
FIXED POINT THEORY AND ITS APPLICATIONS

BANACH CENTER PUBLICATIONS, VOLUME 77

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2007

NIELSEN FIXED POINT THEORY

AND SYMPLECTIC FLOER HOMOLOGY

ALEXANDER FEL’SHTYN

Instytut Matematyki, Uniwersytet Szczeciński

ul. Wielkopolska 15, 70-451 Szczecin, Poland

and

Boise State University

1910 University Drive, Boise, Idaho, 83725-155, USA

E-mail: felshtyn@diamond.boisestate.edu, felshtyn@mpim-bonn.mpg.de

Abstract. We describe a connection between Nielsen fixed point theory and symplectic

Floer homology for surfaces. A new asymptotic invariant of symplectic origin is defined.

1. Introduction. In the dimension two a diffeomorphism is symplectic if it preserves

the area. As a consequence, the symplectic geometry of surfaces lacks many interesting

phenomena which are encountered in higher dimensions. For example, two symplectic

automorphisms of a closed surface are symplectically isotopic iff they are homotopic, by

a theorem of Moser[19]. On the other hand, symplectic fixed point theory is very non-

trivial in dimension 2, as it is shown by the Poincaré–Birkhoff theorem. It is known that

symplectic Floer homology on surface is a simple model for the instanton Floer homology

of the mapping torus of the surface diffeomorphism [21].

In this article we prove the following result: Let M be a compact connected surface

of Euler characteristic χ(M) < 0. If φ is a non-trivial orientation preserving periodic

diffeomorphism ofM or φ is a diffeomorphism of finite type with only isolated fixed points,

then φ is monotone with respect to some φ-invariant area form on M and HF∗(φ) ∼=
Z
N(φ)
2 , dimHF∗(φ) = N(φ), where N(φ) denotes the Nielsen number of φ and HF∗(φ)

denotes symplectic Floer homology group.

We also define asymptotic invariant of monotone symplectomorphism.

The author came to the idea that Nielsen numbers are connected with Floer homology

of surface diffeomorphisms at the Autumn 2000, after conversations with Joel Robbin and

Dan Burghelea. I am very grateful to Dietmar Salamon who sent me handwritten notes

of Wu-Chung Hsiang paper A speculation on Floer theory and Nielsen theory and to
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Wu-Chung Hsiang, Jarek Kędra, François Laudenbach, Kaoru Ono, Yuli Rudyak, Andrei

Tyurin and Vladimir Turaev for very useful discussions of symplectic Floer homology.

2. Symplectic Floer homology

2.1. Monotonicity. In this section we discuss the notion of monotonicity as defined in

[21, 8]. Monotonicity plays important role for Floer homology in two dimensions. For a

more detailed account we refer to the original articles of P. Seidel and R. Gautschi.

Throughout this article, M denotes a closed connected and oriented 2-manifold of

genus ≥ 2. Pick an everywhere positive two-form ω on M .

Let Symp(M,ω) denote the group of symplectic automorphisms of the two-dimen-

sional symplectic manifold (M,ω) and φ ∈ Symp(M,ω). The mapping torus of φ, Tφ =

R×M/(t+1, x) ∼ (t, φ(x)), is a 3-manifold fibered over S1 = R/Z. There are two natural

second cohomology classes on Tφ, denoted by [ωφ] and cφ. The first one is represented by

the closed two-form ωφ which is induced from the pullback of ω to R×M . The second is

the Euler class of the vector bundle

VφR× TM/(t+ 1, ξx) ∼ (t, dφxξx),

which is of rank 2 and inherits an orientation from TM .

A symplectomorphism φ ∈ Symp(M,ω) is called monotone, if

[ωφ] = (areaω(M)/χ(M)) · cφ

in H2(Tφ; R); throughout this article Sympm(M,ω) denotes the set of monotone sym-

plectomorphisms.

Now H2(Tφ; R) fits into the following short exact sequence [21, 8]

0 −→
H1(M ; R)

im(id−φ∗)
d
−→ H2(Tφ; R)

r∗
−→ H2(M ; R) −→ 0. (1)

where the map r∗ is restriction to the fiber. The map d is defined as follows. Let ρ : I → R

be a smooth function which vanishes near 0 and 1 and satisfies int10 ρ dt = 1. If θ is a

closed 1-form on M , then ρ · θ∧dt defines a closed 2-form on Tφ; indeed d[θ] = [ρ · θ∧dt].

The map r : M →֒ Tφ assigns to each x ∈M the equivalence class of (1/2, x). Note that

r∗ωφ = ω and r∗cφ is the Euler class of TM . Hence, by (1), there exists a unique class

m(φ) ∈ H1(M ; R)/ im(id−φ∗) satisfying

dm(φ) = [ωφ]− (areaω(M)/χ(M)) · cφ,

where χ denotes the Euler characteristic. Therefore, φ is monotone if and only ifm(φ) = 0.

We recall the fundamental properties of Sympm(M,ω) from [21, 8]. Let Diff+(M)

denote the group of orientation preserving diffeomorphisms of M .

(Identity) idM ∈ Sympm(M,ω).

(Naturality) If φ ∈ Sympm(M,ω), ψ ∈ Diff+(M), then ψ−1φψ ∈ Sympm(M,ψ∗ω).

(Isotopy) Let (ψt)t∈I be an isotopy in Symp(M,ω), i.e. a smooth path with ψ0 = id.

Then m(φ◦ψ1) = m(φ)+ [Flux(ψt)t∈I ] in H
1(M ; R)/ im(id−φ∗); see [21, Lemma 6]. For

the definition of the flux homomorphism see [17].
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(Inclusion) The inclusion Sympm(M,ω) →֒ Diff+(M) is a homotopy equivalence. This

follows from the isotopy property, surjectivity of the flux homomorphism and Moser’s

isotopy theorem [19], which says that each element of the mapping class group admits

representatives which preserve ω. Furthermore, the Earl–Eells Theorem [3] implies that

every connected component of Sympm(M,ω) is contractible.

(Floer homology) The symplectic Floer homology theory assigns a Z2-graded vec-

tor space HF∗(φ) over Z2 to every φ ∈ Sympm(M,ω). Furthermore, HF∗(φ) possesses

an additional multiplicative structure, called the quantum cap product, H∗(M ; Z2) ⊗

HF∗(φ) −→ HF∗(φ). For φ = idM the symplectic Floer homology HF∗(idM ) are canon-

ically isomorphic to ordinary homology H∗(M ; Z2) and quantum cap product agrees

with the ordinary cap product. Each ψ ∈ Diff+(M) induces an isomorphism HF∗(φ) ∼=
HF∗(ψ

−1φψ) of H∗(M ; Z2)-modules.

(Invariance) If φ, φ′ ∈ Sympm(M,ω) are isotopic, then HF∗(φ) and HF∗(φ
′) are

naturally isomorphic as H∗(M ; Z2)-modules. This is proven in [21, p. 7]. Note that every

Hamiltonian perturbation of φ (see [2]) is also in Sympm(M,ω).

Now, let g be a mapping class of M , i.e. an isotopy class of Diff+(M). Pick an area

form ω and a representative φ ∈ Sympm(M,ω) of g. Then HF∗(φ) is an invariant of g,

which is denoted by HF∗(g). Note that HF∗(g) is independent of the choice of an area

form ω by Moser’s isotopy theorem [19] and naturality of Floer homology.

2.2. Floer homology. Let φ ∈ Symp(M,ω). There are two ways of constructing Floer

homology detecting its fixed points, Fix(φ). Firstly, the graph of φ is a Lagrangian sub-

manifold of (M ×M, (−ω)×ω) and its fixed points correspond to the intersection points

of graph(φ) with the diagonal ∆ = {(x, x) ∈M ×M}. Thus we have the Floer homology

of the Lagrangian intersection HF∗(M ×M,∆, graph(φ)). This intersection is transver-

sal if the fixed points of φ are non-degenerate, i.e. if 1 is not an eigenvalue of dφ(x), for

x ∈ Fix(φ). The second approach was mentioned by Floer in [6] and presented with details

by Dostoglou and Salamon in [2]. We follow here Seidel’s approach [21] which, compara-

ble with [2], uses a larger class of perturbations, but such that the perturbed action form

is still cohomologous to the unperturbed. As a consequence, the usual invariance of Floer

homology under Hamiltonian isotopies is extended to the stronger property stated above.

Let now φ ∈ Sympm(M,ω), i.e., φ be monotone. Firstly, we give the definition of HF∗(φ)

in the special case where all the fixed points of φ are non-degenerate, i.e. for all y ∈ Fix(φ),

det(id−dφy) 6= 0, and then following Seidel’s approach [21] we consider general case when

φ has degenerate fixed points. Let Ωφ = {y ∈ C∞(R,M) : y(t) = φ(y(t + 1))} be the

twisted free loop space, which is also the space of sections of Tφ → S1. The action form

is the closed one-form αφ on Ωφ defined by

αφ(y)Y = int10 ω(dy/dt, Y (t)) dt.

where y ∈ Ωφ and Y ∈ TyΩφ, i.e. Y (t) ∈ Ty(t)M and Y (t) = dφy(t+1)Y (t + 1) for all

t ∈ R.

The tangent bundle of any symplectic manifold admits an almost complex structure

J : TM −→ TM which is compatible with ω in the sense that (v, w) = ω(v, Jw) defines
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a Riemannian metric. Let J = (Jt)t∈R be a smooth path of ω-compatible almost complex

structures on M such that Jt+1 = φ∗Jt. If Y, Y
′ ∈ TyΩφ, then int10 ω(Y ′(t), JtY (t)) dt

defines a metric on the loop space Ωφ. So the critical points of αω are the constant paths

in Ωφ and hence the fixed points of φ. The negative gradient lines of αω with respect to the

metric above are solutions of the partial differential equations with boundary conditions














u(s, t) = φ(u(s, t+ 1)),

∂su+ Jt(u)∂tu = 0,

lims→±∞ u(s, t) ∈ Fix(φ)

(2)

These are exactly Gromov’s pseudoholomorphic curves [10].

For y± ∈ Fix(φ), let M(y−, y+; J, φ) denote the space of smooth maps u : R
2 → M

which satisfy the equations (2). Now to every u ∈M(y−, y+; J, φ) we associate a Fredholm

operator Du which linearizes (2) in suitable Sobolev spaces. The index of this operator is

given by the so-called Maslov index µ(u), which satisfies µ(u) = deg(y+)−deg(y−)mod 2,

where (−1)deg y = sign(det(id−dφy)). We have no bubbling, since for surface π2(M) = 0.

For a generic J , every u ∈ M(y−, y+; J, φ) is regular, meaning that Du is onto. Hence,

by the implicit function theorem, Mk(y
−, y+; J, φ) is a smooth k-dimensional man-

ifold, where Mk(y
−, y+; J, φ) denotes the subset of those u ∈ M(y−, y+; J, φ) with

µ(u) = k ∈ Z. Translation of the s-variable defines a free R-action on 1-dimensional

manifoldM1(y
−, y+; J, φ) and hence the quotient is a discrete set of points. The energy

of a map u : R
2 → M is given by E(u) = intR int10 ω

(

∂tu(s, t), Jt∂tu(s, t)
)

dt ds for all

y ∈ Fix(φ). P. Seidel has proved in [21] that if φ is monotone, then the energy is constant

on each Mk(y
−, y+; J, φ). Since all fixed points of φ are non-degenerate, the set Fix(φ)

is a finite set and the Z2-vector space CF∗(φ) := Z
# Fix(φ)
2 admits a Z2-grading with

(−1)deg y = sign(det(id−dφy)), for all y ∈ Fix(φ). The boundness of the energy E(u)

for monotone φ implies that the 0-dimensional quotients M1(y−, y+, J, φ)/R are actu-

ally finite sets. Denoting by n(y−, y+) the number of points mod 2 in each of them, one

defines a differential ∂J : CF∗(φ)→ CF∗+1(φ) by ∂Jy−
∑

y+
n(y−, y+)y+. Due to gluing

theorem this Floer boundary operator satisfies ∂J ◦ ∂J = 0. For gluing theorem to hold

one needs again the boundness of the energy E(u). It follows that (CF∗(φ), ∂J) is a chain

complex and its homology is by definition the Floer homology of φ denoted by HF∗(φ).

It is independent of J and is an invariant of φ.

If φ has degenerate fixed points one needs to perturb equations (2) in order to define

the Floer homology. Equivalently, one could say that the action form needs to be per-

turbed. The necessary analysis is given in [21], it is essentially the same as in the slightly

different situations considered in [2]. But Seidel’s approach also differs from the usual one

in [2]. He uses a larger class of perturbations, but such that the perturbed action form is

still cohomologous to the unperturbed.

3. Nielsen numbers and Floer homology. Before discussing the main results of the

paper, we briefly describe the few basic notions of Nielsen fixed point theory which will

be used. We assume X to be a connected, compact polyhedron and f : X → X to be a

continuous map. Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a lifting of f ,
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i.e. p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a γ ∈ Γ ∼= π1(X)

such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point class

of f determined by the lifting class [f̃ ]. Two fixed points x0 and x1 of f belong to the

same fixed point class iff there is a path c from x0 to x1 such that c ∼= f ◦ c (homotopy

relative endpoints). This fact can be considered as an equivalent definition of a non-empty

fixed point class. Every map f has only finitely many non-empty fixed point classes, each

a compact subset of X. A fixed point class is called essential if its index is non-zero.

The number of essential fixed point classes is called the Nielsen number of f , denoted by

N(f). The Nielsen number is always finite. N(f) is a homotopy type invariant. In the

category of compact, connected polyhedra, the Nielsen number of a map is, apart from

certain exceptional cases, equal to the least number of fixed points of maps with the same

homotopy type as f .

3.1. Periodic diffeomorphisms. The following lemma was first proven in [14]. We repeat

here the arguments from [8].

Lemma 1 ([14]). Let φ be a non-trivial orientation preserving periodic diffeomorphism of

a compact connected surface M of Euler characteristic χ(M) ≤ 0. Then each fixed point

class of φ consists of a single point.

Proof. First assume that M is closed. The uniformization theorem states that in every

conformal class of metrics on M , there is a unique metric of constant curvature −1

if χ(M) < 0 or of constant curvature 0 if χ(M) = 0. This implies that the unique

representative of a φ-invariant conformal class of metrics (such a class exists since φ is of

finite order) is φ-invariant in itself. Hence we can pick a φ-invariant metric of constant

curvature −1 or 0 on M and lift φ to an isometry φ̃ of the universal cover M̃ of M . Here

M̃ is either isometric to the hyperbolic plane H2 or the Euclidean plane R
2.

Let x ∈ Fix(φ) and let φ̃, x̃ be lifts of φ, x to M̃ , such that φ̃(x̃) = x̃. Note that a

fixed point of φ is in the same class as x if and only if it can be lifted to a fixed point

of φ̃. Assume by contradiction that ỹ 6= x̃ is a fixed point of φ̃. It follows that the unique

geodesic going through x̃ and ỹ is pointwise fixed by φ̃. In particular, since φ̃ preserves

orientation, dφ̃x̃ = id. This implies that φ̃ = id, because an isometry of H2 or R
2 is

determined by its value and differential at one point. This proves lemma in the case that

M is closed.

The case ∂M 6= ∅ is reduced to the above case by gluing two copies of M together

along a φ-invariant tubular neighborhood of ∂M . The glued manifold is closed and of

Euler characteristic ≤ 0; ϕ extends to a non-trivial diffeomorphism φ′, which is orientation

preserving and of finite order. Hence, every fixed point class of φ′ is a single point. The

same therefore holds for φ. This completes the proof.

R. Gautschi gave two criteria for monotonicity which we use later on.

Let ω be an area form on M and φ ∈ Symp(Σ,ω).

Lemma 2 ([8]). Assume that every class α ∈ ker(id−φ∗) ⊂ H1(M ; Z) is represented by

a map γ : S → Fix(φ), where S is a compact oriented 1-manifold. Then φ is monotone.
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Lemma 3 ([8]). If φk is monotone for some k > 0, then φ is monotone. If φ is monotone,

then φk is monotone for all k > 0.

Proof. We repeat Gautschi’s arguments from [8] here. Recall that Tφ is the orbit space of

the Z-action n · (t, x) = (t+n, φ−n(x)), where n ∈ Z and (t, x) ∈ R×Σ. If we divide out

by the subgroup kZ only, k ∈ N>0, we naturally get the mapping torus of φ
k. Further

dividing by Z/kZ defines the k-fold covering map pk : Tφk → Tφ. It is straightforward to

check that

p∗k[ωφ] = [ωφk ] and p∗kcφ = cφk . (3)

The first equality follows immediately from the definitions. To prove the second, note

that p∗k
(

(TM ×R)/Z
)

∼= (TM ×R)/kZ ∼= Vφk , where the Z-action on R×TΣ is given by

n ·(t, ξx) = (t+n, dφ−nx ξx), for n ∈ Z and ξx ∈ TxM . The lemma follows from (3) and the

fact that p∗k is injective. To prove injectivity, define the map a
k
∗ : H2(Tφk ; R)→ H2(Tφ; R)

by averaging differential forms; ak∗ is a left inverse of p
∗
k, i.e. a

k
∗ ◦ p

∗
k = id. This ends the

proof of the lemma.

We shall say that φ : M → M is a periodic map of period m, if φm is the identity

map idM : M →M .

Theorem 4. If φ is a non-trivial orientation preserving periodic diffeomorphism of a

compact connected surface M of Euler characteristic χ(M) < 0, then φ is monotone with

respect to some φ-invariant area form and

HF∗(φ) ∼= Z
N(φ)
2 , dimHF∗(φ) = N(φ),

where N(φ) denotes the Nielsen number of φ.

Proof. Let φ be a periodic diffeomorphism of least period l. First note that if ω̃ is an

area form on M , then area form ω :=
∑ℓ
i=1(φ

i)∗ω̃ is φ-invariant, i.e. φ ∈ Symp(M,ω).

By periodicity of φ, φl is the identity map idM : M →M . Then from Lemmas 2 and 3 it

follows that ω can be chosen such that φ ∈ Sympm(M,ω).

Lemma 1 implies that every y ∈ Fix(φ) forms a different fixed point class of φ, so

#Fix(φ) = N(φ). This has an immediate consequence for the Floer complex (CF∗(φ), ∂J)

with respect to a generic J = (Jt)t∈R. If y
± ∈ Fix(φ) are in different fixed point classes,

thenM(y−, y+; J, φ) = ∅. This follows from the first equation in (2). Then the boundary

map in the Floer complex is zero ∂J = 0 and Z2-vector space CF∗(φ) := Z
#Fix(φ)
2 =

Z
N(φ)
2 . This immediately implies HF∗(φ) ∼= Z

N(φ)
2 and dimHF∗(φ) = N(φ).

3.2. Algebraically finite mapping classes. A mapping class of M is called algebraically

finite if it has no pseudo-Anosov components in the sense of Thurston’s theory of surface

diffeomorphism. The term “algebraically finite” goes back to J. Nielsen.

R. Gautschi [8] defined the notion of a diffeomorphism of finite type for surface dif-

feomorphisms. These are special representatives of algebraically finite mapping classes

adopted to the symplectic geometry.

Definition 5 ([8]). We call φ ∈ Diff+(M) of finite type if the following holds. There is

a φ-invariant finite union N ⊂M of disjoint non-contractible annuli such that:
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(1) φ|M \N is periodic, i.e. there exists ℓ > 0 such that φℓ|M \N = id.

(2) Let N ′ be a connected component of N and ℓ′ > 0 be the smallest integer such

that φℓ
′

maps N ′ to itself. Then φℓ
′

|N ′ is given by one of the following two models with

respect to some coordinates (q, p) ∈ I × S1:

(twist map) (q, p) 7−→ (q, p− f(q))

(flip-twist map) (q, p) 7−→ (1− q,−p− f(q)),

where f : I → R is smooth and strictly monotone. A twist map is called positive or

negative, if f is increasing or decreasing.

(3) Let N ′ and ℓ′ be as in (2). If ℓ′ = 1 and φ|N ′ is a twist map, then im(f) ⊂ [0, 1], i.e.

φ| int(N ′) has no fixed points.

(4) If two connected components of N are homotopic, then the corresponding local

models of φ are either both positive or both negative twists.

The term “flip-twist map” is taken from [16].

By Mid we denote the union of the components of M \ int(N), where φ restricts to

the identity.

The next lemma describes the set of fixed point classes of φ. It is a special case of a

theorem by B. Jiang and J. Guo [16], which gives for any mapping class a representative

that realizes its Nielsen number.

Lemma 6 (Fixed point classes [16]). Each fixed point class of φ either is a connected

component of Mid or consists of a single fixed point. A fixed point x of the second type

satisfies det(id−dφx) > 0.

The monotonicity of diffeomorphisms of finite type was investigated in details in the

recent preprint of R. Gautschi [8]. Now we describe his results. Let φ be a diffeomorphism

of finite type and ℓ be as in (1). Then φℓ is the product of (multiple) Dehn twists along N .

Moreover, two parallel Dehn twists have the same sign, by (4). We say that φ has uniform

twists, if φℓ is the product of only positive, or only negative Dehn twists.

Furthermore, we denote by ℓ the smallest positive integer such that φℓ restricts to the

identity on M \N .

If ω′ is an area form on M which is the standard form dq ∧ dp with respect to the

(q, p)-coordinates on N , then ω :=
∑ℓ

i=1(φ
i)∗ω′ is standard on N and φ-invariant, i.e.

φ ∈ Symp(M,ω). To prove that ω can be chosen such that φ ∈ Sympm(M,ω), Gautschi

distinguishes two cases: uniform and non-uniform twists. In the first case he proves the

following stronger statement.

Lemma 7 ([8]). If φ has uniform twists and ω is a φ-invariant area form, then

φ ∈ Sympm(M,ω).

In the non-uniform case, monotonicity does not hold for arbitrary φ-invariant area

forms.

Lemma 8 ([8]). If φ has no uniform twists, then there exists a φ-invariant area form ω

such that φ ∈ Sympm(M,ω). Moreover, ω can be chosen such that it is the standard form

dq ∧ dp on N .
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Theorem 9. If φ is a diffeomorphism of finite type of a compact connected surface M of

Euler characteristic χ(M) < 0 and if φ has only isolated fixed points, then φ is monotone

with respect to some φ-invariant area form and

HF∗(φ) ∼= Z
N(φ)
2 , dimHF∗(φ) = N(φ),

where N(φ) denotes the Nielsen number of φ.

Proof. From Lemmas 7 and 8 it follows that ω can be chosen such that φ ∈ Sympm(M,ω).

Lemma 6 implies that every y ∈ Fix(φ) forms a different fixed point class of φ, so

#Fix(φ) = N(φ). This has an immediate consequence for the Floer complex (CF∗(φ), ∂J)

with respect to a generic J = (Jt)t∈R. If y
± ∈ Fix(φ) are in different fixed point classes,

thenM(y−, y+; J, φ) = ∅. This follows from the first equation in (2). Then the boundary

map in the Floer complex is zero, ∂J = 0, and Z2-vector space CF∗(φ) := Z
#Fix(φ)
2 =

Z
N(φ)
2 . This immediately implies HF∗(φ) ∼= Z

N(φ)
2 and dimHF∗(φ) = N(φ).

Remark 10. R. Gautschi has proved in preprint [8] that, if φ is a diffeomorphism of

finite type, then φ is monotone with respect to some φ-invariant area form and

HF∗(φ)H∗(Mid, ∂Mid
; Z2)⊕ Z

L(φ|M\Mid)
2 .

Here, L denotes the Lefschetz number.

In Theorem 9 the set Mid is empty and every fixed point of φ has fixed point in-

dex 1 [16]. The Lefschetz fixed point formula implies that #Fix(φ) = N(φ) = L(φ). So,

Theorem 9 follows also from result of R. Gautschi.

3.3. Hyperbolic diffeomorphisms of 2-dimensional torus

Theorem 11. If φ is a hyperbolic diffeomorphism of a 2-dimensional torus T 2, then φ

is symplectic and

HF∗(φ) ∼= Z
N(φ)
2 , dimHF∗(φ) = N(φ),

where N(φ) = |det(E − φ∗)| denotes the Nielsen number of φ and φ∗ is the induced

homomorphism on the fundamental group of T 2.

Proof. Hyperbolicity of φ means that the covering linear map φ̃ : R2 → R2, det φ̃ = 1, has

no eigenvalues λ with |λ| = 1. The hyperbolic diffeomorphism of a 2-dimensional torus

T 2 preserves the area, so it is symplectic. In fact, the covering map φ̃ has a unique fixed

point, which is the origin; hence, by the covering homotopy theorem, the fixed points of φ

are pairwise Nielsen non-equivalent. The index of each Nielsen fixed point class, consisting

of one fixed point, coincides with its Lefschetz index, and by the hyperbolicity of φ, the

later is not equal to zero. Thus the Nielsen number N(φ) = #Fix(φ). It is known also

that N(φ) = |L(φ)| [1]. If y± ∈ Fix(φ) are in different Nielsen fixed point classes, then

M(y−, y+; J, φ) = ∅. This follows from the first equation in (2). Then the boundary map

in the Floer complex is zero, ∂J = 0, and Z2-vector space CF∗(φ) := Z
#Fix(φ)
2 = Z

N(φ)
2 .

This immediately implies HF∗(φ) ∼= Z
N(φ)
2 and dimHF∗(φ) = N(φ).

Remark 12. It is interesting to compare this result with the first computation by Marcin

Poźniak of the Floer homology of linear symplectomorphisms in case of torus [20].
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4. Asymptotic invariant

4.1. Topological entropy and the Nielsen numbers. A basic relation between Nielsen num-

bers and topological entropy h(f) was found by N. Ivanov [12]. Here we present a very

short proof of Ivanov’s inequality, this proof was given by Jiang.

Lemma 13 ([12]).

h(f) ≥ lim sup
n

1

n
· logN(fn).

Proof. Let δ be such that every loop in X of diameter < 2δ is contractible. Let ǫ > 0

be a smaller number such that d(f(x), f(y)) < δ whenever d(x, y) < 2ǫ. Choose a point

in each essential fixed point class of fn, and let En ⊂ X be the set consisting of these

points. Thus |En| = N(fn). By the definition of h(f), it suffices to show that En is

(n, ǫ)-separated. Suppose the contrary. Then there would be two points x 6= y ∈ En such

that d(f i(x), f i(y)) ≤ ǫ for 0 ≤ i < n hence for all i ≥ 0. Pick a path ci from f i(x)

to f i(y) of diameter < 2ǫ for 0 ≤ i < n and let cn = c0. By the choice of δ and ǫ,

f ◦ ci ≃ ci+1 for all i, so f
n ◦ c0 ≃ cn = c0. This means x, y in the same fixed point class

of fn, contradicting the construction of En.

This inequality is remarkable in that it does not require smoothness of the map and

provides a common lower bound for the topological entropy of all maps in a homotopy

class.

We recall the Thurston classification theorem for homeomorphisms of surface M of

genus ≥ 2.

Theorem 14 ([23]). Every homeomorphism φ : M → M is isotopic to a homeomor-

phism f such that one of the following conditions is satisfied :

(1) f is a periodic map;

(2) f is a pseudo-Anosov map, i.e. there is a number λ > 1 (stretching factor) and a pair

of transverse measured foliations (F s, µs) and (Fu, µu) such that f(F s, µs) = (F s, 1
λµ

s)

and f(Fu, µu) = (Fu, λµu);

(3) f is reducible map, i.e. there is a system of disjoint simple closed curves γ =

{γ1, . . . , γk} in the interior of M such that γ is invariant under f (but γi may be per-

muted) and γ has an f-invariant tubular neighborhood U such that each component

of M \ U has negative Euler characteristic and on each (not necessarily connected)

f-component of M \ U , f satisfies (1) or (2).

The map f from Theorem 14 is called the Thurston canonical form of f . In (3) it can

be chosen so that some iterate fm is a generalized Dehn twist on U . Such a map f , as

well as the map f in (1) or (2), will be called standard. A key observation is that if f is

standard, then so are all iterations of f .

Lemma 15 ([4]). Let f be a pseudo-Anosov homeomorphism with stretching factor λ > 1

of surface M of genus ≥ 2. Then

h(f) = log(λ) = lim sup
n

1

n
· logN(fn).
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Lemma 16 ([15]). Suppose f is a standard homeomorphism of surface M of genus ≥ 2

and λ is the largest stretching factor of the pseudo-Anosov pieces (λ = 1 if there is no

pseudo-Anosov pieces). Then

h(f) = log(λ) = lim sup
n

1

n
· logN(fn).

The growth rate of a sequence an of complex numbers is defined by

Growth(an) := max{1, lim sup
n→∞

|an|
1/n}

and could be equal to infinity. Note that Growth(an) ≥ 1 even if all an = 0. When

Growth(an) > 1, we say that the sequence an grows exponentially.

Definition 17. We define the asymptotic invariant F∞(g) of mapping class g ∈ Γ =

π0(Diff+(M)) to be the growth rate of the sequence {an = dimHF∗(φ
n)} for a monotone

representative φ ∈ Sympm(M,ω) of g:

F∞(g) := Growth(dimHF∗(φ
n)).

Example 18. If φ is a non-trivial orientation preserving periodic diffeomorphism of a

compact connected surface M of Euler characteristic χ(M) < 0, then the periodicity

of the sequence dimHF∗(φ
n) implies that for the corresponding mapping class g the

asymptotic invariant

F∞(g) := Growth(dimHF∗(φ
n)) = 1.

Example 19. Let φ be a monotone diffeomorphism of finite type of a compact connected

surface M of Euler characteristic χ(M) < 0 and g a corresponding algebraically finite

mapping class. Let U be the open regular neighborhood of the k reducing curves γ1, . . . , γk
in the Thurston theorem, and Mj be the component of M \ U . Let F be a fixed point

class of φ. Observe that ind(F, φ) = ind(F, φj) whenever F ⊂Mj , [16]. So if F is counted

in N(φ) but not counted in
∑

j N(φj), it must intersect U . But it follows from [16] that

a component of U can intersect at most two essential fixed point classes of φ. Hence we

have N(φ) ≤
∑

j N(φj). For the monotone diffeomorphism of finite type φ, the maps φj
are periodic. Applying last inequality to φn and using Remark 10 we have

0 ≤ dimHF∗(φ
n) = dimH∗

(

M
(n)
id , ∂M

(n)
id ; Z2

)

+N
(

φn|M \M
(n)
id

)

≤ dimH∗
(

M
(n)
id , ∂M

(n)
id ; Z2

)

+N(φn)

≤ dimH∗
(

M
(n)
id , ∂M

(n)
id ; Z2

)

+
∑

j

N((φ)nj ) + 2k ≤ Const.

by periodicity of φj . Taking the growth rate in n, we deduce that asymptotic invariant

F∞(g) = 1.

Example 20. Let φ be a hyperbolic automorphism of 2-dimensional torus defined by

an integer matrix with eigenvalues λ1, λ2, |λ1| > 1. Then h(φ) = log(|λ1|). On the other

hand, N(φn) = |det(I −An)| = |(1− λn1 )(1− λn2 )|. Hence Theorem 11 implies

F∞(g) := Growth(dimHF∗(φ
n)) = lim sup

n→∞
|N(φn)|1/n = exp(h(φ)) = |λ1| > 1
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5. Concluding remarks and conjectures

5.1. Pseudo-Anosov mapping class

Conjecture 21. For pseudo-Anosov mapping class g ∈ Γ = π0(Diff+(M)) we have

HF∗(g)Z
N(g)
2 , dimHF∗(g) = N(g), F∞(g) = lim sup

n→∞
|N(gn)|1/n = h(ψ) = λ > 1,

where N(g) denotes the Nielsen number of g and ψ is a standard (Thurston canonical

form) representative of g, i.e. there is a monotone representative φ ∈ Sympm(M,ω) of g

such that

HF∗(φ)Z
N(φ)
2 , dimHF∗(φ) = N(φ), F∞(g) = lim sup

n→∞
|N(φn)|1/n = h(ψ) = λ > 1.

Remark 22. For pseudo-Anosov “diffeomorphism” we also have, as in Theorems 4, 9

and 11, a topological separation of fixed points [23, 16, 11], i.e. the Nielsen number of

pseudo-Anosov “diffeomorphism” equals to the number of fixed points and there are no

connecting orbits between them. But we have the following difficulties in pseudo-Anosov

case. Firstly, a pseudo-Anosov “diffeomorphism” is a smooth and symplectic automor-

phism on the complement of its fixed points set, not on the whole surface. Nevertheless,

M. Gerber and A. Katok [9] have found a smooth model for pseudo-Anosov “diffeomor-

phism” with the same dynamical properties. More precisely, for every pseudo-Anosov

“diffeomorphism” f they have constructed a diffeomorphism f ′ that is topologically con-

jugate to f through a homeomorphism isotopic to identity. The diffeomorphism f ′ is a

symplectomorphism, it has the same fixed points as f , which are also topologically sepa-

rated, and it has the same Nielsen number as f . Secondly, in the case of a pseudo-Anosov

“diffeomorphism” and its smooth model, we have to deal with fixed points of index −p

where p > 1. Such fixed points are degenerate and therefore need a local perturbation.

For the proof of Conjecture 21 we need to understand the contribution of such fixed

points to the Floer homology.

5.2. The general case. Concluding remarks

Conjecture 23. For any mapping class g ∈ Γ = π0(Diff+(M)) there is a monotone

representative φ ∈ Sympm(M,ω) with respect to some φ-invariant area form ω such that

HF∗(φ)H∗(Mid, ∂Mid
; Z2)⊕ Z

N(φ|M\Mid)
2 ,

where Mid denotes the union of the components of M \ int(U), where φ restricts to the

identity. Let ψ be a standard (Thurston canonical form) representative of g and λ is the

largest stretching factor of pseudo-Anosov pieces of ψ (λ := 1 if there is no pseudo-Anosov

piece). Then

F∞(g) := Growth(dimHF∗(φ
n)) = λ = h(ψ) = lim sup

n→∞
|N(ψn)|1/n.

Remark 24.

(i) If φ ∈ Sympm(M,ω) has only non-degenerate fixed points, then from the previous

conjecture it follows that

#Fix(φ) ≥ dimHF∗(φ) = dimHF∗(ψ) = dimH∗(Mψ=id, ∂Mψ=id; Z2)+N(ψ|M\Mψ=id)
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(ii) An analogue of the Arnold conjecture for general symplectomorphism. Together

with Yuli Rudyak we propose the following conjecture: if φ ∈ Sympm(M,ω) has only

non-degenerate fixed points and there is a Hamiltonian isotopy of φ to Thurston canonical

form ψ then

#Fix(φ) ≥ min{#crit f}+ #Fix(ψ|M \Mψ=id)

where f runs over all smooth Morse functions Mψ=id → R such that f > 0 on intMψ=id

and f = 0 on ∂Mψ=id and crit f is the set of critical points of f ; if φ ∈ Sympm(M,ω)

has degenerate fixed points then

#Fix(φ) ≥ min{#crit f}+ #Fix(ψ|M \Mψ=id)

where f runs over all smooth functions Mψ=id → R such that f > 0 on intMψ=id and

f = 0 on ∂Mψ=id.

(iii) Due to P. Seidel [22] dimHF∗(φ) is a new symplectic invariant of a four-dimensional

symplectic manifold with non-zero first Betti number. This 4-manifold is produced from

symplectomorphism φ by a surgery construction which is a variation of earlier construc-

tions due to McMullen-Taubes [18]. We hope that our asymptotic invariant also give rise

to a new invariant of contact 3-manifolds and symplectic 4-manifolds.
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