ON THE SPECTRUM AND EIGENFUNCTIONS OF THE OPERATOR $(V f)(x)=\int_{0}^{x^{\alpha}} f(t) d t$

I. Yu. DOMANOV
Institute of Applied Mathematics and Mechanics, NAS of Ukraine Roza-Luxemburg St. 74, Donetsk, 83114, Ukraine E-mail: domanovi@yahoo.com

1. Introduction. It is well known that the Volterra operator $V: f \rightarrow \int_{0}^{x} f(t) d t$ defined on $L^{p}(0,1)(C[0,1])$ is quasinilpotent, that is, $\sigma(V)=\{0\}$. It was pointed out in [5]-[6] that the operator

$$
\begin{equation*}
V_{\phi}: f \rightarrow \int_{0}^{\phi(x)} f(t) d t \tag{1}
\end{equation*}
$$

which is a composition of integration and substitution with $\phi \in C[0,1]$ is quasinilpotent on $C[0,1]$ if $\phi(x) \leq x$ for all $x \in[0,1]$.

Let $\phi:[0,1] \rightarrow[0,1]$ be a measurable function and let $V_{\phi}: L^{p}(0,1) \rightarrow L^{p}(0,1)$ $(1 \leq p<\infty)$ be defined by (1). It was proved in [12]-[13] that V_{ϕ} is quasinilpotent on $L^{p}(0,1)$ if and only if $\phi(x) \leq x$ for almost all $x \in[0,1]$. It was also noted in [13] and proved in [14] that the spectral radius of $V_{x^{\alpha}}$ defined on $L^{p}(0,1)$ or $C[0,1]$ is $1-\alpha$ $(0<\alpha<1)$.

We note also paper [4], where the hypercyclicity of $V_{x^{\alpha}}$ was proved on some Fréchet space.

In this note we find the spectrum of $V_{x^{\alpha}}$ defined on $L^{2}(0,1)$ and investigate some properties of its eigenfunctions.

Notations. Let X be a Banach space and let T be a bounded operator on X. Then $\operatorname{ker} T:=\{x \in X: T x=0\}$ denotes a kernel of T and $\mathrm{R}(T):=\{T x: x \in X\}$ denotes a range of $T . I$ denotes the identity operator on X; $\operatorname{span} E$ denotes the closed linear span of the set $E \subset X ; \mathbb{1}$ denotes the function $f \equiv 1$ in $L^{2}(0,1) ; \mathbb{Z}_{+}:=\{0,1,2, \ldots\}$. For simplicity we set $\sum_{k=n}^{m} a_{k}:=0$ if $n>m$.

[^0]2. Auxiliary results. The following two Lemmas are well known. For the sake of completeness, proofs are given.

Lemma 1. The system $\left\{(\ln x)^{n}\right\}_{n=0}^{\infty}$ is complete in $L^{2}(0,1)$.
Proof. Since the Laguerre functions $f_{n}(x):=e^{-x / 2} \frac{1}{n!} e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)\left(n \in \mathbb{Z}_{+}\right)$form [1] an orthonormal basis in $L^{2}(0, \infty)$, the system $\left\{x^{n} e^{-x / 2}\right\}_{n=0}^{\infty}$ is complete in $L^{2}(0, \infty)$. Let the operator $T: L^{2}(0, \infty) \rightarrow L^{2}(0,1)$ be defined by

$$
(T f)(x):=\frac{f(-\ln x)}{x^{1 / 2}}
$$

It is easily proved that T is a surjective isometry. Thus the system $\left\{T\left(x^{n} e^{-x / 2}\right)\right\}_{n=0}^{\infty}=$ $\left\{(-\ln x)^{n}\right\}_{n=0}^{\infty}$ is complete in $L^{2}(0,1)$.
Remark 1. Consider an operator $C: L^{2}(0,1) \rightarrow L^{2}(0,1)$ defined by $(C f)(x)=f(x)-$ $\int_{x}^{1} \frac{f(t)}{t} d t$. It is well known [2] that C is a simple unilateral shift. Since $\operatorname{ker} C^{*}=\{c \cdot \mathbb{1}$: $c \in \mathbb{C}\}$, it follows [8] that the set $\left\{C^{n} \mathbb{1}\right\}_{n=0}^{\infty}$ forms an orthonormal basis in $L^{2}(0,1)$. It can easily be checked that $\left(C^{n} \mathbb{1}\right)(x)=P_{n}(\ln x)$, where P_{n} is a polynomial of degree n. Thus $L^{2}(0,1)=\operatorname{span}\left\{(\ln x)^{n}: n \geqslant 0\right\}$.

Lemma 2. Let A be a compact operator defined on a Hilbert space $H, A f_{n}=\lambda_{n} f_{n}$ and $\operatorname{span}\left\{f_{n}: n \geqslant 1\right\}=H$. Then

1) $\sigma_{p}(A)=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$;
2) if $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ then for every eigenvalue of A the algebraic multiplicity is equal to one.

Proof. 1) Let $\lambda \in \sigma_{p}(A)$ and $\lambda \neq \lambda_{n}$ for all $n=1,2, \ldots$ Then $\bar{\lambda} \in \sigma_{p}\left(A^{*}\right)$ and hence

$$
\begin{aligned}
H \neq & \left(\operatorname{ker}\left(A^{*}-\bar{\lambda} I\right)\right)^{\perp}=\overline{\mathrm{R}(A-\lambda I)}=\operatorname{span}\left\{(A-\lambda I) f_{n}: n \geqslant 1\right\} \\
& =\operatorname{span}\left\{\left(\lambda_{n}-\lambda\right) f_{n}: n \geqslant 1\right\}=\operatorname{span}\left\{f_{n}: n \geqslant 1\right\}=H
\end{aligned}
$$

This contradiction proves 1).
2) Let $\lambda_{k} \in \sigma_{p}(A)$. Since A is a compact operator and $\operatorname{span}\left\{f_{n}: n \geqslant 1\right\}=H$, we obtain

$$
\begin{gathered}
\operatorname{dimker}\left(A-\lambda_{k} I\right)^{m}=\operatorname{dim} \overline{\mathrm{R}\left(A-\lambda_{k} I\right)^{m}}{ }^{\perp}=\operatorname{dim}\left(\operatorname{span}\left\{\left(\lambda_{n}-\lambda_{k}\right)^{m} f_{n}: n \geq 0\right\}\right)^{\perp} \\
=\operatorname{dim}\left(\operatorname{span}\left\{f_{n}: n \geq 0, n \neq k\right\}\right)^{\perp}=1, \quad m=1,2, \ldots
\end{gathered}
$$

Hence the algebraic multiplicity of λ_{k} is equal to one.
The following Lemma is a rephrasing of Problems I.50, V.161, V. 162 from [9].
Lemma 3. Let $|q|<1$ then

1) $F_{q}(z):=\prod_{k=1}^{\infty}\left(1-q^{k} z\right)=1+\sum_{k=1}^{\infty} \frac{q^{k(k+1) / 2}}{(q-1) \cdots\left(q^{k}-1\right)} z^{k}$ is an entire function.
2) The polynomials $P_{n}(z):=1+\sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{q^{k(k+1) / 2}}{(q-1) \cdots\left(q^{k}-1\right)} z^{k}$ have only real positive zeroes.

3. Main results

Proposition 1. Let $0<\alpha<1$ and $V_{\alpha}:=V_{x^{\alpha}}$ be defined on $L^{2}(0,1)$. Then

1) $\sigma_{p}\left(V_{\alpha}\right)=\left\{(1-\alpha) \alpha^{n-1}\right\}_{n=1}^{\infty}$;
2) the algebraic multiplicity of every eigenvalue of V_{α} is equal to one;
3)

$$
f_{n+1}(x)=x^{\frac{\alpha}{1-\alpha}}\left(\ln ^{n} x+\sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{\alpha^{k(k-1) / 2}(1-\alpha)^{k}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)} \ln ^{n-k} x\right), \quad n \in \mathbb{Z}_{+}
$$

is an eigenfunction for the operator V_{α} with eigenvalue $\lambda_{n+1}:=(1-\alpha) \alpha^{n}$;
4)

$$
g_{n+1}(x)=1+\sum_{k=2}^{\infty}(-1)^{k-1} \frac{\alpha^{(k-1)(k-2-2 n) / 2}}{(1-\alpha) \ldots\left(1-\alpha^{k-1}\right)} x^{\frac{1-\alpha^{k-1}}{(1-\alpha) \alpha^{k-1}}}, \quad n \in \mathbb{Z}_{+}
$$

is an eigenfunction for the operator V_{α}^{*} with eigenvalue $\lambda_{n+1}:=(1-\alpha) \alpha^{n}$.
5) the system $\left\{f_{n}\right\}_{n=1}^{\infty}$ is complete in $L^{2}(0,1)$;
6) the system $\left\{g_{n}\right\}_{n=1}^{\infty}$ is not complete in $L^{2}(0,1)$.
7) the operator V_{α} does not admit a spectral synthesis, i.e. there exists an invariant subspace E such that $\left.V_{\alpha}\right|_{E}$ is quasinilpotent.
Proof. 3) Since $x^{\varepsilon} \ln ^{m} x \in C[0,1]$ for all $\varepsilon>0$ and $m \in \mathbb{Z}_{+}$, we have that $f_{n+1} \in L^{2}(0,1)$. Let us check that $f_{n+1}(x)$ is an eigenfunction of V_{α} corresponding to the eigenvalue $\lambda_{n+1}:=(1-\alpha) \alpha^{n}$. By definition, put

$$
C_{n-k}(\alpha):=\frac{n!}{(n-k)!} \frac{\alpha^{k(k-1) / 2}(1-\alpha)^{k}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)}, \quad \quad k=1 \ldots n
$$

Then

$$
\begin{aligned}
\frac{\alpha}{1-\alpha} C_{n-k}(\alpha) & +(n-k+1) C_{n-k+1}(\alpha)=\frac{n!}{(n-k)!} \frac{\alpha^{(k-1)(k-2) / 2}(1-\alpha)^{k-1}}{(1-\alpha) \ldots\left(1-\alpha^{k-1}\right)}\left(\frac{\alpha^{k}}{1-\alpha^{k}}+1\right) \\
= & \frac{n!}{(n-k)!} \frac{\alpha^{(k-1)(k-2) / 2}(1-\alpha)^{k-1}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)}, \quad k=1 \ldots n .
\end{aligned}
$$

Further,

$$
\begin{equation*}
\alpha x^{\alpha-1} f_{n+1}\left(x^{\alpha}\right)=\alpha x^{\alpha-1}\left(x^{\alpha}\right)^{\frac{\alpha}{1-\alpha}}\left(\ln ^{n} x^{\alpha}+\sum_{k=1}^{n} C_{n-k}(\alpha) \ln ^{n-k} x^{\alpha}\right) \tag{2}
\end{equation*}
$$

$$
=\alpha x^{\alpha-1+\frac{\alpha^{2}}{1-\alpha}}\left(\alpha^{n} \ln ^{n} x+\sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{\alpha^{k(k-1) / 2}(1-\alpha)^{k}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)} \alpha^{n-k} \ln ^{n-k} x\right)
$$

$$
=(1-\alpha) \alpha^{n} x^{\frac{2 \alpha-1}{1-\alpha}}\left(\frac{\alpha \ln ^{n} x}{1-\alpha}+\sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{\alpha^{(k-1)(k-2) / 2}(1-\alpha)^{k-1}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)} \ln ^{n-k} x\right), \quad n \in \mathbb{Z}_{+},
$$

and

$$
\begin{equation*}
f_{n+1}^{\prime}(x)=\frac{\alpha}{1-\alpha} x^{\frac{\alpha}{1-\alpha}-1}\left(\ln ^{n} x+\sum_{k=1}^{n} C_{n-k}(\alpha) \ln ^{n-k} x\right) \tag{3}
\end{equation*}
$$

$$
\begin{gathered}
+x^{\frac{\alpha}{1-\alpha}}\left(\frac{n \ln ^{n-1} x}{x}+\sum_{k=1}^{n-1} C_{n-k}(\alpha) \frac{1}{x}(n-k) \ln ^{n-k-1} x\right) \\
=x^{\frac{2 \alpha-1}{1-\alpha}}\left(\frac{\alpha \ln ^{n} x}{1-\alpha}+n \ln ^{n-1} x\right) \\
+x^{\frac{2 \alpha-1}{1-\alpha}}\left(\sum_{k=1}^{n} \frac{\alpha C_{n-k}(\alpha)}{1-\alpha} \ln ^{n-k} x+\sum_{k=2}^{n} C_{n-k+1}(\alpha)(n-k+1) \ln ^{n-k} x\right) \\
=x^{\frac{2 \alpha-1}{1-\alpha}}\left[\frac{\alpha \ln ^{n} x}{1-\alpha}+\frac{n}{1-\alpha} \ln ^{n-1} x+\sum_{k=2}^{n}\left(\frac{\alpha C_{n-k}(\alpha)}{1-\alpha}+(n-k+1) C_{n-k+1}(\alpha)\right) \ln ^{n-k} x\right] \\
=x^{\frac{2 \alpha-1}{1-\alpha}}\left(\frac{\alpha \ln ^{n} x}{1-\alpha}+\sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{\alpha^{(k-1)(k-2) / 2}(1-\alpha)^{k-1}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)} \ln ^{n-k} x\right), \quad n \in \mathbb{Z}_{+} .
\end{gathered}
$$

It follows from (2)-(3) that $\alpha x^{\alpha-1} f_{n+1}\left(x^{\alpha}\right)=(1-\alpha) \alpha^{n} f_{n+1}^{\prime}(x)$. Thus

$$
\begin{aligned}
& \left(V_{\alpha} f_{n+1}\right)(x)=\int_{0}^{x^{\alpha}} f_{n+1}(t) d t=\int_{0}^{x} \alpha t^{\alpha-1} f_{n+1}\left(t^{\alpha}\right) d t=(1-\alpha) \alpha^{n} \int_{0}^{x} f_{n+1}^{\prime}(t) d t \\
& \quad=(1-\alpha) \alpha^{n}\left(f_{n+1}(x)-f_{n+1}(0)\right)=(1-\alpha) \alpha^{n} f_{n+1}(x), \\
& n \in \mathbb{Z}_{+}
\end{aligned}
$$

4) The convergence of the series

$$
S:=\sum_{k=2}^{\infty} \frac{\alpha^{(k-1)(k-2-2 n) / 2}}{(1-\alpha) \ldots\left(1-\alpha^{k-1}\right)} x^{k-1}, \quad x \in[0,1]
$$

follows from d'Alembert rule. Since $\frac{\alpha^{k-1}-1}{(\alpha-1)\left(\alpha^{k-1}\right)}=\frac{1}{\alpha}+\cdots+\frac{1}{\alpha^{k-1}}>k-1$, we obtain that $x^{k-1}>x^{\frac{\alpha^{k-1}-1}{(\alpha-1)\left(\alpha^{k-1)}\right.}}$ for $x \in[0,1]$. Now the absolute convergence of $g_{n}(x)$ for $x \in[0,1]$ (and hence continuity of g_{n}) is implied by the convergence of S.

Let us check that $g_{n+1}(x)$ is an eigenfunction for the operator V_{α}^{*} with the corresponding eigenvalue $\lambda_{n+1}:=(1-\alpha) \alpha^{n}$:

$$
\begin{gather*}
\left(V_{\alpha}^{*} g_{n+1}\right)(x)=\int_{x^{1 / \alpha}}^{1} g_{n+1}(t) d t \tag{4}\\
=1-x^{1 / \alpha}+\left.\sum_{k=2}^{\infty} \frac{(-1)^{k-1} \alpha^{(k-1)(k-2-2 n) / 2}}{(1-\alpha) \ldots\left(1-\alpha^{k-1}\right)} \frac{(1-\alpha) \alpha^{k-1}}{1-\alpha^{k}} x^{\frac{1-\alpha^{k}}{(1-\alpha) \alpha^{k-1}}}\right|_{x^{1 / \alpha}} ^{1} \\
=(1-\alpha) \alpha^{n} \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \alpha^{k(k-1-2 n) / 2}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)}\left(1-x^{\frac{1-\alpha^{k}}{(1-\alpha) \alpha^{k-1}}}\right)=: \lambda_{n+1}\left(S_{1}-S_{2}\right) \\
=\lambda_{n+1}\left(S_{1}-\left(1-g_{n+1}(x)\right)\right)=\lambda_{n+1}\left(S_{1}-1\right)+\lambda_{n+1} g_{n+1}(x) .
\end{gather*}
$$

By Lemma 3 1)

$$
\begin{equation*}
S_{1}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1} \alpha^{k(k-1-2 n) / 2}}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)}=-\sum_{k=1}^{\infty} \frac{\alpha^{k(k+1) / 2} \alpha^{(-n-1) k}}{(\alpha-1) \ldots\left(\alpha^{k}-1\right)}=-\left(F_{\alpha}\left(\alpha^{-n-1}\right)-1\right)=1 . \tag{5}
\end{equation*}
$$

Combining (4) and (5), we get $\left(V_{\alpha}^{*} g_{n+1}\right)(x)=\lambda_{n+1} g_{n+1}(x)$.
5) It can be proved that $E_{n+1}:=\operatorname{span}\left\{f_{1}, \ldots, f_{n+1}\right\}=\operatorname{span}\left\{x^{\frac{\alpha}{1-\alpha}} \ln ^{k} x: k=0 \ldots n\right\}$. Hence by Lemma 1

$$
E_{\infty}:=\operatorname{span}\left\{f_{k}: k \in \mathbb{Z}_{+}\right\}=\operatorname{span}\left\{x^{\frac{\alpha}{1-\alpha}} \ln ^{k} x: k \in \mathbb{Z}_{+}\right\}=\overline{x^{\frac{\alpha}{1-\alpha}} L^{2}(0,1)}=L^{2}(0,1)
$$

1), 2) follow from 5) and Lemma 2.
6) It follows from Müntz-Szász theorem [7], [11] that the system $\left\{x^{\frac{1-\alpha^{n}}{(1-\alpha) \alpha^{n}}}\right\}_{n=0}^{\infty}$ is not complete in $L^{2}(0,1)$. Since $\operatorname{span}\left\{g_{n}: n \geq 1\right\} \subset \operatorname{span}\left\{x^{\frac{1-\alpha^{n}}{(1-\alpha) \alpha^{n}}}: n \geq 0\right\}$, we have that the system $\left\{g_{n}\right\}_{n=1}^{\infty}$ is not complete in $L^{2}(0,1)$.
7) Let $E=\operatorname{span}\left\{g_{n}: n \geq 1\right\}^{\perp}$. Then $V_{\alpha} E \subset E$ and by 5) the operator $\left.V_{\alpha}\right|_{E}$ is quasinilpotent.
Corollary 1. Let $0<\alpha<1, \phi(x)=1-(1-x)^{1 / \alpha}$. Then the operators $V_{x^{\alpha}}^{*}$ and V_{ϕ} are unitarily equivalent and hence $\sigma_{p}\left(V_{\phi}\right)=\left\{(1-\alpha) \alpha^{n-1}\right\}_{n=1}^{\infty}$.
Proof. Let U be a unitary operator defined by $(U f)(x)=f(1-x)$. Then simple computations show that $V_{x^{\alpha}}^{*}=U^{-1} V_{\phi} U$.
Remark 2. Suppose $\phi(x)=\left(1-(1-x)^{1 / \alpha}\right)^{\prime}$, then $\phi^{\prime}(0)=1 / \alpha$. Thus Corollary 1 states that the condition $\phi^{\prime}(0)=\infty$ is not necessary for $\operatorname{card}\left\{\sigma_{p}\left(V_{\phi}\right)\right\}=\infty$.
REMARK 3. It is interesting to note that if $\phi(\phi(x))=x$ then the operator V_{ϕ} is selfadjoint, and hence eigenfunctions of V_{ϕ} form an orthonormal basis in $L^{2}(0,1)$. The statements 5) and 6) of Proposition 1 imply that the operator V_{α} is not similar and even quasisimilar (see definition in [8], [10]) to V_{α}^{*}. It contrasts to the case $\alpha=1: V^{*}=U^{-1} V U$.

It follows also that V_{α} is not quasisimilar to any selfadjoint operator.
Corollary 2. 1) $f_{n}(x)$ is a continuous function with n real zeroes which belong to $[0,1]$; 2) zeroes of $f_{n}(x)$ and $f_{n+1}(x)$ interlace.

Proof. 1) The continuity of $f_{n}(x)$ was proved in Proposition 1. Let us prove that the function f_{n+1} has $n+1$ zeroes which belong to $[0,1]$. By definition, put

$$
\begin{gathered}
P_{n}(x):=\left(\left.\frac{t^{-\frac{\alpha}{1-\alpha}} f_{n+1}(t)}{\ln ^{n} t}\right|_{t=e^{-\frac{1-\alpha}{\alpha x}}}\right) \\
=\left.\left(1+\sum_{k=1}^{\infty} \frac{n!}{(n-k)!} \frac{\alpha^{k(k-1) / 2}\left(1-\alpha^{k}\right)}{(1-\alpha) \ldots\left(1-\alpha^{k}\right)} \ln ^{-k} t\right)\right|_{t=e^{-\frac{1-\alpha}{\alpha x}}} \\
=1+\sum_{k=1}^{\infty} \frac{n!}{(n-k)!} \frac{\alpha^{k(k+1) / 2}}{(\alpha-1) \ldots\left(\alpha^{k}-1\right)} x^{k} .
\end{gathered}
$$

It can easily be checked that

$$
f_{n+1}(t)=t^{\frac{\alpha}{1-\alpha}} \ln ^{n} t P_{n}\left(\frac{-\alpha}{(1-\alpha) \ln t}\right)
$$

It follows from Lemma 32) that the polynomial P_{n} has exactly n positive zeroes. Thus the function f_{n+1} has $n+1$ zeroes which belong $[0,1]$.
2) Let us note that $\left(x^{n} P_{n+1}\left(x^{-1}\right)\right)^{\prime}=n x^{n-1} P_{n}\left(x^{-1}\right)$. Therefore zeroes of $P_{n}(x)$ and $P_{n+1}(x)$ interlace. Hence zeroes of $f_{n}(x)$ and $f_{n+1}(x)$ interlace.

REmark 4. We suppose that eigenfunctions g_{n} of the operator $V_{x^{\alpha}}^{*}$ have the same properties of zeroes as f_{n}. Namely

1) $g_{n}(x)$ is a continuous function with n real zeroes which belong to $[0,1]$;
2) zeroes of $g_{n}(x)$ and $g_{n+1}(x)$ interlace.

Remark 5. Proposition 1 as well as Corollary 2 hold also if the operator V_{α} is defined on $L^{p}(0,1)(1 \leq p<\infty)$. To prove it one can easily check that the operator V_{α} defined on $L^{2}(0,1)$ is quasisimilar to the operator V_{α} defined on $L^{p}(0,1)$.
Remark 6. It was proved in [4] that V_{α} is hypercyclic on the Fréchet space $C_{0}([0,1]):=$ $\{u \in C([0,1]): u(0)=0\}$, endowed with the system of seminorms

$$
\|u\|_{k}=\max _{t \in[0,1-1 /(k+1)]}|u(t)|, \quad k=1,2, \ldots
$$

If the operator V_{α} is defined on $L^{p}(0,1)(1 \leq p<\infty)$ then $\sigma\left(V_{\alpha}^{*}\right)$ is an infinite set and hence (see [3]) V_{α} cannot be even supercyclic on $L^{p}(0,1)$.

Acknowledgments. I am grateful to Professor J. Zemánek for encouraging me to study the operator $V_{x^{\alpha}}$ and to Professor M. M. Malamud for helpful remarks.

References

[1] G. E. Andrews, R. Askey and R. Roy, Laguerre Polynomials, §6.2 in: Special Functions, Cambridge University Press, 1999, 282-293.
[2] A. Brown, P. R. Halmos and A. L. Shields, Cesáro operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
[3] D. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190.
[4] G. Herzog and A. Weber, A class of hypercyclic Volterra composition operators, Demonstratio Mathematica 39 (2006), 465-468.
[5] Yu. I. Lyubich, Composition of integration and substitution, in: Linear and Complex Analysis Problem Book, Lecture Notes in Math. 1043, Springer, Berlin, 1984, 249-250.
[6] Yu. I. Lyubich, Linear Functional Analysis, Moscow, 1988 (in Russian).
[7] C. Müntz, Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift, Berlin, 1914.
[8] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, Akademiai Kiadó, Budapest, 1970.
[9] G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer, 1972.
[10] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, 1973.
[11] O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), 482-496.
[12] Yu Sun Tong, Quasinilpotent integral operators, Acta Math. Sinica 32 (1989), 727-735 (in Chinese).
[13] R. Whitley, The spectrum of a Volterra operator, Integral Equations Operator Theory 10 (1987), 146-149.
[14] M. Zima, A certain fixed point theorem and its applications to integral-functional equations, Bull. Austral. Math. Soc. 46 (1992), 179-186.

[^0]: 2000 Mathematics Subject Classification: Primary 47A75; Secondary 47A10, 47G10.
 Key words and phrases: eigenvalue, eigenfunction, integral operator.
 This research was partially supported by NAS of Ukraine, Grant \# 0105U006289.
 The paper is in final form and no version of it will be published elsewhere.

