict (iii). This proves that (iii) implies (i).
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The following can be found in [4], but its significance was not made explicit there.

Theorem 3.5. Suppose that there exist t0 ≥ 0 and γ > 0 such that SB is differentiable

on (t0,∞) whenever B is an operator of rank one with ‖B‖ ≤ γ, and the differentiability

is uniform in the sense of (U2). Then (Qβ,γ−1,0) holds whenever 0 < β < 1/t0.

Proof. By Theorem 2.2, there exists c such that Dβ,c ⊆ ρ(A+B) whenever B is of rank

one and ‖B‖ ≤ γ. By Lemma 3.4, ‖R(λ,A)‖ ≤ γ−1 whenever λ ∈ Dβ,c.

Corollary 3.6. Suppose that SB is differentiable on (t0,∞) for each operator B of rank

one on X, and (U2) holds for each γ > 0. Then (Pβ) holds whenever 0 < β < 1/t0.

Proof. Given β with 0 < β < 1/t0, choose β′ such that β < β′ < 1/t0. By Theorem 3.5,

there exist cn such that Dβ′,cn
⊆ ρ(A) and ‖R(λ,A)‖ ≤ 1/n whenever λ ∈ Dβ′,cn

. Let

c = c1. Then Dβ,c ⊆ Dβ′,c1
⊆ ρ(A). If λ ∈ Dβ,c and | Imλ| > exp((cn − c)/(β

′−β)), then

λ ∈ Dβ′,cn
, so ‖R(λ,A)‖ ≤ 1/n. Thus (Pβ) holds.

Corollary 3.7. Suppose that SB is immediately differentiable for each operator B of

rank one on X, and (U2) holds for each γ > 0. Then (Pβ) holds for every β > 0.

We have now answered a third version of Pazy’s question: in order that the semigroups

SB should be eventually (resp., immediately) differentiable for all B uniformly in the sense

of (U1) and (U2), it is necessary and sufficient that the generator A should satisfy the

condition (Pβ) for some (resp., all) β > 0.

At least in the case of immediate differentiability, we think that the answer to the

second version of Pazy’s question is probably the same. Equivalently, we expect that the

following question has a positive answer.

Open Question 3. Can the assumptions of uniformity (U2) be omitted in Theorem 3.5

and its corollaries?

In Theorem 3.5, Corollary 3.6 and Corollary 3.7, we have assumed that the uniformity

(U1) holds, i.e., that t0 is independent of B. We think it is unlikely that (U1) is automatic

in the context of Theorem 3.5; indeed, we expect that there exists a generator A such

that, for each κ > 0, there exists βκ > 0 such that (Qβκκ0) holds but βκ cannot be chosen

independent of κ. Then SB would be eventually differentiable for every B but it would

not be possible to choose t0 uniformly for B of arbitrarily large norm.

The results above show that counterexamples to Pazy’s original question, or the cor-

responding question for eventual differentiability, correspond almost exactly to examples

where (Qβκ1) holds for some κ (for some, or all, β), but (Qβκ0) fails for some κ. If Open

Question 3 has a negative answer, such an example might not itself be a counterexample

to Pazy’s question, but it would provide a counterexample by means of a direct sum con-

struction. Thus it was not chance that the shift semigroup S on either L1[0, 1] or C[0, 1]

provided both the first example that eventual differentiability is not stable under bounded

perturbations (see Example 1.3) and the first example that eventual differentiability does

not imply (Qβκ0) [19, p.1136]. For an example of an immediately differentiable semigroup

with such properties, we refer to Renardy’s example [22] (see Example 3.1). It is not diffi-

cult to verify directly that Renardy’s example fails to satisfy (Qβκ0). Then Corollary 3.6

implies that the rank one perturbations do not generate semigroups which are eventually
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differentiable uniformly in the sense (U2). In fact Renardy showed directly that there is

an explicit bounded perturbation B such that SB is not eventually differentiable. The

operator B is not of finite rank, but A is constructed as a direct sum of operators An

on finite-dimensional spaces and B is a direct sum of rank one perturbations of An. So

Renardy’s construction and the proof of Theorem 3.5 both depend on the same simple

idea described in Lemma 3.4.

Now we discuss a result of Doytchinov, Hrusa and Watson [11]. They showed that if

T is immediately differentiable and there exist c and α > 0 such that

(3.1) ‖AT (t)‖ ≤ ct−α/t for all sufficiently small t > 0,

then SB is differentiable on (α,∞), for every B ∈ B(X). Thus (U1) is satisfied, explicitly.

Moreover, (U2) is also satisfied. This can be seen either from the proof in [11] or by

applying the result of [11] to a direct sum. It follows from Corollary 3.6 that (3.1) implies

(Pβ) for 0 < β < 1/α. We shall show directly that (3.1) implies (Pβ) for 0 < β ≤ 1/α. In

addition to the general illumination which this direct proof offers, in combination with

Theorem 3.2 it provides an alternative means of establishing that (3.1) implies that SB is

eventually differentiable (although this route only establishes differentiability for t > 2α

rather than for t > α). The proof in [11] did not use Theorem 2.2.

Proposition 3.8. Suppose that T is immediately differentiable and (3.1) holds. Then

(P1/α) holds.

Proof. By Theorem 2.2, there exists c such that Dβ,c ⊆ ρ(A). We may assume that c > 0.

Take λ ∈ Dβ,c with Reλ < −e, and let

a = −Reλ, t =
log a− 1

2 log log a

a
.

If a is sufficiently large, then (3.1) gives

‖AT (t)‖ ≤ c

(
a

log a− 1
2 log log a

)αa/(log a−
1
2 log log a)

.

Hence,

log

(
‖AT (t)‖

eαae−at

)

≤ log c+
αa

log a− 1
2 log log a

log

(
a

log a− 1
2 log log a

)
− αa+ log a− 1

2 log log a

≤ log c− αa

log a− 1
2 log log a− log

(
a

log a−
1
2 log log a

)

log a− 1
2 log log a

+ log a

≤ log c− αa

log

(
log a−

1
2 log log a

(log a)1/2

)

log a
+ log a

≤ log c−
αa

log a
+ log a ≤ − log 2
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for all sufficiently large a. Thus if a is sufficiently large and | Imλ| ≥ eαa, then

‖AT (t)‖ ≤
1

2
eαae−at ≤ 1

2 |λ|e
−at.

It then follows from (2.3) that

‖R(λ,A)‖ ≤M1

(
1 + |λ|e−at eat−1

a
1
2 |λ|e

−at

)

≤ 2M1

(
eat

|λ|
+

a
(log a)1/2

− 1

a

)

≤ 2M1

(
a

(log a)1/2eαa
+

1

(log a)1/2

)
.

This shows that

lim
λ∈D1/α,c

Re λ→−∞

‖R(λ,A)‖ = 0.

Since T is immediately norm-continuous, it follows from (1.2) and the subsequent discus-

sion that

lim
Re λ>−κ
| Im λ|→∞

‖R(λ,A)‖ = 0,

for every κ. Thus (P1/α) is satisfied.

If one merely wishes to establish that (Pβ) holds for β < 1/α, then one may take

t = γ log a
a , where γ < 1, in the proof above.

Renardy’s construction was modified in [11, Theorem 2] to show that (3.1) is sharp as

an estimate for ‖AT (t)‖ which is sufficient to ensure that SB is eventually differentiable, so

the estimate (3.1) is also sharp for the purposes of Proposition 3.8. Another modification

of Renardy’s example given in the proof of [11, Theorem 3] shows that (3.1) does not

imply (Pβ) for β > 16/α. It is clear that the estimates there can be sharpened to replace

16/α by a smaller value, but we have not succeeded in establishing that 1/α is optimal

in Proposition 3.8.

This article is mainly about conditions on A which imply, or are implied by, the

property that SB is immediately differentiable for all B. In applications one may be

interested only in special operators B ∈ B(X), and then one seeks conditions on A (or

T ) and B which imply that SB is differentiable. One such result was obtained by Nagel

and Piazzera [18, Theorem 6.5]. Here, we let

(VBf)(t) =

∫ t

0

T (t− s)Bf(s) ds (t ≥ 0)

for any strongly continuous function f : [0,∞) → B(X). Then VB is a linear operator on

the vector space of all such functions f .

Theorem 3.9 (Nagel and Piazzera [18]). Suppose that there exists n such that V n
B f is

norm-differentiable from [0,∞) to B(X) whenever f : [0,∞) → B(X) is strongly contin-

uous. If T is eventually (resp., immediately) differentiable, then SB is eventually (resp.,

immediately) differentiable.
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4. Delay semigroups. Suppose that A generates a C0-semigroup T on X and Φ :

C([−1, 0], X) → X is a bounded linear operator. It is well known (see [13, Section VI.6],

for a brief account; or any of [10], [14], [25] for fuller accounts with applications) that

there is an associated delay semigroup {VΦ(t) : t ≥ 0} on C([−1, 0], X) whose generator

BΦ is given by

D(BΦ) = {f ∈ C1([−1, 0], X) : f(0) ∈ D(A) and f ′(0) = Af(0) + Φf},

BΦf = f ′.

This semigroup is a tool for studying the delay differential equation

(DDE) u′(t) = Au(t) + Φut (t ≥ 0), u0 = f.

Here, ut is the history function of u given by ut(θ) = u(t+ θ) (t ≥ 0,−1 ≤ θ ≤ 0), and f

is a given initial history. If f ∈ D(BΦ), then there is a unique classical solution of (DDE)

given by

(4.1) u(t) =

{
f(t) (−1 ≤ t ≤ 0),

(VΦ(t)f)(0) (t ≥ 0).

More generally, for any u ∈ C([−1, 0], X), this formula defines the unique mild solution

of (DDE); that is, u satisfies u0 = f and
∫ t

0
u(s) ds ∈ D(A) and

(4.2) u(t) = u(0) + A(

∫ t

0

u(s) ds) +

∫ t

0

Φus ds

for all t ≥ 0.

The semigroup VΦ has the following properties:

(4.3)

(VΦ(t)f)(θ) =

{
f(t+ θ) if t+ θ ≤ 0,

(VΦ(t+ θ))f(0) if t+ θ ≥ 0,

(VΦ(t)f)(0) = T (t)f(0) + (T ∗ ΦVΦ)(t)f

= T (t)f(0) +

∫ t

0

T (t− s)ΦVΦ(s)f ds.

It follows easily from (4.3) that VΦ is eventually norm-continuous if T is immediately

norm-continuous [13, Theorem VI.6.6]. However, VΦ is not immediately norm-continuous,

because it acts as a shift for t+ θ ≤ 0.

The following elementary result shows that eventual differentiability of VΦ corresponds

exactly to the mild solutions of (DDE) becoming classical solutions after a time which is

independent of the initial history f .

Proposition 4.1 ([4]). The following are equivalent:

(i) VΦ is eventually differentiable;

(ii) There exists t0 ≥ 0 such that, for each f ∈ C([−1, 0], X), the unique mild solution

of (DDE) is a classical solution on (t0,∞).

The question of characterizing generators of semigroups with the property that VΦ

is eventually differentiable for every Φ ∈ B(C([−1, 0], X), X) was addressed in [4]. The

following solution is taken from results in [4] together with an earlier result from [7].
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Theorem 4.2. Let A be the generator of an immediately differentiable C0-semigroup T .

The following are equivalent:

(i) There exist γ and β>0 such that ‖R(is, A)‖≤γ|s|−β whenever |s| is sufficiently large;

(ii) There exist c and α > 0 such that ‖AT (t)‖ ≤ ct−α whenever 0 < t ≤ 1;

(iii) VΦ is eventually differentiable whenever Φ ∈ B(C([−1, 0], X), X);

(iv) VΦ is eventually differentiable when Φf = f(−1).

We give only an outline of the proof here, referring the reader to [4] for details. As

noted in Section 2, it was shown in [7] (see also [12]) that (i) implies (ii) and conversely.

It is trivial that (iii) implies (iv).

The proof that (i) implies (iii) uses Theorem 2.2 together with the following well

known description of the resolvent of VΦ [13, Proposition VI.6.7]. Let λ ∈ C. For x ∈ X,

define ελ ⊗ x ∈ C([−1, 0], X) by (ελ ⊗ x)(θ) = eλθx. Define bounded linear operators Φλ

on X and Hλ on C([−1, 0], X) by

Φλ(x) = Φ(ελ ⊗ x),

(Hλf)(θ) =

∫ 0

θ

eλ(θ−τ)f(τ ) dτ.

Now λ ∈ ρ(BΦ) if and only if λ ∈ ρ(A+ Φλ) and then

(4.4) R(λ,BΦ)f = ελ ⊗ (R(λ,A+ Φλ)(f(0) + ΦHλf)) +Hλf.

For appropriate λ, one can use (1.1) to show that λ ∈ ρ(A + Φλ) and to estimate

‖R(λ,A + Φλ)‖. Then one can show that BΦ satisfies (Q1/α,κ,1) for some κ and The-

orem 3.2 implies (iii).

The proof that (iv) implies (ii) uses the following representation of the mild solutions

of (DDE) in the case when Φf = f(−1):

(4.5) u(n + t) =

n∑

r=0

tr

r!
T (t)u(n− r) +

1

n!

∫ t

0

snT (s)g(t− s) ds (n ∈ N, t ∈ [0, 1]).

The assumption in Theorem 4.2 that T is immediately differentiable is used only in

the proof that (iv) implies (i). Indeed, either (i) or (ii) implies that T is immediately

differentiable.

Open Question 4. Does condition (iv) (or (iii)) of Theorem 4.2 imply that T is imme-

diately differentiable?

It is remarkable that in Theorem 4.2, the differentiability of one particular delay

semigroup associated with A implies the eventual differentiability of all of them, even

uniformly for ‖Φ‖ ≤ γ for any γ. This is one reason for thinking that Open Question 3

should have a positive answer.

Delay semigroups provide further examples where eventual differentiability is unstable

under bounded perturbations. Let A be the generator of an eventually differentiable C0-

semigroup and consider the delay semigroup V0 corresponding to Φ = 0. It follows from

Proposition 4.1 that this semigroup is eventually differentiable and from (4.4) that its

generator B0 satisfies ‖R(λ,B0)‖ ≥ e−Re λ. Thus B0 never satisfies (Qβκ0) or (Pβ) for

β > 0 and κ < 1. By Theorem 3.5 there are bounded perturbations of B0 which generate
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semigroups which are not eventually differentiable uniformly in the sense (U2). Then a

direct sum construction if necessary provides an example. Note that when X = C and

A = 0, V0 is the shift semigroup on C[−1, 0] so this construction generalizes [19, p. 1136].

Remark 4.3. There is a theory of delay semigroups based on Lp-spaces (1 ≤ p < ∞)

(see [24], [2], [3], for example). In many applications Φ is not bounded from Lp([−1, 0], X)

to X, but sometimes Φ is bounded from C([−1, 0], X) to X. Suppose that Φ is bounded

from C([−1, 0], X) to X and that there is an associated delay semigroup VΦ on the space

X×Lp([−1, 0], X). For example, this is true whenever Φ is of the form Φf =
∫ 0

−1
dη f for

some function η : [−1, 0] → B(X) of bounded variation [2, Example 3.4], [16, Theorem

1.1]. In this context, Theorem 4.2 remains valid.

5. Asymptotics. Suitable regularity of a C0-semigroup T has the important conse-

quence that the exponential growth bound ω0(T ) of T is determined by the spectral

bound s(A) of A. Here,

ω0(T ) = inf{ω ∈ R : sup
t≥0

‖e−ωtT (t)‖ <∞},

s(A) = sup{Reλ : λ ∈ σ(A)}.

It is well known that s(A) ≤ ω0(T ) in general and that s(A) = ω0(T ) if T is eventu-

ally norm-continuous [13, Corollary IV.3.11] (a more general result can be found in [17,

Corollary 1.4]).

For x ∈ X, let ux(t) = T (t)x (t ≥ 0). The Laplace transform is given by ûx(λ) =

R(λ,A)x for Reλ > ω0(T ). Moreover,

ω0(T ) = sup{ω0(ux) : x ∈ X},

s(A) = sup{hol(ûx) : x ∈ X},
where

ω0(u) = inf{ω ∈ R : sup
t≥0

‖e−ωtu(t)‖ <∞},

hol(û) = inf{ω ∈ R : û has a holomorphic extension to {Reλ > ω}}

(see [1, Sections 1.4, 5.1]). This raises the following question.

Open Question 5. Is it true that ω0(ux) = hol(ûx) for each initial value x ∈ X, if T is

eventually norm-continuous?

We do not know the complete answer to this question. If T is immediately norm-

continuous, then the equality ω0(ux) = hol(ûx) holds for x ∈ D(A) (see Theorem 5.2(2)

below). If T is holomorphic, the equality holds for x ∈ X by general theory of Laplace

transforms [1, Theorems 2.6.2, 5.1.2]. The following more general positive answer is ob-

tained from the theory of the non-analytic growth bound introduced by Blake [6] and

developed in [5].

Theorem 5.1 ([5, Theorem 5.7]). If T is eventually differentiable, then ω0(ux) =

hol(ûx) for all x ∈ X.

We can ask the same question about mild solutions u of (DDE), i.e., functions of the

form u(t) = (VΦ(t)f)(0) (t ≥ 0). The Laplace transform of u is then given by

û(λ) = (R(λ,BΦ)f)(0) = R(λ,A+ Φλ)(f(0) + ΦHλf)).
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Theorem 5.2 ([4, Theorems 3.2, 3.3]).

1. Suppose that there exist β > 0, b > 0 and c > 0 such that is ∈ ρ(A) and

‖R(is, A)‖ ≤ c|s|−β whenever s ∈ R and |s| > b. Then ω0(u) = hol(û) for each

mild solution u of (DDE).

2. Suppose that lim|s|→∞ ‖R(a+is, A)‖ = 0 for some a > ω0(T ). Then ω0(u) = hol(û)

for each classical solution u of (DDE).

The first part of Theorem ?? follows quickly from Theorem 4.2 and Theorem 5.1. The

second part follows from the description of the resolvent of BΦ given in Section 4 and

results in [5]. We refer the reader to [4] for the details.

6. Unbounded perturbations. There are various applications which can be modelled

by semigroups generated by A + B where A is well understood and B is an unbounded

perturbation, or by a delay differential equation of the form (DDE) where the delay oper-

ator Φ is an unbounded operator, but B or Φ is small with respect to A in some sense. For

example, A may be a second-order elliptic differential operator and B or Φ may involve

first-order derivatives. Thus it is important for applications to allow unbounded pertur-

bations or delay operators, and to be able to establish regularity of the solutions, but

there is only a limited theory mainly confined to the case when A generates a holomorphic

semigroup.

There are several generation theorems for unbounded perturbations; a rather compre-

hensive survey account can be found in [13, Sections III.2, III.3]. Some of these theorems

extend Theorem 1.1 by establishing that suitable unbounded perturbations of holomor-

phic semigroups are holomorphic, but otherwise little is known about differentiability

of semigroups generated by unbounded perturbations. When A generates a holomorphic

semigroup and Φ is an unbounded delay operator satisfying some rather restrictive con-

ditions, there are a few results showing that there is an associated delay semigroup which

is eventually differentiable (see [8], [9], [23]) but there is as yet not an extensive general

theory of this topic.

Added Note. Since this article was written, considerable progress has been made with

the Open Questions 1, 2 and 3. Tamás Mátrai has constructed an example of a C0-

semigroup T for which (1.2) holds but T is not immediately norm-continuous, thereby

giving a negative answer to Open Question 1. Positive answers to Open Question 2 and a

slight variant of Open Question 3 have been obtained as a result of work of Philippa Iley

(the variation is that it is assumed that SB is eventually or immediately differentiable

for each compact operator B instead of just for rank one operators).
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