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1. Introduction. The aim of this note is to present a simple and elegant approach to

the von Neumann Theorem in relation to contributions by Professors J. Dugundji and

A. Granas [9, 10]. The M. Sion [25] generalization of the minimax theorem to quasicon-

cave/convex functions can be formulated as a Nonlinear Alternative [1], which turns out

to be equivalent to the Dugundji–Granas version of the KKM Principle, the Browder–Ky

Fan Fixed Point Theorem, and a Coincidence Principle for dual Ky Fan type set-valued

maps. We include what we believe is the most elementary proof of Maurice Sion’s version

of the minimax theorem based on a theorem of C. Berge [4] equivalent to a Helly type

result of V. Klee [15] on the intersection of a family of convex sets. This proof could

easily be discussed in a first course in game theory for students whose background does

not go much further than a very basic knowledge in linear algebra, advanced calculus,

real analysis, and optimization.

2. From Ville to Sion: alternatives and minimax. In the May 14, 1928, session of

the Académie des Sciences de Paris, Émile Borel presented a note of John von Neumann

entitled Sur la théorie des jeux [18] announcing—without proof—the solution of the finite

two-player, zero-sum game problem. (The note appeared a month later in the proceedings

of the June 18 session.)

The problem has been posed and treated between 1921 and 1927 by Borel in a series

of notes in the Comptes rendus [5, 6, 7] as well as in his book Eléments de la théorie des
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probabilités [8]. Émile Borel was indeed the first to describe games in a strategic form as

follows:

A two-player, zero-sum game is a triplet (X, Y, f) where X, Y are the sets of strategies

for player 1 and player 2 respectively, and f : X × Y −→ R is a so-called payoff function

that player 1 attempts to maximize and player 2 tries to minimize (players are assumed to

have strictly opposed interests). Each player aims at choosing security strategies, which

for player 1 are of maxmin type: the number α := maxX minY f(x, y) represents his

guaranteed minimal gain; while for player 2, they are of minmax type: the number β :=

minY maxX f(x, y) being his guaranteed maximal loss.

It is easily seen that always, α ≤ β. When equality holds, the common value α = β is

known as the value of the game.

In [5, 6, 7], Émile Borel computed “by hand” minimax strategies for games with

strategy sets having cardinalities 3 and 5 and announced that his constructive method

would not carry to games with strategy sets having 7 or more elements. He also posed the

problem as to whether or not games with arbitrary numbers of (finite) strategies always

had a value. The problem he posed was precisely as follows.

Given sets of possible actions M := {1, . . . , M} for player 1, and N := {1, . . . , N} for

player 2. To each i ∈ M , j ∈ N are associated probabilities xi, yj respectively (xi, yj ≥ 0,
∑

xi = 1 =
∑

yj). The payoff function is bilinear in x = (xi) and y = (yj):

f(x, y) :=
M
∑

i=1

N
∑

j=1

aijxiyj .

Does it always hold:

α = max
X

min
Y

f(x, y) = min
Y

max
X

f(x, y) = β? (1)

Von Neumann’s theorem [18, 19] was an affirmative answer to Borel’s question. This

theorem will turn out to be the starting point of the theory of strategic games as a

distinct discipline. The theory soon moved on to games with n players, non-constant

sums of payoffs, then to infinitely many players, etc . . . .

Von Neumann provided a first proof based on the reduction to the cases of 2 and 3

players in Mathematische Annalen later in 1928 [19] and presented in 1932 at Menger’s

Colloquium in Vienna a second proof—based on Brouwer’s fixed point theorem—of a

closely related result on the existence of an economic equilibrium [20]. Although very

elegant, both proofs constitute a challenging read, well beyond expectations for students

in a first Game Theory course. John von Neumann did not publish on this topic for a

decade, keeping himself busy with extensive work in functional calculus, computation

theory, quantum mechanics, and with his involvement in the Manhattan Project. He was

eventually persuaded by the economist Oskar Morgenstern to return his attention to

game theory in Princeton during the autumn of 1940.

It is important to point out that the proof of the minimax theorem that von Neu-

mann and Morgenstern chose to include in their celebrated book Theory of Games and

Economic Behavior [AAA] was due to Jean-André Ville, a former pupil of Émile Borel(1).

(1) It is interesting to note that not a single reference to Borel’s pioneering work is made by
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Indeed, Ville edited Borel’s lecture notes on psychological games Traité du calcul des

probabilités et de ses applications (Paris, Gauthier–Villars, Tome IV, Fasc. 2, 1938). In

an appendix to the Traité a note appears entitled Sur la théorie générale des jeux où

intervient l’habileté des joueurs where Ville provides a remarkably simple proof of von

Neumann’s minimax theorem as well as a generalization to continuous strategy sets,

and for the first time, outlines the importance of convexity in the existence of minimax

solutions (see Theorem 1 below). This connection to convex sets will subsequently be

exploited by many authors (S. Kakutani, J. Nash, etc . . . ) as to become fundamental in

the evolution of the theory into a branch of modern mathematics.

A number of generalizations of von Neumann’s theorem were published in the years fol-

lowing the end of World War II by M. Shiffman [24] (extension to concave-convex function,

1949), H. Weyl [27] (1950), H. Kneser [17] (extension to concave-convex semi-continuous

functions, 1952), Ky Fan [11] (concave-convex semi-continuous functions, 1953), and

C. Berge [3] (concave-convex semi-continuous functions, 1954). In 1954 H. Nikaidô [23]

used the Brouwer fixed point theorem to extend the result to quasiconcave-convex con-

tinuous functions, and in 1958, M. Sion [25] explicitly, and for the first time, used

the Knaster–Kuratowski–Mazurkiewicz (KKM) theorem [16] to derive a minimax for

quasiconcave-convex and upper-lower- semi-continuous. Our focus in what follows shall

be on this extension of the von Neumann theorem.

Let us start by pointing out that the key result of Ville’s paper (Theorem in [26]) (from

which the von Neumann theorem readily derives) can be stated as a linear alternative:

Theorem 1 (Ville’s Linear Alternative). Let Rn
+ be the non-negative cone in the Eu-

clidean space Rn, let ∆ be the standard simplex in Rp, and let {f1, . . . , fp} be any given

collection of linear forms on Rn. Then the following alternative holds:

A) there exists x̄ ∈ Rn
+ such that

∑p
j=1 yjfj(x̄) < 0, for every y = (y1, . . . , yp) ∈ ∆;

or

B) there exists ȳ = (ȳ1, . . . , ȳp) ∈ ∆ such that
∑p

j=1 ȳjfj(x) ≥ 0 for every x ∈ Rn
+.

Much in the same spirit, Maurice Sion’s generalization of the minimax theorem—a

significant extension to nonlinear payoff functions—derives from a nonlinear alternative

for quasiconvex-concave functions.

Definition 2. A real function f : X −→ R defined on a subset X of a topological

vector space is:

(i) quasiconvex if for each λ ∈ R, the level set {x ∈ X : f(x) ≤ λ} is a convex subset

of X;

(ii) lower semicontinuous (l.s.c.) if for each λ ∈ R, the level set {x ∈ X : f(x) ≤ λ}

is a closed subset of X.

f is quasiconcave if −f is quasiconvex; it is upper semicontinuous (u.s.c.) if −f is l.s.c.

Note that f is quasiconvex on X if and only if f(µx1 + (1 − µ)x2) ≤ max{f(x1), f(x2)}

von Neumann and Morgenstern; an early sign of a controversy that would become public in

1953 with the English translation in the journal Econometrica of the three early papers of Borel

together with an introduction and commentaries by Maurice Fréchet [12] and a communication

by John von Neumann [21] (see Ben-El-Mechaiekh and Dimand [2]).
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for all x1, x2 ∈ X and all µ ∈ [0, 1]; and that the upper envelope sup{fi : i ∈ I} of a

family of quasiconvex (respectively, l.s.c.) functions is quasiconvex (l.s.c., respectively).

The key observation leading to the Sion–von Neumann theorem is the following al-

ternative:

Theorem 3 (A Nonlinear Alternative [1]). Let X and Y be two convex subsets of topo-

logical vector spaces and let f̃ , f, g, g̃ : X × Y −→ R be four functions satisfying:

(i) f̃(x, y) ≤ f(x, y) ≤ g(x, y) ≤ g̃(x, y), for all (x, y) ∈ X × Y ;

(ii) y 7→ f̃(x, y) is lower semicontinuous on Y , for each fixed x ∈ X;

(iii) x 7→ f(x, y) is quasiconcave on X, for each fixed y ∈ Y ;

(iv) y 7→ g(x, y) is quasiconvex on Y , for each fixed x ∈ X;

(v) x 7→ g̃(x, y) is upper semicontinuous on X, for each fixed x ∈ X.

If Y is compact, then for any λ ∈ R, the following alternative holds:

A) there exists x̄ ∈ X such that g̃(x̄, y) ≥ λ, for all y ∈ Y

or

B) there exists ȳ ∈ Y such that f̃(x, ȳ) ≤ λ, for all x ∈ X.

In case λ = 0 and X = Rn
+ and Y = ∆, clearly a compact set, we obtain a slightly

weaker version of Ville’s linear alternative with f(x, y) = f̃(x, y) = g(x, y) = g̃(x, y) =

−
∑p

j=1 yjfj(x) a bilinear form in the variables (x, y = (yj)) ∈ Rn
+ × ∆.

Corollary 4. The Nonlinear Alternative above is equivalent to

α̃ = sup
X

inf
Y

g̃(x, y) ≥ inf
Y

sup
X

f̃(x, y) = β̃.

Proof. One readily verifies that if α̃ ≥ β̃ and thesis (A) in Theorem 3 fails, then ∃ȳ ∈ Y

such that supX f̃(x, ȳ) ≤ λ and (B) is thus satisfied. Conversely, assume that α̃ < β̃ < ∞.

Let λ be an arbitrary but fixed real number strictly between α̃ and β̃. By the Nonlinear

Alternative, either there exists ȳ ∈ Y such that f̃(x, ȳ) ≤ λ, for all x ∈ X thus β̃ ≤ λ < β̃

which is impossible, or there exists x̄ ∈ X such that g̃(x̄, y) ≥ λ, for all y ∈ Y thus

α̃ ≥ λ > α̃ which is absurd. Hence α̃ ≥ β̃.

Maurice Sion’s formulation of the minimax theorem follows immediately with f̃ =

f = g = g̃:

Theorem 5 (Theorem 3.4 in [25]). Let X and Y be convex subsets of topological vector

spaces, with Y compact, and let f be a real function on X × Y such that :

(i) x 7→ f(x, y) is quasiconcave and upper semicontinuous on X, for each fixed y ∈ Y ;

(ii) y 7→ f(x, y) is quasiconvex and lower semicontinuous on Y , for each fixed x ∈ X.

Then (1) holds, i.e.,

α = max
X

min
Y

f(x, y) = min
Y

max
X

f(x, y) = β.

Proof. If f̃ = f = g = g̃, then α̃ = α := infY supX f(x, y), β̃ = β := supX infY f(x, y).

Since the inequality α ≤ β is always true, it follows that α = β.

A simple proof of the Sion theorem was recently provided by J. Kindler [14]. We end

this section with a simpler and very elementary proof based on the following result of

Claude Berge.
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Lemma 6 (Berge [4]). Let C and C1, . . . , Cn be closed convex sets in a Euclidean space

satisfying:

(i) C ∩
n
⋂

i=1,i 6=j

Ci 6= ∅ for any j = 1, 2, . . . , n;

(ii) C ∩
n
⋂

i=1

Ci = ∅.

Then C *
n
⋃

i=1

Ci.

Proof of the Nonlinear Alternative when f̃ = f = g = g̃. For simplicity, we limit ourselves

to the setting of the Sion theorem with f̃ = f = g = g̃. Assuming that the Nonlinear

Alternative does not hold, i.e., both (A) and (B) fail, amounts to assuming that the

sets X and Y can be covered by the collections of open level sets {Uy := {x ∈ X :

f(x, y) < λ} : y ∈ Y } and {Ox := {y ∈ Y : f(x, y) > λ} : x ∈ X} respectively.

Y being compact, it can be covered by a finite subcollection {Oxk
: k = 1, . . . , m}. The

convex hull C := Conv{xk : k = 1, . . . , m} lies in a finite-dimensional subspace L of the

linear topological space containing X and is compact; thus, it can be covered by a finite

subcollection {Uyi
: i = 1, . . . , n}. One can drop elements of {yi : i = 1, . . . , n} as to

make the cover {Uyi
} minimal, in the sense that C ⊆

n
⋃

i=1

Uyi
but C *

n
⋃

i=1,i 6=j

Uyi
for

any j = 1, . . . , n. For any i = 1, 2, . . . , n, let Ci := {x ∈ L : f(x, yi) ≥ λ}, a convex and

compact subset of L. The fact that C is covered by {Uyi
} is precisely the emptiness of the

intersection C ∩
n
⋂

i=1

Ci. The minimality of {Uyi
} is nothing else than C ∩

n
⋂

i=1,i 6=j

Ci 6= ∅

for any j = 1, 2, . . . , n. By Lemma 6, there exists x0 ∈ C with f(x0, yi) < λ for all

i = 1, 2, . . . , n. The quasiconvexity of f(x0, .) implies that

∃x0 ∈ C such that f(x0, y) < λ for all y ∈ D := Conv{yi : i = 1, . . . , n}.

A similar argument yields

∃y0 ∈ D such that f(x, y0) > λ for all x ∈ C.

Thus,

λ < f(x0, y0) < λ,

a contradiction.

Lemma 6 is equivalent to the Preliminary result in V. L. Klee Jr. [15]. For the sake

of completeness, we reproduce Klee’s simple proof based on the separation of convex

compact sets by a hyperplane in Euclidean spaces (this separation property is commonly

taught at the beginning of a first course on continuous optimization).

Proof of Lemma 6. One may assume with no loss of generality that C and the Ci’s

are compact (otherwise, replace C by the convex finite polytope C ′ := Conv{yj :

j = 1, . . . , n}, yj ∈ C ∩
n
⋂

i=1,i 6=j

Ci, and Ci by C ′
i := Ci ∩ C ′). The proof is by induc-

tion on n. If n = 1, (i) asserts that C is non-empty and (ii) that C and C1 are disjoint.

Thus, clearly C * C1.
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Suppose Lemma 4 holds for n = k − 1 and consider the case n = k, i.e., C, {Ci}
k
i=1 is

a collection of compact convex sets such that C ∩
k
⋂

i=1,i 6=j

Ci 6= ∅, for all j = 1, . . . , k and

(C∩Ck)∩
k−1
⋂

i=1

Ci = ∅. The disjoint compact convex sets (C∩Ck) and
k−1
⋂

i=1

Ci can be strictly

separated by a hyperplane H. Putting C ′ := H∩C and C ′
i := H∩Ci, it follows at once that

C ′∩
k−1
⋂

i=1

C ′
i = ∅. Moreover, for a given arbitrary j0 ∈ {1, . . . , k−1}, let y0 ∈ C∩

k
⋂

i=1,i 6=j0

Ci,

thus y0 ∈ C ∩ Ck, and let yk ∈ C ∩
k−1
⋂

i=1

Ci be arbitrary. Clearly, the points y0 and yk are

strictly separated by H. The intersection z̄ of the line segment [y0, yk] with H belongs

to C as well as to
k−1
⋂

i=1,i 6=j0

Ci. j0 being arbitrary, hypotheses (i) and (ii) are verified for

the collection C ′, {C ′
i}

k−1
i=1 . By induction hypothesis, C ′ = H ∩C *

k−1
⋃

i=1

Ci =
k−1
⋃

i=1

Ci ∩H.

Since (H ∩ C) ∩ Ck = ∅, it follows that H ∩ C *
k
⋃

i=1

Ci ∩ H, thus C *
k
⋃

i=1

Ci.

3. Nonlinear alternative, KKM, coincidence and fixed points: a circular tour.

We proceed now to show that the Nonlinear Alternative (in its generality) is equivalent

to the KKM theorem and to a coincidence theorem of Ky Fan type. But first we recall

the basic ingredients and key results.

Definition 7. Given an arbitrary subset X of a real vector space E, a set-valued map

Γ : X −→ 2E is said to be KKM if for every finite subset A := {x1, . . . , xn} ⊆ X

Conv(A) ⊂
n
⋃

i=1

Γ (xi). (2)

Theorem 8 (Dugundji–Granas KKM Theorem [9, 10, 13]). Let Γ, Γ̃ : X −→ 2E be two

set-valued maps defined on an arbitrary subset X of a real topological vector space E and

verifying :

(i) Γ is a selection of Γ̃ (i.e., Γ (x) ⊆ Γ̃ (x) for all x ∈ X);

(ii) Γ is a KKM map;

(iii) all values of Γ̃ are closed and at least one is compact ;

(iv)
⋂

x∈X

Γ̃ (x) 6= ∅ ⇒
⋂

x∈X

Γ (x) 6= ∅.

Then
⋂

x∈X

Γ (x) 6= ∅.

Given two non-empty subsets X and Y in topological vector spaces, let us say that:

Definition 9 ([1]). A set valued map A : X −→ 2Y is a Φ-map (written A ∈ Φ(X, Y ))

if and only if:

(i) A−1(y) is convex in X for all y ∈ Y ;

(ii) A has a multivalued selection with open values and non-empty fibers, i.e., A(x) ⊇

Ã(x) open in Y for all x ∈ X, and Ã−1(y) 6= ∅ for all y ∈ Y .
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A map B : X −→ 2Y is a Φ∗-map if and only if its inverse B−1 : Y −→ 2X is a

Φ-map.

Theorem 10 (A Coincidence Principle [1]). Let A ∈ Φ(X, Y ) and B ∈ Φ∗(X, Y ) where

X and Y are non-empty convex subsets of topological vector spaces. If Y is compact, then

there exists (x0, y0) ∈ X × Y such that

y0 ∈ A(x0) ∩ B(x0).

This coincidence principle can be seen as a fixed point theorem for the composition

of the two Φ-maps B−1 ◦ A : X −→ 2X through the compact convex set Y . This fixed

point principle also holds for one Φ-map:

Theorem 11 (The Browder–Ky Fan Fixed Point Theorem [1]). If A ∈ Φ∗(X, Y ) (equi-

valently A ∈ Φ(X, Y )) where X is a convex compact subset of a topological vector space,

then A has a fixed point x0 ∈ A(x0).

We are ready to formulate the main theorem of this paper.

Theorem 12 (A Circular Tour). The Nonlinear Alternative
1
⇒ The Coincidence Princi-

ple
2
⇒ The Browder–Ky Fan Fixed Point Theorem

3
⇒ The Brouwer Fixed Point Theorem

4
⇒ The Dugundji–Granas KKM Theorem

5
⇒ The Nonlinear Alternative.

Proof. (1) The Nonlinear Alternative ⇒ The Coincidence Principle.

Assume that the hypotheses of the Coincidence Principle hold. Define the functions

f̃ , f, g, g̃ : X × Y −→ R as:

f̃(x, y) :=

{

0 if y /∈ Ã(x)

1 if y ∈ Ã(x)
f(x, y) :=

{

0 if y /∈ A(x)

1 if y ∈ A(x)

g(x, y) :=

{

0 if y ∈ B(x)

1 if y /∈ B(x)
g̃(x, y) :=

{

0 if y ∈ B̃(x)

1 if y /∈ B̃(x).

It is obvious that for all (x, y) ∈ X × Y , we have f̃(x, y) ≤ f(x, y) and that g(x, y) ≤

g̃(x, y) and that hypotheses (ii) to (v) of the Nonlinear Alternative hold. The assumptions

B̃(x) 6= ∅ for all x ∈ X and Ã−1(y) 6= ∅ for all y ∈ Y are equivalent to the failure of

conclusions (A) and (B) of the Nonlinear Alternative. Necessarily hypotheses (i) of the

alternative must fail! More precisely, the inequality

f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y

fails.

That is:

0 = g(x0, y0) <
1

2
< f(x0, y0) = 1 for some (x0, y0) ∈ X × Y,

which is equivalent to y0 ∈ A(x0) ∩ B(x0).

(2) The Coincidence Principle ⇒ The Browder–Ky Fan Fixed Point Theorem.

The proof of this implication is, as far as we can tell, new (but more convoluted than

that of the converse); it proceeds in three steps.
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The first step is to reduce the Browder–Ky Fan fixed point theorem to finite dimension

by using a standard selection argument (see [1]).

Indeed, given a map A ∈ Φ∗(X, Y ), where X is compact and Y is convex, each

in a topological vector space, the fact that A(x) 6= ∅ for all x ∈ X implies that the

collection O := {A−1(y) : y ∈ Y } of open subsets of X forms a cover of X. By com-

pactness, X can be covered by a finite subcollection Of := {A−1(yi) : i = 1, . . . , n}. Let

{λi : X −→ [0, 1]}n
i=1 be a continuous partition of unity subordinated to the finite

cover Of and define a continuous single-valued mapping s : X −→ Y by

s(x) :=

n
∑

i=1

λi(x)yi, a convex combination ∀x ∈ X.

Since, for any given x ∈ X, λi(x) 6= 0 ⇒ x ∈ A−1(yi) ⇔ yi ∈ A(x) ⇒ s(x) ∈ A(x)

because A(x) is convex, the mapping s is:

• a continuous selection of A, and

• finite-dimensional, because s(X) ⊆ C = Conv{y1, . . . , yn} a convex finite-dimen-

sional polytope ⊆ Y .

Now if X = Y , the restriction/compression map Af := A|C ∩ C : C −→ 2C defined

by

Af (x) = A(x) ∩ C ∀x ∈ C

is certainly a Φ∗-map (∀x, y ∈ C, A−1
f (y) is open in X, thus open in C, moreover s(x) ∈

Af (x) 6= ∅ and Af (x) is convex). It is clear that a fixed point for Af is also a fixed

point for A. The Browder–Ky Fan fixed point theorem has thus been reduced to convex

finite-dimensional polytopes.

The second step consists in showing that in finite dimension, the Coincidence Principle

implies a coincidence result between a single-valued mapping and a Φ-map, more precisely:

Proposition 13. Let C be a convex compact subset in a Euclidean space Rm, let f :

C −→ C be a single-valued continuous mapping, and let A ∈ Φ(C). Then, there exists

x0 ∈ C with

f(x0) ∈ A(x0).

The proof of this Proposition requires

Lemma 14. Given a continuous function f : C −→ Y from a compact metric space

C into a convex subset Y of a normed space, for any ǫ > 0, there exists a Φ∗-map

Φǫ : C −→ 2Y such that

f(x) ∈ Φǫ(x) ⊂ Bǫ(f(Bǫ(x))) ∀x ∈ C,

where, for a given set Z, Bǫ(Z) denotes the ǫ-open ball around Z.

Proof. This lemma says that every continuous function f on a compact set admits a

Φ∗-majorant that is within an ǫ-tubular neighborhood of the graph of f . It is a converse

to the selection property for Φ∗-maps discussed above. Its proof is as follows.

By continuity, for all x ∈ C there exists δx ∈ (0, ǫ) with f(Bδx
(x)∩C) ⊂ Bǫ(f(x))∩Y .

Let {Bδxi
(xi) ∩ C : i = 1, . . . , p} be a finite cover of the compact set C, and for each
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x ∈ C, let I(x) := {i ∈ {1, . . . , p} : x ∈ Bδxi
(xi)} be the set of essential indices of x w.r.t.

the open cover. Define the map Φǫ by setting

Φǫ(x) :=
⋂

i∈I(x)

(Bǫ(f(xi)) ∩ Y ) ∀x ∈ C.

Clearly, the values of Φǫ are convex non-empty and its graph is open (indeed, for each

x ∈ C, the open set
⋂

i∈I(x)

(Bδxi
(xi) ∩C)×Φǫ(x) is a neighborhood of {x} ×Φǫ(x)), thus

Φǫ has open fibers, thus Φǫ ∈ Φ∗(C, Y ). By definition, f(x) ∈ Φǫ(x) ⊂ Bǫ(f(Bǫ(x))) for

all x ∈ C.

Proof of Proposition 13. Let f : C −→ C be continuous, A ∈ Φ(C), and let s : C −→ C

be a continuous selection of the map A−1 ∈ Φ∗(C) and, for a fixed but arbitrary ǫ > 0,

let Φǫ, Ψǫ : C −→ 2C be the two Φ∗ enlargements of f and s provided by Lemma 14, i.e.

f(x) ∈ Φǫ(x) ⊂ Bǫ(f(Bǫ(x))) ∀x ∈ C, (3)

s(y) ∈ Ψǫ(y) ⊂ Bǫ(s(Bǫ(y))) ∀y ∈ C.

By the Coincidence Principle, there exists (xǫ, yǫ) ∈ C × C with

yǫ ∈ Φǫ(xǫ) ∩ Ψ−1
ǫ (xǫ).

By compactness, as ǫ → 0, a subnet of (xǫ, yǫ) converges to some (x0, y0) in C × C.

Since f and s are continuous, inclusions (3) imply that x0 = s(y0) ∈ A−1(y0) and

y0 = f(x0).

The last step, in order to establish the Browder–Ky Fan fixed point theorem in finite

dimension, simply consists in taking, in Proposition 13, f = IdC , the identity mapping.

(3) The Browder–Ky Fan Fixed Point Theorem ⇒ The Brouwer Fixed Point Theorem.

Let C be a non-empty convex compact subset of Rn and let f : C −→ C be a

continuous mapping. Let ϕ(x, y) := 〈y − f(y), y − x〉 and define a map A : C −→ 2C by

A(x) := {y ∈ C : ϕ(x, y) > 0}, x ∈ C.

The fibers A−1(y) of A are obviously convex due to the linearity of x 7→ ϕ(x, y), and

the images A(x) of A are open due to the continuity of y 7→ ϕ(x, y). Assume that A is

surjective. Then it is a Φ-map with Ã = A, and must have a fixed point x0 ∈ A(x0) by

the Browder–Ky Fan fixed point theorem. But this is impossible as ϕ(x0, x0) = 0. Hence,

A is not surjective:

∃ȳ ∈ C with A−1(ȳ) = ∅, i.e. 〈ȳ − f(ȳ), ȳ − x〉 ≤ 0 x ∈ C,

in particular for x = f(ȳ). This ends the proof as 0 ≤ ‖ȳ − f(ȳ)‖2 ≤ 0, i.e. ȳ = f(ȳ).

(4) The Brouwer Fixed Point Theorem ⇒ The Dugundji–Granas KKM Theorem.

Observe first that since all values of Γ̃ are closed and that at least one—say Γ̃ (x̄)—is

compact, then the inclusion
⋂

x∈X

Γ̃ (x) ⊆ Γ̃ (x̄) implies that it suffices for the conclusion of

Theorem 8 to hold, that the family {Γ̃ (x) : x ∈ X} has the finite intersection property,

that is
n
⋂

i=1

Γ̃ (xi) 6= ∅ for any finite subset {x1, . . . , xn} of X. Assume for a contradiction
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that there exists a finite subset {x1, . . . , xn} of X such that
n
⋂

i=1

Γ̃ (xi) = ∅. Let C :=

Conv{x1, . . . , xn} and, for each i = 1, . . . , n, consider the closed set Fi = C ∩ Γ̃ (xi).

If d is the Euclidean metric on the finite-dimensional space spanned by {x1, . . . , xn},

then d(x, Fi) = 0 ⇔ x ∈ Fi. Since
n
⋂

i=1

Fi = ∅, it follows that the function µ : C −→ R

defined by µ(x) :=
∑n

i=1 d(x, Fi) is positive for each x ∈ C. Define a continuous mapping

f : C −→ C by setting

f(x) :=
1

µ(x)

∑

d(x, Fi)xi, x ∈ C.

By the Brouwer fixed point theorem, f has in C = Conv{x1, . . . , xn} a fixed point

x0 = f(x0). Since Γ is KKM, it follows that x0 ∈
n
⋃

i=1

Γ (xi) ⊆
n
⋃

i=1

Γ̃ (xi).

(5) The Dugundji–Granas KKM Theorem ⇒ The Nonlinear Alternative.

Step 1. For simplicity, consider first the case of the nonlinear alternative with both

X and Y convex compact. Define set-valued maps F, F̃ : X −→ 2Y and G, G̃ : Y −→ 2X

by:

F (x) := {y ∈ Y : f(x, y) > λ}, F̃ (x) := {y ∈ Y : f̃(x, y) > λ},

G(y) := {x ∈ X : g(x, y) < λ}, G̃(y) := {x ∈ X : g̃(x, y) < λ}.

Clearly, F̃ (x) ⊆ F (x) for all x ∈ X, and G̃(y) ⊆ G(y) for all y ∈ Y .

Case 1. F̃ is not surjective or G̃ is not surjective.

Case 2. Both F̃ and G̃ are surjective.

In Case 1 the Nonlinear Alternative holds (indeed, conclusion (B) of the alternative

corresponds to “F̃ is not surjective”, whereas the statement “G̃ is not surjective” is

precisely conclusion (A)).

It remains to show that Case 2 yields a contradiction.

Define Γ, Γ̃ : X × Y −→ 2X×Y by

Γ (x, y) := (X × Y ) \ (G(y) × F (x)) and Γ̃ (x, y) := (X × Y ) \ (G̃(y) × F̃ (x)).

Observe that

F̃ and G̃ are both surjective ⇔
⋂

(x,y)∈X×Y

Γ̃ (x, y) = ∅, (4)

which implies that hypothesis (iv) of Theorem 8 is vacuously true.

Also, F̃ and G̃ being both surjective implies that both F and G are surjective, which

in turn amounts to saying that
⋂

(x,y)∈X×Y

Γ (x, y) = ∅, i.e. the conclusion of the KKM

Principle does not hold. This implies that Γ is not KKM, i.e. (4) is not satisfied: there

exists a convex combination (x0, y0) =
n
∑

i=1

λi(xi, yi) with

(x0, y0) /∈
n
⋃

i=1

Γ (xi, yi) ⇔ (x0, y0) ∈
n
⋂

i=1

(G(yi) × F (xi))

⇔ (yi, xi) ∈ G−1(x0) × F−1(y0) ∀i ∈ {1, . . . , n}.
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Since G−1(x0) × F−1(y0) is a convex subset of Y × X, it follows that (y0, x0) ∈

G−1(x0) × F−1(y0), that is

g(x0, y0) < λ < f(x0, y0).

This contradicts g(x0, y0) ≥ f(x0, y0) and ends the proof.

Step 2. We show now that if the nonlinear alternative holds with X, Y both con-

vex compact, then it holds with X, Y both convex but only Y compact. Assume that

alternative (B) fails, i.e.

∀y ∈ Y ∃x ∈ X with f̃(x, y) > λ,

which amounts to saying that the collection of open subsets {{y ∈ Y : f̃(x, y)>λ} : x ∈ X}

forms an open cover of Y . Since Y is compact, it can be covered by a finite subcollection

{{y ∈ Y : f̃(xi, y) > λ} : x1, . . . , xn ∈ X}. The convex hull C := Conv{x1, . . . , xn} is

a convex compact subset of X. Theorem 3 applied to the restrictions f, f̃ , g, g̃ to C × Y

yields the nonlinear alternative:

A)C there exists x̄ ∈ C such that g̃(x̄, y) ≥ λ for all y ∈ Y

or

B)C there exists ȳ ∈ Y such that f̃(x, ȳ) ≤ λ for all x ∈ C.

Obviously, if A)C holds, then alternative A) in Theorem 3 holds and we are done. It

remains to show that B)C fails. Indeed, B)C implies that f̃(xi, ȳ) ≤ λ for all i = 1, . . . , n;

this contradicts the fact that Y =
n
⋃

i=1

{y ∈ Y : f̃(xi, y) > λ} and ends the proof.

Remark 15. The proofs of the first two implications above are new. The proofs of the

last three are essentially due to Dugundji and Granas (see [9, 10, 13]).
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multivoques II (applications de type ϕ et ϕ
∗), C. R. Acad. Sci. Paris Sér. I Math. 295 (1982),

381–384.

[2] H. Ben-El-Mechaiekh, R. Dimand, Von Neumann, Ville, and the Minimax Theorem,

STOREP Conference on the History of Decision Theory, Siena, June 2005.
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