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Abstract. We survey some recent results on functional calculus for generators of holomor-

phic semigroups, which have been obtained using versions of fractional derivation of Riemann-

Liouville or Weyl type. Such a calculus allows us to give tight estimates even in concrete L
1

examples.

1. Introduction. Let A be a closed, not necessarily bounded, operator on a Banach

space X. A functional calculus for A is intended as a method to define, bounded or

unbounded, operators f(A) on X, where f is a function whose domain contains the

spectrum σ(A) of A, so that A is to play formally the role of the natural variable of f .

This idea is useful in several respects. Important notions naturally associated to A, such as

semigroups, resolvent functions, fractional powers, logarithms, spectral families, may be

presented in the form f(A), which facilitates considerably their study, in some directions.

Functions operating in a functional calculus usually satisfy some reproducing formula

suitably adapted to the problem. In a first stage or even in its final form, the calculus is

defined using an operator-valued version of such a formula. A well-known example is the

Dunford-Riesz calculus built on the classical Cauchy formula for holomorphic functions

[HP], [CDMY].

In this paper, we are concerned with the representation of Riemann-Liouville type

(1.1) f(t) =
(−1)[ν]

Γ(ν)

∫ ∞

−∞
(u− t)ν−1

+ f (ν)(u) du, (t ∈ R),
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where ν > 0, [ν] = integer part of ν, (u − t)ν−1
+ = (u − t)ν−1χ(t,∞)(u) if t, u ∈ R, f is

a suitable function on R, and f (ν) is to mean a fractional derivative of f (when ν is an

integer, the formula is obtained just integrating by parts, for suitable f).

The reproducing formula (1.1) has been the basis for theorems on radial multipliers, or

Jacobi and Hankel multipliers, see [CGT1], [T], [GT] and references therein. For certain

operators A the expression Rν−1(u,A) := 1
Γ(ν)(u − A)ν−1

+ makes sense as a bounded

operator on X, which we call the Bochner-Riesz kernel of A. So, replacing t with A in

(1.1) provides us with bounded operators of the form f(A).

An appropriate definition of f (ν) is the following one. If ν = [ν] + δ, 0 < δ < 1, let us

first define

Iδ
ωf(t) :=

(
1

Γ(δ)

∫ ω

t

(s− t)δ−1f(s) ds

)
χ(0,ω)(t),

if ω ≥ 0, t ∈ R; and then the fractional derivatives

f (δ)(t) = − lim
ω→∞

(d/dt)I1−δ
ω f(t),

and

f (ν)(t) = (d/dt)[ν]f (δ)(t),

if t > 0, whenever the right sides exist [T], [CGT].

Let BV1 be the usual class of functions of bounded variation on [0,∞]. For ν > 0

let BVν+1 denote the class of functions in C([0,∞]) for which f (δ), ..., f (ν−1) exist and

are locally absolutely continuous on (0,∞), with f (ν) locally of bounded variation on

(0,∞) and such that
∫ ∞
0
tν |df (ν)(t)| <∞. Then f − f∞ satisfies (1.1) for all f ∈ BVν+1,

where f∞ := limt→∞ f(t). Under pointwise multiplication BVν+1 is a Banach algebra

with respect to the norm Γ(ν + 1)−1
∫ ∞
0
tνdf (ν)(t) + f∞ [T]. For µ ≥ ν ≥ 1 we always

have BVµ ⊂ BVν .

Suppose that A is a closed, densely defined operator on X. In order to give a meaning

to Rν(u,A) it is usually assumed that there is a Hilbert space H on which A acts as

a (formally) self-adjoint operator. Then the spectral theorem guarantees that Rν(u,A)

exists as a bounded operator on H. It is further assumed that H ∩X is dense in H and

X and that the restriction of Rν(u,A) to H ∩X can be extended as a bounded operator

from X into X. In this way we have the following theorem. Let L(X) denote the usual

Banach algebra of bounded operators on X.

Theorem 1.1. Suppose that ‖Rν(u,A)x‖X ≤ Cνu
ν‖x‖X for all u > 0 and x ∈ H ∩X.

Then the correspondence f 7→ f(A), BVν+1 → L(X) defined by

f(A)x := (−1)[ν]+1

∫ ∞

0

Rν(u,A)x df (ν)(u) + f∞Id, (x ∈ X)

is a bounded algebra homomorphism.

This result is given in [BNT, Theorem 2] in terms of spectral multipliers to be found

in approximation processes. The present statement follows readily from observations in

[BNT] and [T]. In the sequel, we will review strengthened versions of the above calculus,

as well as several of their more recent applications.
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2. Holomorphic semigroups. In [dL1], the study of well-bounded operators and C(1)-

scalar operators is approached via functional calculi for generators of holomorphic semi-

groups which are uniformly bounded on the right-hand half-plane C+. In [dL2], well-

boundedness is analysed for generators A of holomorphic semigroups of growth O(|z|)
on r + C+, r > 0, using the inverse Laplace transform of z−2e−zA. Inspired by [dL1], a

fairly general functional calculus is established in [GP], for holomorphic semigroups with

polynomial growth in C+. The construction of such a calculus uses fractional derivation:

Let C∞
c [0,∞) denote the algebra of infinitely differentiable functions on [0,∞) with

compact support. For f in C∞
c [0,∞) let W−νf denote the fractional integral of f of order

ν > 0,

W−νf(t) :=
1

Γ(ν)

∫ ∞

t

(t− s)ν−1f(s)ds, t > 0.

The Weyl fractional derivative W νf of f , of order ν > 0, is then defined by

W νf(t) := (−1)n d
n

dtn
W−(n−ν)f(t), t > 0,

where n is any natural number greater than ν. We have that W νWµf = W ν+µf for

every ν, µ ∈ R. See [SKM] for instance.

The following spaces of absolutely continuous functions of higher (fractional) degree

are defined in [GP], [GMP], see also [T] for the first one. Take ν > 0. By AC(ν) we denote

the Banach space obtained as the completion of C∞
c [0,∞) in the norm

‖f‖(ν) :=
1

Γ(ν)

∫ ∞

0

|W νf(t)|tν−1dt.

The space AC
(ν)
exp is defined analogously to AC(ν) just replacing the weight tν−1 with

the weight eu in the integral. We denote the norm of AC
(ν)
exp by ‖.‖(ν),e. Analogously, let

AC
(ν)
2,1 denote the completion of C∞

c [0,∞) in the norm

‖f‖(ν);2,1 :=

∫ ∞

0

[ ∫ 2y

y

|W νf(x)xν |2 dx
x

]1/2

dy.

As a matter of fact, f (ν), as defined in Section 1, exists for every f in each of the above

spaces. Then we put W νf := (−1)[ν]f (ν).

Among other properties, the spaces AC(ν) and AC
(ν)
2,1 are invariant under the change

of variable t 7→ tθ, θ > 0 [GP, Proposition 3.5 and Proposition 3.9], and AC
(ν+1/2)
exp ⊂

AC(ν+1/2) ⊂ AC
(µ)
2,1 ⊂ AC(µ) if ν > µ > 0 where the inclusions are continuous [GP,

Proposition 3.7]. Moreover, AC
(ν)
exp, AC(ν), if ν ≥ 1, and AC

(ν)
2,1 , if ν > 1/2, are Banach

algebras with respect to pointwise multiplication. This can be proved using a Leibniz

type formula, which seems to be interesting in its own right (see also [T] for AC(ν)). The

formula is

W ν(f.g)(x) = W νf(x) g(x) + f(x)W νg(x)(2.1)

−
∫ ∞

x

∫ ∞

x

(ϕν−1
t,u )′(x)W νf(t) W νg(u) dt du,

for every ν > 0 and f, g in the Schwartz class on [0,∞). Here ϕν
t,u(x) is a certain function
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involving the Gaussian hypergeometric function 2F1. For more details, see [GP, p. 316

and 325], [GMP].

Also, AC(ν) is a closed subalgebra of the algebra BVν formerly considered, for every

ν ≥ 1, such that f∞ = 0 for all f in AC(ν) [GP, Proposition 3.1]. If 1 < µ < ν and f

in BVν is such that f∞ = 0 then Wµf(t) := Γ(ν − µ)−1
∫ ∞

t
(u − t)ν−µ−1 df (ν−1)(u) is

already a function. Therefore f ∈
⋂

µ<ν AC
(µ). Thus we deal with AC(ν) instead of BVν ,

for convenience.

Let (az)ℜz>0 be an analytic C0 semigroup of bounded operators on X with generator

−A. We will assume additionally that the semigroup, or alternatively the operator A,

satisfies property (HGα) for some α ≥ 0:

(HGα) ‖az‖ ≤ Cα

( |z|
ℜz

)α

, (ℜz > 0),

where Cα is some positive constant. (This property has also been considered in relation

with integrated semigroups [ABHN], [E]. It is readily seen that the property implies

σ(A) ⊂ [0,∞).)

Then, if x ∈ X, u ∈ R, and ν > α, the inverse Laplace transform of z−(ν+1)azx,

Gν(u)x :=
1

2πi

∫

ℜz=1

z−(ν+1)euzazxdz,

is well defined in u ∈ R, with Gν(u) ∈ L(X), Gν(u) = 0 if u ≤ 0, and ‖Gν(u)‖ ≤ Cνu
ν if

u > 0. The kernel Gν(u) was introduced in [GP], independently of [dL2]. It allows us to

establish an explicit functional calculus for A in the following terms, see [GP, Theorem

4.1 and Theorem 6.3].

Theorem 2.1. Let A be as above, satisfying property (HGα). For every ν > α, the

formula

Φ(f) =

∫ ∞

0

W ν+1f(u)Gν(u) du

defines a bounded Banach algebra homomorphism Φ : AC(ν+1) → L(X), which is inde-

pendent of ν, such that Φ(AC(ν+1))X is dense in X and Φ(f)A ⊂ AΦ(f) = Φ(g) where

g(u) = uf(u), whenever g, f ∈ AC(ν+1).

In view of the above result, if A is a closed, densely defined operator on X, we say that

A has an AC(ν+1)-calculus, where ν ≥ 0, if there exists a bounded Banach algebra homo-

morphism Ψ : AC(ν+1) → L(X) which satisfies the properties of Theorem 2.2. Clearly, the

AC(ν+1)-calculus defined by Φ looks very much like that given by formula (1.1). Indeed,

both calculi are the same: Taking µ > ν > α, the function f(u) := Γ(µ+ 1)−1(λ− u)µ
+,

u > 0, belongs to AC(ν+1), and it can be seen that Φ(f) = Gµ(λ) [GP, p. 332]. That

is, Gν(u) = Rν(u,A) for all ν > α, u > 0. To complete the picture, note that the ex-

istence of an AC(ν+1)-calculus for an operator A entails the existence of a holomorphic

C0 semigroup az, generated by −A, with property (HGν+1): It is enough to define az as

the image, through such a calculus, of the function u 7→ e−zu, for z ∈ C+. In short, we

have that, for a given closed and densely defined operator A on X, the existence of an

AC(ν+1)-calculus in L(X), the existence of a Bochner-Riesz kernel in L(X) with polyno-

mial growth, and the existence of analytic semigroups in L(X) with property (HGα) are
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equivalent. Nevertheless, there is no exact correspondence between the degree of deriva-

tion of AC(ν+1) and the (polynomial) growth in (HGα), unless the kernel Gν(u) enjoys

some additional properties.

Proposition 2.2 ([GP, Proposition 7.5]). Let A be a closed, densely defined operator on

a Banach space. Let α ≥ 1. Then A has an AC(ν) calculus for every ν > α if and only

if −A generates a holomorphic (C0) semigroup (az)ℜz>0 in L(X) satisfying property

(HGα) and such that, for any ν > α, the kernel Gν(u) is continuously differentiable on

(0,∞) with u1−ν‖ d
duG

ν(u)‖ bounded.

Let us remark that well-boundedness corresponds to the AC(ν+1)-calculus for ν = 0.

In this sense, the above result is an extension of results in [dL2]. Further, the kernel Gν(u)

can be regarded as a “ν-times integrated decomposition of the identity” [GP], [dL2].

Question. Is it possible to develop a consistent theory of ν-times integrated decompo-

sitions of the identity?

The AC(ν+1)-calculus, considered as “well-boundedness of higher degree”, and other

related concepts are approached in detail in [GMM], for special operators.

Remark. Assume now that a semigroup az ≡ e−zA satisfies the following more general

condition than (HGα). This is what we denote by (Gα), where α ≥ 0:

(Gα) sup
ℜz≥1

‖az‖
|z|α <∞.

In this case the kernel Gν(u) is at most exponentially bounded, i.e., ‖Gν(u)‖ ≤ Cνe
u

for u > 0, and the formula Φ(f) =
∫ ∞
0
W ν+1f(u)Gν(u) du defines a functional calculus

Φ : AC
(ν+1)
exp → L(X), for ν > α, which enjoys the properties given in Theorem 2.1.

Moreover, the equality Gν(u) = Rν(u,A) still holds [GP, pp. 327-332].

For a discussion on more variants of properties (Gα) and (HGα) see [GMP, pp. 390 ff.]

3. Davies-Helffer-Sjöstrand calculus. In [D1], a functional calculus has been con-

structed on the basis of the reproducing formula

f(u) =
1

2πi

∫

C

∂f̃

∂z
(z)(z − u)−1dzdz, (u ∈ R),

where f ∈ C
(∞)
c (R) and f̃ is an almost-analytic extension to C of f , of (arbitrarily) fixed

degree m ∈ N, such that
∣∣∂f̃

∂z (z)
∣∣ = O(|ℑz|m) as |ℑz| → 0. For n ∈ N, let An be the

completion of C
(∞)
c (R) with respect to the norm

∫ ∞

−∞
|f(u)|(1 + u2)−1/2 du+

∫ ∞

−∞
|f (n)(u)|(1 + u2)(n−1)/2 du.

Then An is a Banach algebra for pointwise multiplication. Note that An resembles the

algebra AC(n) of Section 2. Clearly, An ⊂ AC(n). An important difference between them

is that An is not homogeneous, that is, it is not invariant under dilations.
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Let A now be a closed, densely defined operator on X with σ(A) ⊂ R. Assume that

the resolvent function of A satisfies

(Rα) ‖(z −A)−1‖ ≤ C
(1 + |z|2)α/2

|ℑz|α+1
,

for every z 6∈ R, where α ≥ 0 is fixed. The Davies calculus is as follows.

Theorem 3.1 ([D1]). Take n > α. Then there exists a well defined, bounded Banach

algebra homomorphism Θ : An+1 −→ L(X) given by

Θ(f) =
1

2πi

∫

C

∂f̃

∂z
(z)(z −A)−1dzdz

for every f ∈ C
(∞)
c (R).

This calculus has received much attention recently. One of its applications is to results

about Lp spectral independence in a variety of examples (see [D2], [GMP] and references

therein).

On the other hand, there is a neat relationship between the calculi Θ and Φ of the

previous section. Both Θ and Φ coincide with the L∞ spectral calculus when A is self-

adjoint on a Hilbert space [D1], [GP]. Property (HGα) implies (Rα) and, reciprocally,

if σ(A) ⊂ [0,∞) then (Rα) implies (Gn+1) for every ε + A, ε > 0, if n > α. So we can

consider, also in this case, the calculus Φ [GMP, p. 392]. Then we have the following.

Theorem 3.2 ([GMP, Theorem 2.1]). Let (az)ℜz>0 be a holomorphic C0 semigroup in

L(X) with infinitesimal generator −A such that σ(A) ⊂ [0,∞). Assume that A satisfies

condition (Rα) for some α ≥ 0. Then Θ(f) = Φ(f) for every f ∈ C
(∞)
c (R).

According to the above result, under assumption (HGα), Θ and Φ are different ex-

pressions of the same concept. The formulation of the calculus in terms of Φ admits an

improvement of the order of derivation which is very convenient for applications.

4. Automatic extension of the AC(ν) calculus. Let (az)ℜz>0 be a holomorphic C0

semigroup in L(X), of generator −A, with property (HGα), α ≥ 0. For t ∈ R and f in

C
(∞)
c (R) we define aitΦ(f) := Φ(e−it(·)f). For r > 0, u ≥ 0, µ = ν+(1/2) and ν > α, the

operator aitGµ(u) := 1
2πi

∫
ℜz=r

z−(µ+1)az+it euz dz does not depend on r. Then aitΦ(f)

can be written as the limit in the operator norm, as h→ 0+, of the operators

aitΦh(f) :=
1

h

∫ ∞

0

[Wµf(u) −Wµf(u+ h)] aitGµ(u) du

=
1

2π

∫ ∞

−∞

ar+i(rs+t)

rµ−1(1 + is)µ

∫ 1

0

e−λhr(1+is)dλ ĝ(−rs) ds,

where ĝ denotes the Fourier transform of the function g(u) = Wµf(u)e(r/2)uχ[0,∞)(u)

for u ∈ R. By applying the Cauchy-Schwarz inequality and the Plancherel formula, and

taking the infimum we get

‖aitΦh(f)‖ ≤ C(1 + t2)
α
2 inf

r>0

(1 + r2)
α
2

rν+α

( ∫ ∞

0

|W ν+ 1
2 f(u) eru|2 du

) 1
2

.
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Dividing (0,∞) into intervals [2k, 2k+1), the above infimum can be suitably estimated so

that, as h→ 0+, we finally obtain

(4.1) ‖aitΦ(f)‖ ≤ C(1 + t2)
α
2

∫ ∞

0

[ ∫ 2y

y

|W ν+ 1
2 f(u)uν(1 + u2)

α
2 |2 du

] 1
2 dy

y
.

If t = 0 in the previous argument, then we get the better estimate

‖Φ(f)‖ ≤ C inf
r>0

r−ν

( ∫ ∞

0

|W ν+ 1
2 f(u)eru|2 du

) 1
2

≤ C

∫ ∞

0

[ ∫ 2y

y

|W ν+ 1
2 f(u) uν |2 du

] 1
2 dy

y
.

(See [GMP, pp. 399, 400], [GP, pp. 330, 341] for the above calculations.) Thus we derive

Theorem 4.1 ([GP, Theorem 6.4]). Assuming that A satisfies the hypothesis (HGα),

the calculus Φ is in fact a bounded Banach algebra homomorphism Φ : AC
(ν+ 1

2
)

2,1 → L(X),

given by

Φ(f) = lim
h→0+

1

h

∫ ∞

0

W ν+ 1
2 f(u)

Gν+ 1
2 (u− h) −Gν+ 1

2 (u)

h
du,

for every f ∈ C
(∞)
c (R), and provided that ν > α.

(It is possible to prove a similar result to Theorem 4.1 when the operator A is assumed

to have property (Gα) [GP, p. 329], [GMP, p. 399].)

From now on we will use also f(A) to refer to the calculus Φ.

5. Fractional powers and some estimates. As said before, the algebra AC
(ν+ 1

2
)

2,1 is

invariant under the action of the isomorphisms u 7→ uθ, θ > 0, on (0 ,∞) (thus, in the

sequel, the symbol f(A) includes general expressions of the form g(Aθ)). In particular,

the fractional powers Aθ with θ > 0 can be defined in a fairly simple way for an operator

A with property (HGα) [GP, pp. 342-344]. We can choose, for instance, to introduce

−Aθ as the infinitesimal generator of the holomorphic semigroup ez,θ(A) where ez,θ(u) =

exp(−zuθ), u > 0,ℜz > 0. Then this semigroup satisfies (HGν+(1/2)) for all ν > α.

This definition enjoys all good properties that a fractional power is expected to have,

and coincides with other standard or usual definitions (under diverse hypotheses). As a

remarkable example, we get that A1/2 equals the square root
√
A of A when A is the

Laplacian operator ∆n := − ∂2

∂x2
1

− ∂2

∂x2
2

− · · · − ∂2

∂x2
n

on R
n.

In fact, the example of Laplacian shows that Theorem 4.1 is the best we can obtain

concerning the degree of derivation of operating functions: It is well known that −∆n

generates the Gauss heat semigroup in L1(Rn) given by convolution with the function

gz(x) = (4πz)−n/2e−‖x‖2/(4z), (x ∈ Rn; z ∈ C+). Further, (gz)ℜz>0 is a holomorphic C0

semigroup which satisfies (HGn/2). Similarly, −
√

∆n generates the Poisson semigroup

in L1(Rn), defined by convolution with the function pz(x) = cn z(z2 + ‖x‖2)−(n+1)/2,

(x ∈ Rn; z ∈ C+), where cn = Γ((n + 1)/2) π−(n+1)/2. Also, (pz)ℜz>0 is a holomorphic

C0 semigroup which satisfies (HGαn
) with αn = (n − 1)/2, for n ≥ 2. Suppose, if

possible, that in Theorem 4.1 the degree of derivation could be improved up to ν + β,
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where ν > α and 0 ≤ β < 1/2. Then, applying the theorem to A =
√

∆n and the

function ez,2, we would obtain that the Gaussian semigroup e−z∆n = ez,2(
√

∆n) satisfies

(HGγ) for all γ = ν + β such that ν > αn. In particular we could take γ such that

(n− 1)/2 + β < γ < n/2. But this is known to be false [ABHN, p. 176].

Besides the above examples, there exist many other heat semigroups in Lp-spaces,

generated by Laplacians or sub-Laplacians on certain Riemann manifolds and Lie groups,

satisfying condition (HGα) [D1], [D2], [D], [P], [T], [GMP]; see also [EK] in connection

with integrated cosine functions. (Thus all the results stated in this section, and in sections

below, are applicable to these examples.) We have just seen that the AC
(µ)
2,1 calculus for ∆n

on Rn can be improved in 1/2 order of derivation via the usage of the operator
√

∆n and

composition with the mapping u 7→ u2. This is also the case for a suitable sub-Laplacian

on the Heisenberg group Hn, see [MS], [GMP, p. 409], [GMM]. Since this fact implies the

degree of differentiability which is the appropriate one in multiplier theorems, we find

the following question interesting.

Question. Let −A be a sub-Laplacian operator on a Lie group G whose generated heat

semigroup satisfies condition (HGα), for some α > 1/2. What kind of assumptions on A

and/or G ensure that the semigroup generated by −
√
A enjoys property (HGα−(1/2))?

Pure imaginary powers of type e−itA are related to ill-posed Cauchy problems [dL3].

The estimate (4.1) gives us immediately the following.

Proposition 5.1 ([GMP, Theorem 3.3]). Suppose that A has property (HGα), for some

α > 0. Let t ∈ R. Then e−itAf(A) ∈ L(X) and

‖e−itAf(A)‖ ≤ C(1 + t2)
α
2

∫ ∞

0

[ ∫ 2y

y

|W ν+ 1
2 f(u)uν(1 + u2)

α
2 |2 du

] 1
2 dy

y

for every f ∈ AC
(ν+ 1

2
)

2,1 , whenever ν > α.

The proposition extends results of [JN], see also [dL3]. More special expressions of the

form e−itAf(A) appear in multiplier theory, or in connection with integrated semigroups,

or arise from Cauchy equations.

Corollary 5.2 ([GMP, Corollary 3.5]). If ℜν > α,

(i) eitHH−νϕ(H) ∈ L(X) and ‖eitHH−νϕ(H)‖ ≤ Cν(1 + |t|α), for each t ∈ R and

ϕ in C(∞)(R) such that ϕ(u) = 0 if u < 1
2 and ϕ(u) = 1 if u > 1.

(ii) Iν
t (H) :=

∫ t

0
(t− s)ν−1eisHds ∈ L(X) and ‖Iν

t (H)‖ ≤ Cνt
ℜν , for t ≥ 0.

(iii) eitH(1 +H)−ν ∈ L(X) and ‖eitH(1 +H)−ν‖ ≤ Cν(1 + t2)
α
2 , for each t ∈ R.

(iv) (sin tH)H−1(1 +H)−ν+1 ∈ L(X) and, for every t ∈ R and 0 < ε < ℜν,

‖(sin tH)H−1(1 +H)−ν+1‖ ≤
{
Cν |t|(1 + |t|ℜν−1) if ℜν > 1 or ν = 1,

Cν,ε|t|ℜν(1 + |t|−ε) if 0 < ℜν ≤ 1, ν 6= 1.

The proof of the above estimates is not difficult, but requires some subtle calculation,

in particular concerning the case (iv) [GMP, p. 402].

Some interesting semigroups satisfy (Gα) but not (HGα) [M]. In this situation Corol-

lary 5.2 does not work as it stands, but it is still possible to obtain estimates in terms of

integrals with respect to polynomial weights [GMP].
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6. Integral representations of Besov spaces. Assume, once again, that az =

e−zA has property (HGα). Take ψ in C
(∞)
c (R) with support in (2−1, 2), such that∑∞

j=−∞ ψ(2−ju) ≡ 1 and then define ψj(u) = ψ(2−ju) for j = 1, 2, . . . , ψ0 = 1−∑∞
j=1 ψj .

For j ≥ 0, let ψj(A) be in L(X) as defined by the calculus established in Theorem 4.1

(or Theorem 2.1). If θ > 0 and 1 ≤ q ≤ ∞, let Bθ,q(X;A) define the Besov space on X

associated to A as the subspace of X formed by vectors x such that

‖x‖θ,q :=
( ∞∑

j=0

2jθq‖ψj(A)x‖q
)1/q

<∞.

Then ‖x‖θ,q is a norm for which Bθ,q(X;A) becomes a Banach space (if q = ∞ the sum

in j must be replaced with supj≥0 2jθ‖ψj(A)x‖). The space Bθ,q(X;A) does not depend

on (ψj)j , subject to certain conditions. This definition is in [P], [Tr] for an operator A

with Bochner-Riesz kernels such that supu>0 u
−α‖Rα(u,A)‖ < ∞. It includes quite a

number of interesting examples.

Theorem 6.1 ([G]). If m > θ, ν > α and f ∈ AC
(ν+(1/2))
2,1 ⊕ C is such that u−mf(u) ∈

AC
(ν+ 1

2
)

2,1 , then the Besov space Bθ,q(X;A) coincides with the subspace of X formed by

the vectors x such that ∫ ∞

0

t−θq‖f(tA)x‖q dt

t
<∞.

Moreover, the following norms are all equivalent in Bθ,q(X;A).

(1)
( ∞∑

j=0

2jθq‖ψj(A)x‖q
)1/q

where (ψj)
∞
j=0 is as above.

(2) ‖x‖ +

( ∫ ∞

0

t−θq‖f(tA)x‖q dt

t

) 1
q

.

(3) ‖x‖ +

( ∫ ∞

0

t−θq sup
0≤s≤t

‖f(sA)x‖q dt

t

) 1
q

.

Remarks. (i) The theorem also holds for q = ∞. In this case the norms given by

Lq-integrals with respect to the measure dt/t need to be replaced with the sup-norm

on t > 0, as usual. Originally, the theorem is proved in [G] under the assumption that

A is an operator for which the Bochner-Riesz kernels satisfy supu>0 u
−α‖Rα(u,A)‖ <

∞, but the arguments work exactly equal for semigroups with (HGα). The proof of

the theorem follows standard ideas, and mainly relies on the sub-homogeneity of the

functional calculus. As a consequence of the theorem, we have that the norms (1) – (3)

are interpolation norms [BB].

(ii) Through an obvious, suitable choice of functions f ∈ AC
(ν+ 1

2
)

2,1 , Theorem 6.1 yields

the following equivalent norms in the Besov space (up to addition of ‖x‖):

•
( ∫ ∞

0

t−θq‖(e−t
√

A − I)mx‖q dt

t

)1/q

, for m > θ;

•
( ∫ ∞

0

(tm−θ‖(
√
A)me−t

√
Ax‖)q dt

t

)1/q

, for m > θ;
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•
( ∫ ∞

0

(tm− θ
2 ‖Ame−tAx‖)q dt

t

)1/q

, for m > θ/2,

and similar others.

These are norms usually considered in definitions of Besov spaces. The fact that all

of them are equivalent is well known for the Laplacian A = ∆n on X = Lp(Rn), for

example, but it is not clear in general. Further, when such an equivalence holds, then it

is shown using ad hoc methods [CS], [JN], [S], [G] and references therein. In this way,

Theorem 6.1 unifies and extends quite a number of results in the literature.

(iii) With some more work it is possible to give another equivalent norm in compact,

integral form:
( ∫ ∞

0

t(m−θ)q‖(I +A)me−tAx‖qe−t dt

t

) 1
q

,

where m > θ. This extends analogous results for ∆n on R
n [F], and for sub-Laplacians

on stratified groups [S].

7. Sectorial operators. The calculus Φ can be approximated by standard holomorphic

functional calculus, see [GP, p. 328]. Next, we will see another form of such a relationship.

For τ such that 0 < τ < π, set Sτ = {λ ∈ C \ {0} : | arg(λ)| < τ}, where arg(λ) is the

argument of λ which takes values in [−π, π). Let H∞(Sτ ) be the usual Banach algebra of

bounded analytic functions on Sτ . Let Ab(Sτ ) denote the Banach subalgebra of H∞(Sτ )

formed by the functions which are also continuous on Sτ \ {0}. Set ψ(λ) := λ(1 + λ)−2,

if λ ∈ Sτ . For δ > 0, we define Aδ
0(Sτ ) as the subalgebra of all functions f of Ab(Sτ )

for which f(λ)ψ−δ(λ) → 0 as |λ| → ∞ or |λ| → 0. Put DR(Sτ ) :=
⋃

δ>0 Aδ
0(Sτ ),

F(Sτ ) :=
⋃

δ>0 ψ
−δ · Ab(Sτ ). Certainly, DR(Sτ ) ⊂ H∞(Sτ ) ⊂ F(Sτ ).

Recall that a closed, one-to-one, operator A with dense domain and dense range in

a Banach space X is said to be sectorial of type ρ if σ(A) ∈ Sρ and, for every τ > ρ,

‖(z −A)−1‖ ≤ Cτ |z|−1 whenever z ∈ C \ Sτ . Then the Dunford-Riesz integral defines an

algebra homomorphism from DR(Sτ ) into L(X), which can be extended from F(Sτ ) into

the linear space C(X) of closed operators on X. The resulting mapping, say Υ, becomes

a functional calculus in a precise sense [CDMY]. In general the H∞ calculus Υ provides

us with operators which are not necessarily bounded. When a sectorial operator A is of

type 0 the existence of the (bounded) H∞-calculus H∞(Sτ )
Υ→ L(X) is characterized in

terms of Mikhlin-Hörmander multipliers as follows.

For α > 0, let Λα
∞,1(R

+) denote the Besov space formed by all bounded continuous

functions F on R+ such that ‖F‖Λα
∞,1

<∞, where

‖F‖Λα
∞,1

= ‖F‖∞ +

∞∑

k=−∞
2|k|α‖Fe ∗ φ̌k‖∞.

Here, Fe(s) := F (es), s ∈ R, and {φk}k is a suitable family of functions in Cc(R), see

[CDMY, p. 73]. The space Λα
∞,1(R

+) is a Banach algebra for pointwise multiplication.

Theorem 7.1 ([CDMY, Theorem 4.10]). Let A be a sectorial operator of type 0. Then

the following are equivalent.
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(i) A admits a bounded H∞ calculus Υ on Sτ for all τ > 0, and there exist α,C > 0

such that

‖Υ(f)‖ ≤ Cτ−α‖f‖∞, τ > 0, f ∈ H∞(Sτ ).

(ii) There exists a bounded algebra homomorphism Λα
∞,1(R

+) −→ L(X) .

This result is used in [D] to establish Mikhlin-Hörmander multiplier theorems in

Lp(G) with 1 < p <∞, for sub-Laplacians on homogeneous, nilpotent Lie groups G. The

proof uses that the semigroup generated by the sub-Laplacian in L1(G) satisfies condition

(HGα) for certain α > 0. Let us now assume that −A generates a semigroup in L(X) with

(HGα). Then, for n > α and z /∈ R, ‖(z−A)−1‖ = ‖Φ((z−u)−1)‖ ≤ C‖((z−u)−1‖(n+1) =
1
n!

∫ ∞
0
un|z − u|−(n+2) du = |z|−1(n!)−1

∫ ∞
0
sn|s − ei arg(z)|−(n+2)ds ≡ C|z|−1. Hence, A

is sectorial. Note that Theorem 7.1 does not hold in this case, in general (since there is

no Mikhlin-Hörmander multiplier results on L1). Nevertheless, it is possible to establish

a result somehow similar to Theorem 7.1, as we will explain later on.

The link between (i) and (ii) in Theorem 7.1 is given by the inclusion H∞(Sτ ) →֒
Λα
∞,1(R

+), which can be derived from the Paley-Wiener theorem. We now look at this

inclusion more closely. Suppose that h is a locally integrable function on R+ for which the

derivative h(α) (of Introduction) exists. Let M(α)
∞ denote the completion of C(∞)(R+) in

the norm ‖h‖∞,α := ‖h‖∞ + ‖tαh(α)(t)‖∞, see [CGT] for similar spaces and comments

about them. Using the Leibniz rule (2.1) we find that M(α)
∞ is a Banach algebra with

respect to pointwise multiplication. The connection of these algebras and those of abso-

lutely continuous functions of Section 2 is given by the fact that fg ∈ M(α)
2,1 for every

f ∈ M(α)
∞ and g ∈ M(α)

2,1 whenever α > 1/2. Here M(α)
2,1 is formed by all functions g of

AC
(α)
2,1 such that

∫ ∞
0

(
∫ 2t

t
|f(s)|2(ds/s))1/2(dt/t) <∞.

Proposition 7.2 ([GM2]). Let β > α > 0 and let 0 < τ < π. Then

Ab(Sτ ) →֒ Mβ
∞ →֒ Λα

∞,1(R
+) →֒ Mα

∞,

where the inclusions are continuous. In the first one, the inequality ‖h‖∞,(β)≤ Cτ−β‖h‖∞
holds, for every h ∈ Ab(Sτ ).

The first inclusion relies on a sort of Cauchy formula for fractional derivatives. The

second and third inclusions can be established appealing to the fractional Hadamard

operator
(
u d

du

)α
.

It has been pointed out in [GM1] that the, generally unbounded, operators obtained

from the H∞ calculus can always be regarded as regular quasimultipliers in the sense

defined in [Es]. Going through the main aspects of quasimultiplier theory would take

us too far here. So we next give only a partial statement. Details of proofs are rather

involved. They will appear in a forthcoming paper.

Let Φ0 denote the restriction mapping of Φ to M(ν+ 1
2
)

2,1 . Let define az
0 := Φ0(e

z
0),

where ez
0(u) = uze−zu for u ∈ R and z ∈ C+. Then az

0 is a holomorphic semigroup

in L(X). Put X0 := ∪ℜz>0az
0X in X. Then we define a Banach space Y0 by a certain

“extrapolation” method so that Y0 contains X0 densely. On the other hand, since M(α)
2,1 is
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an M(α)
∞ -module we can extend the homomorphism Φ0 to the algebra M(α)

∞ . Altogether,

we get the following.

Theorem 7.3. Let −A be the generator of a semigroup (az)ℜz>0 with (HGα), α > 0,

and let X0 be as above. Then there exists a Banach space Y0 with X0 = Y0 for which

H∞(Sτ ) →֒M
(ν+ 1

2
)

∞
Φ0−→ L(Y0)

is a bounded homomorphism such that

(i) ‖Φ0(h)‖ ≤ Cν,ατ
−(ν+ 1

2
)‖h‖∞, for every h ∈ H∞(Sτ ), 0 < τ < π and ν > α.

(ii) Φ0((z + · )−1) = (z +A)−1 for every z ∈ C \ [0,∞).

We can apply the above result to sub-Laplacians onX = Lp(G), whereG is a nilpotent

group, for p = 1. If 1 < p < ∞, the theorem given in [D] is better: Y0 can be replaced

with X itself in the statement (though ν + (1/2) must be changed by ν + 1 then). The

proof in [D] depends heavily on the structure of Lp spaces on G, 1 < p < ∞. It would

be very interesting to understand the mechanism through which Y0 can replace X in the

above example. More generally,

Question. Under suitable geometric assumptions on X, is it possible to derive Theo-

rem 7.3 with X instead of Y0 in the statement?

8. Integrated semigroups. Weyl fractional derivation, as defined in Section 2, is well

behaved in connection with pointwise multiplication, recall the Leibniz type formula (2.1).

There is an analogous formula for the convolution product. This is

Γ(α)Wα(f ∗ g)(s) =

∫ s

0

Wαg(r)

∫ s

s−r

(t+ r − s)α−1Wαf(t)dt dr

−
∫ ∞

s

Wαg(r)

∫ ∞

s

(t+ r − s)α−1Wαf(t)dt dr,

where α > 0, s > 0, and f, g ∈ C
(∞)
c [0,∞) [M1]. Then the integral qα(f) :=∫ ∞

0
|Wαf(u)|uα du defines a norm such that qα(f ∗ g) ≤ Cαqα(f)qα(g) for every f, g ∈

C
(∞)
c [0,∞). Let T (α) denote the Banach algebra obtained as the completion of C

(∞)
c [0,∞)

in this norm.

We define a distribution semigroup of order α and growth uα to be any bounded

algebra homomorphism Θ : T (α) → L(X) such that Θ(T (α))X = X [M2], [GM1].

A family (Tα(t))t>0 in L(X) is said to be an α-times integrated semigroup if Tα(0) = 0

and

Tα(t)Tα(s) =
1

Γ(α)

( ∫ t+s

s

−
∫ t

0

)
(t+ s− r)α−1Tα(r) dr,

for every s, t ≥ 0. We say that Tα(t) is of growth tα if ‖Tα(t)‖ ≤ Ctα, for every t > 0

[AK], [H].

Distribution semigroups and integrated semigroups have been introduced to deal with

non-bounded operators appearing in ill-posed Cauchy problems. It has been proved that

distribution semigroups of integer order n and growth un and n-times integrated semi-

groups of growth tn coincide [AK], see also [dL3]. This equivalence has been extended to

fractional order in [M2].
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Theorem 8.1. Distribution semigroups of order α and growth uα are in bijective cor-

respondence with α-times integrated semigroups of growth tα. Such a bijection is imple-

mented by the formula

Θ(f)x =

∫ ∞

0

Wαf(t)Tα(t)xdt (x ∈ X; f ∈ T (α)),

where Θ is the distribution semigroup corresponding to the integrated semigroup Tα(t)

and viceversa.

Remarks. (1) Theorem 8.1 is given in [M2] in a fairly more complete and general form.

In particular the theorem holds for a class of weights quite larger than uα, so that it also

extends the results of [W] for the exponential case.

(2) It is known that there are also theories about distribution groups and integrated

groups. The theorem above also holds in this context [M2], [GM1]. The theory developed

in [GM1] enphasizes distribution groups and integrated groups regarded as quasimulti-

pliers.

References

[AK] W. Arendt and H. Kellerman, Integrated solutions of Volterra integro-differential equa-

tions and applications, in: Integrodiff. Eq., Proc. Conf. Trento 1987, G. Da Prato and

M. Iannelli (eds.), Pitman Res. Notes Math. 190, Longman, Harlow 1987, 21–51.

[ABHN] W. Arendt, C. J. K. Batty, M. Hieber and Neubrander, Vector-valued Laplace Trans-

forms and Cauchy Problems, Monographs in Math. 96, Birkhäuser, 2001.
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[GM2] J. E. Galé and P. J. Miana, H
∞ calculus and Mikhlin-type multiplier conditions,

Canadian J. Math., to appear.
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