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Abstrat. The aim of the paper is to present some initial results about a possible generalizationof moment sequenes to a so-alled q-alulus. A haraterization of suh a q-analogue in termsof appropriate positivity onditions is also investigated. Using the result due to Maserik andSzafranie, we adapt a lassial desription of Hausdor� moment sequenes in terms of positivede�niteness and omplete monotoniity to the q-situation. This makes a link between q-positivede�niteness and q-omplete monotoniity.The lassial results due to Stieltjes, Hamburger and Hausdor� allow one to hara-terize moment sequenes via positive de�niteness and omplete monotoniity (dependingon the support of measure). The situation hanges in the q-world. Although one of thepossible modi�ations of the positivity ondition has already been introdued by Otaand Szafranie (f. [11℄), there is no lear idea how to de�ne q-analogues of ompletemonotoniity, or of moment sequenes. This gives the following piture:lassi: MP ∼ PD & CM

↓ ↓ ↓ ↓

q-world: ? ? qPD ?Moreover, in the lassial ase a nie desription of ompletely monotoni sequenesis known: a sequene {an}n is ompletely monotoni if and only if both {an}n and
{an−an+1}n are positive de�nite. We therefore ask whether some similar haraterizationexists in the q-deformed situation.The inspiration to deal with q-analogues of omplete monotoniity and moment se-quenes omes from [10℄. The authors gave the proof of the aforesaid lassial desriptionof ompletely monotoni sequene without referring to their integral representation. Thesame method gives the opportunity to haraterize q-ompletely monotoni sequenes2000 Mathematis Subjet Classi�ation: Primary 44A60; Seondary 05A30, 43A35, 47B32.Key words and phrases: moment problems, positive de�niteness, omplete monotoniity,
q-alulus, reproduing kernel. [201℄ © Instytut Matematyzny PAN, 2007



202 A. KULAin terms of q-positive de�niteness without speifying the integral representation of q-moments. This is the way we try to proeed. Further studies of the q-analogues give theidea how to de�ne the q-moment sequene.The paper is a written version of the talk at the 9th Workshop �Non-Commuta-tive Harmoni Analysis with Appliations to Non-Commutative Probability� in B�dlewo'2006. That is the reason why we onentrate on results rather than on proofs (whih arejust skethed). For more details, we refer the reader to [7℄ whih is an extended versionof the talk.The paper is organized as follows. Setion 1 ontains introdutory information about
q-alulus. In Setion 2 we ollet the basi de�nitions and results that will be usedlater. De�nitions of q-positive de�nite and q-ompletely monotoni sequenes are givenand disussed in Setions 3 and 4. In partiular, the main result (Theorem 4.3) gives aharaterization of q-ompletely monotoni sequenes in terms of q-positive de�niteness.In Setion 5 we investigate relations between the lassial properties and their q-analoguesand de�ne (possibly one of) the q-analogue of a moment sequene.In the following we set q ∈ (0, 1). All sequenes appearing below have indies rangingfrom 0 to +∞. N = {0, 1, 2, . . .}.1. What is q-alulus? The q-alulus is a kind of �alulus without taking limits�. Itonsiders q-objets whih are generalizations of some mathematial objets, parameter-ized by a quantity q. Moreover, the q-objets beome the lassial ones for q → 1.The development of q-analysis dates bak to the 18th entury, to Euler, Jaobi andGauss (for more information about the history of the q-alulus see [3℄ and the referenesgiven there). The basis of the q-analysis was the q-binomial identity invented probablyby Gauss: if x and y are elements of an assoiative algebra satisfying xy = qyx (q-ommutativity), then

(x + y)n =
n

∑

k=0

[

n

k

]

q

yn−kxk, where [

n

k

]

q

:=
[n]q!

[n − k]q![k]q!with
[n]q =

qn − 1

q − 1
(n ∈ N) and [0]q! = 1, [n]q! = [n]q · [n − 1]q! (n ≥ 1).Gauss also invented the hypergeometri series whih were generalized and investigatedby E. Heine in the mid-19th entury. The �rst to develop q-alulus in a systemati waywas F. H. Jakson at the beginning of the 20th entury. He introdued the q-derivativesand q-integrals, the latter are urrently known as Jakson's integrals. Sine then a lotof nie identities were proved and the theory of q-speial funtions, q-hypergeometrifuntions and q-orthogonal polynomials was enrihed thanks to S. I. Ramuanujan, J.Cigler, G. E. Andrews, R. Askey, G. Gasper, T. Koornwinder and many others (f. [6℄).The notion of q-analogues ranges from the very simple to the very deep. We start withbasi examples: q-integers [n]q and q-fatorials [n]q! as de�ned above. Next we developa one-dimensional q-analysis where q-objets (q-derivative, q-logarithm, et.) are relatedto funtions in one variable x. In this ase q should be seen as a deformation parameterand x an be onsidered as a number. The problem to solve when searhing for q-objets



A MOMENT SEQUENCE IN THE q-WORLD 203is where to put the q in the formula in question to obtain the desired limit relation,or rather: how to modify the lassial notion in order to obtain an interesting q-objet.There are generally several possibilities to do it and there may exist several q-analogousfor one lassial objet (q-exponential funtions, for instane).The situation is even more ompliated in 2-dimensional ase, where the real nonom-mutative nature of q-alulus appears. We take two generators x and y whih q-ommuteand onsider the omplex assoiative unital algebra generated by x and y. It is obviousthat in this ase x and y an no longer be realized by numbers but rather by operators.Suh non-ommuting variables appear in quantum groups whih are the q-deformationsof appropriate lassial groups (for more on quantum groups see [4℄, [5℄ or [9℄). Anotherway to get the q-ommutative variables is the braided approah due to Majid [8℄.2. Preliminaries. We start by realling results on lassial moment problems (f. [12℄,[15℄) and the presentation of basi de�nitions and results from [10℄.A sequene {ϕ(n)}n is alled:
• positive de�nite (PD) if for every n ∈ N and any real salars α1, . . . , αn

n
∑

i,j=0

αiαjϕ(i + j) ≥ 0, (1)
• ompletely monotoni (CM) if for all k, n ∈ N

k
∑

m=0

(−1)m+k

(

k

m

)

ϕ(n + k − m) ≥ 0,

• a (Hamburger) moment sequene if there exists a Borel measure µ on R suh thatwe have
ϕ(n) =

∫

R

tndµ(t), n ∈ N. (2)The measure µ is often alled the representing measure for the sequene {ϕ(n)}n. If themeasure is onentrated on the interval [0, +∞) (respetively, on [0, 1]), then the sequeneis alled a Stieltjes (resp. Hausdor� ) moment sequene.Note that the de�nition of positive de�niteness is usually formulated in a more generalontext, i.e. for a funtion on a semigroup with involution. This is done in the followingway (f. [1℄): Let (G, ◦,∗ ) be a semigroup with involution. A funtion ϕ : G → C is alledpositive de�nite if
n

∑

i,j=0

αiαjϕ(s∗i ◦ sj) ≥ 0, (3)where s0, . . . , sn ∈ G, α0, . . . , αn ∈ C. In this paper, however, we onsider only theadditive semigroup of positive integers (N, +) with identity involution. Then the mapping
N × N ∋ (i, j) → ϕ(i + j) ∈ R is symmetri and thus

n
∑

i,j=0

αiαjϕ(i + j) =

n
∑

i,j=0

aiajϕ(i + j) +

n
∑

i,j=0

bibjϕ(i + j),



204 A. KULAwhere ai, bi ∈ R, ai = Re αi, bi = Im αi (see [1℄, 1.6). Hene the positivity ondition (3)with omplex α's is equivalent to the ondition (3) with real salars as stated in (1).Theorem 2.1 (f. [1℄). A sequene {ϕ(n)}n is ompletely monotoni if and only if its(lassial) m-th di�erenes, i.e.
∆0ϕ(n0) = ϕ(n0),

∆m+1ϕ(n0; n1, . . . , nm+1) = ∆mϕ(n0; n1, . . . , nm) − ∆mϕ(n0 + nm+1; n1, . . . , nm),are nonnegative for all m ∈ N and n0, . . . , nm ∈ N.Theorem 2.2 (Hamburger). A neessary and su�ient ondition for {ϕ(n)}n to be aHamburger moment sequene is that it is positive de�nite.Theorem 2.3 (Stieltjes). A sequene {ϕ(n)}n admits an integral representation (2) withthe measure onentrated on the interval [0, +∞) if and only if it is positive de�nite andthe sequene {ϕ(n + 1)}n is also positive de�nite.Theorem 2.4 (Hausdor�). A sequene {ϕ(n)}n admits an integral representation (2)with the measure onentrated on the interval [0, 1] if and only if it is ompletely mono-toni.Let R be a ommutative algebra with identity 1 and involution ∗. Call a subset τ ⊂ Radmissible if the following onditions are satis�ed:1. x∗ = x for all x ∈ τ ;2. 1 − x ∈ Alg+(τ ) for all x ∈ τ , where Alg+(τ ) is the set of all nonnegative ombi-nations of (�nite) produts of members of τ ;3. R = Alg(τ ), i.e. every x ∈ R is a ombination of (�nite) produts of members of τ .A linear funtional f on R is alled τ -positive if τ is admissible and f(x) ≥ 0 for all
x ∈ Alg+(τ ). Following standard onventions, f is alled positive if f(x∗x) ≥ 0 for all
x ∈ R. If f is positive then we set

|x|2f = sup
y∈R

f(x∗xy∗y)

f(y∗y)( 0
0 = 0) and we all f bounded whenever |x|f < ∞ for all x ∈ R.For all x ∈ R de�ne the shift operator Ex on the set of all linear funtionals on R by

Exf(y) = f(xy), y ∈ R.Theorem 2.5 (Maserik, Szafranie [10℄). (1) Let f be a bounded positive linear fun-tional on R. If τ is admissible and Exf is positive for all x ∈ τ , then f is τ -positive.(2) If f is τ -positive for an admissible τ , then f is positive and bounded and Exf ispositive for all x ∈ τ .Corollary 2.6. If {ϕ(n)}n is ompletely monotoni then {ϕ(n + k)}n and {ϕ(n) −

ϕ(n + k)}n (for all k ∈ N) are positive de�nite.Proof. Apply Theorem 2.5 to R = {Sk; k ∈ N} and τ = {Sk, I − Sk; k ∈ N}, where Sk isde�ned by (Skµ)(n) := ϕ(n + k) for a sequene {ϕ(n)}n. See [10℄ for details.



A MOMENT SEQUENCE IN THE q-WORLD 2053. q-positive de�nite sequenesDefinition 1. The sequene {ϕ(n)}n is alled q-positive de�nite (qPD) if for all n ∈ Nand all real salars α1, . . . , αn

n
∑

i,j=0

q−ijαiαjϕ(i + j) ≥ 0.The motivation for suh a de�nition omes from the theory of q-deformed normaloperators (see [11℄). Note that a sequene {ϕ(n)}n is q-positive de�nite in the sense ofthe de�nition given above if and only if it is q−1-positive de�nite in the sense of thede�nition given by Ota and Szafranie.A good way to analyze q-positivity of a sequene is to relate it to some funtionals.For this, onsider a linear spae F of all real sequenes with the identity involution
{ϕ(n)}∗n = {ϕ(n)}n and de�ne the linear map Fm : F → F , alled a q-shift, by theformula

Fmϕ(k) := q−mkϕ(k + m), {ϕ(n)}n ∈ F .It is lear that the setR = Lin{Fm; m ∈ N} is a ommutative algebra with identity I =

F0 and involution F ∗
i = Fi. Moreover, FmFn = q−nmFm+n and sine Fm = qm(m−1)/2Fm

1 ,the set τ = {F1, I − Fm; m ∈ N} is admissible.Now, any sequene {ϕ(n)}n ∈ F an uniquely de�ne (and thus be identi�ed with) alinear funtional f on R. Indeed, the ondition
f(Fn) = ϕ(n)de�nes the values of f on the basis {Fm; m ∈ N} and f extends by linearity on thewhole R.A natural question arises here: what are the linear funtionals orresponding to the

qPD sequenes? Observe that for p =
∑

αiFi ∈ R we have
f(p∗p) =

n
∑

i,j=0

αiαjf(F ∗
i Fj) =

n
∑

i,j=0

αiαjFiFjϕ(0) =
n

∑

i,j=0

αiαj q−ijϕ(i + j).Thus the positivity of the left hand side is equivalent to the positivity of the right handside. What we have proved is the following result.Proposition 3.1. The sequene {ϕ(n)}n is q-positive de�nite if and only if the orre-sponding linear funtional f on R is positive.4. q-omplete monotoniity. For a sequene {ϕ(n)}n we de�ne (the q-generalizationof) its m-th di�erenes by the formula
∆0ϕ(n0) = ∆

(q)
0 ϕ(n0) = ϕ(n0),

∆m+1ϕ(n0;n1, . . . , nm+1) = ∆
(q)
m+1ϕ(n0; n1, . . . , nm+1)

= ∆mϕ(n0; n1, . . . , nm) − q−n0nm+1∆mϕ(n0 + nm+1; n1, . . . , nm).Definition 2. The sequene {ϕ(n)}n is alled q-ompletely monotoni (qCM) if
∆mϕ(n0; n1, . . . , nm) ≥ 0 for arbitrary m ∈ N and n0, . . . , nm ∈ N.



206 A. KULAFor q → 1 the de�nition above leads to the lassial one. The modi�ation is justi�edby the following result that an be easily proved by indution with respet to m.Proposition 4.1.
∆mϕ(n0; n1, . . . , nm) = Fn0

m
∏

k=1

(I − Fnk
)ϕ(0), for all m, n0, . . . , nm ∈ N.This formula, whih is the q-analogue of the formula in the lassial ase (see [10℄),provides a desription of the linear funtionals orresponding to the qCM sequenes.Proposition 4.2. The sequene {ϕ(n)}n is q-ompletely monotoni if and only if theorresponding funtional f is τ -positive with respet to the set τ = {F1, I − Fm; m ∈ N}.Proof. Observe that all elements in Alg+(τ ) are of the form

x =

n
∑

i=1

αixi, where αi ≥ 0, xi = F
n0,i

1

mi
∏

k=1

(I − Fnk,i
)and use the fat that

∆mϕ(n0; n1, . . . , nm) = qn0(n0−1)/2f(Fn0
1

m
∏

k=1

(I − Fnk
)).Now we are ready to present the main theorem whih gives a haraterization of

q-ompletely monotoni sequenes in terms of q-positive de�niteness.Theorem 4.3. The sequene {ϕ(n)}n is qCM if and only if the following onditions aresatis�ed
{ϕ(n)}n is q PD, (qCM1)
{q−nϕ(n + 1)}n is q PD, (qCM2)
∀m∈N {ϕ(n) − q−nmϕ(n + m)}n is q PD. (qCM3)For the proof, let us �x the sequene {ϕ(n)}n and take a orresponding funtional fon R given by

f(Fn) = Fnϕ(0) = ϕ(n).We want to apply Theorem 2.5 and it is onvenient to divide the proof into severalindependent lemmas eah of whih an be proved by a diret alulation.Lemma 4.4. {q−nϕ(n + 1)}n∈N is qPD if and only if EF1
f is positive.Proof. For y =

∑n
i=0 αiFi ∈ R we have
EF1

f(yy∗) =

n
∑

i,j=0

q−ijαiαj [q
−(i+j)ϕ(i + j + 1)].Lemma 4.5. {ϕ(n) − q−nmϕ(n + m)}n∈N is qPD if and only if EI−Fm

f is positive.Proof. For m ∈ N and y =
∑n

i=0 αiFi ∈ R we have
E(I−Fm)f(yy∗) =

n
∑

i,j=0

q−ijαiαj [ϕ(i + j) − q−m(i+j)ϕ(i + j + m)].



A MOMENT SEQUENCE IN THE q-WORLD 207Lemma 4.6. If f , EF1
f and EFm

f (for all m ∈ N) are positive (or equivalently, theonditions (qCM1)-(qCM3) are satis�ed), then f is bounded.Proof. Taking appropriate salars in the positivity onditions, we get that ϕ(2m) ≥ 0,
ϕ(2m + 1) ≥ 0 and ϕ(m) ≤ ϕ(0) for all m ∈ N. Thus |f(Fm)| = |ϕ(m)| ≤ ϕ(0), i.e. f isbounded.Proof of the main theorem. Suppose the sequene {ϕ(n)}n is qCM. It follows from theProposition 4.2 that the funtional f on R given by

f(Fn) = Fnϕ(0) = ϕ(n)is τ -positive with respet to the admissible set τ = {F1, I − Fm; m ∈ N}. Then Theorem2.5 states that f is positive and bounded and Exf is positive for every x ∈ τ . Aording toProposition 3.1 and Lemmas 4.4 and 4.5 this means that the onditions (qCM1), (qCM2)and (qCM3) are satis�ed.Suppose the onverse. The ondition (qCM1) implies that f is positive, while the nexttwo onditions imply positivity of Exf for every x ∈ τ . Moreover, aording to Lemma4.6, f is bounded. Theorem 2.5 implies that f is τ -positive, whih is equivalent to thefat that {ϕ(n)}n is qCM.5. q-moment sequenes. In this setion we investigate the relation between the las-sial and the q-properties and �nd that a desription of the lass of q-positive de�nitesequenes in terms of some integral representation an be easily obtained due to theHamburger theorem. This allows us to state a de�nition of q-moment sequene. We startwith an easy observation.Proposition 5.1. A sequene {ϕn}n is qPD if and only if the sequene {µn}n, where
µn = q−

n(n−1)
2 ϕn, is PD.Proof.

N
∑

n,m=0

anamµm+n =

N
∑

n,m=0

anamq−
(m+n)(m+n−1)

2 ϕm+n

=

N
∑

n,m=0

(q−
n(n−1)

2 an)(q−
m(m−1)

2 am)q−mnϕm+n =

N
∑

n,m=0

bnbmq−mnϕm+n,

where N ∈ N and bn = q−
n(n−1)

2 an. Thus the positivity of the left hand side is equivalentto the positivity of the right hand side.This Proposition together with the Hamburger theorem 2.2 gives us a desription ofthe lass of q-positive de�nite sequenes.Corollary 5.2. Any q-positive de�nite sequene an be represented in the form
ϕn =

∫

R

q
n(n−1)

2 tn dµ(t), n ∈ N,where µ is a representing measure for the sequene {q−
n(n−1)

2 ϕn}n.The result above suggests the following de�nition of q-moment sequenes.



208 A. KULADefinition 3. Call {ϕn}n a q-moment sequene if there exists a Borel measure µ onsome set X ⊂ R suh that
ϕn =

∫

X

q
n(n−1)

2 tndµ(t), n ∈ N.As in the lassial ase, we may talk about Hamburger, Stieltjes or Hausdor� q-moment sequenes depending on the support of the representing measure (respetively:
X = supp µ = R, [0, +∞), [0, 1]). Corollary 5.2 states that q-positive de�niteness is aneessary and su�ient ondition for a sequene to be a Hamburger q-moment sequene.The natural question to ask in this ase is whether a similar desription is true for
q-moments with measure onentrated on other two intervals. Atually, the answer ispositive and for the ase supp µ = [0, +∞) an obtained by a diret alulation. For
supp µ = [0, 1] one of the impliations may also be easily shown.Proposition 5.3. A sequene {ϕn}n∈N is a Stieltjes q-moment sequene with the mea-sure µ on [0, +∞) if and only if {ϕn}n∈N} is q PD and {q−nϕn+1)}n∈N is q PD.Proof. The assertion follows from the Stieltjes Theorem 2.3 and fat that q-positive de�-niteness of the sequene {q−nϕn+1}n is equivalent to positive de�niteness of the sequene
{µn+1}n. But this is obvious beause of the following alulation.

N
∑

n,m=0

anamµm+n+1 =
N

∑

n,m=0

anamq−
(m+n+1)(m+n)

2 ϕm+n+1

=
N

∑

n,m=0

bnbmq−mnq−(m+n)ϕm+n+1,

where bn = q−
n(n−1)

2 an.Proposition 5.4. If a sequene {µn}n is CM, then {q
n(n−1)

2 µn}n is qCM.Proof. Take a ompletely monotoni sequene {µn}n and de�ne ϕn = q
n(n−1)

2 µn. Aord-ing to Theorem 4.3 we need to show that {ϕn}n satis�es (qCM1), (qCM2) and (qCM3)onditions.From the lassial theory of moment sequenes we know that {µn}n and {µn−µn+1}nare PD. Moreover, from the Corollary 2.6 we onlude that for every k ∈ N the sequenes
{µn+k}n and {µn−µn+k}n are PD as well. Now, apply Propositions 5.1 and 5.3 to ensurethat (qCM1) and (qCM2) hold.Next, observe that for an arbitrary k ∈ N

N
∑

n,m=0

bnbmq−mnq−(m+n)kϕm+n+k = q
k(k−1)

2

N
∑

n,m=0

anamµm+n+k ≥ 0, (4)
where N ∈ N and bn = q−

n(n−1)
2 an, providing the sequene {µn}n is ompletely mono-toni.



A MOMENT SEQUENCE IN THE q-WORLD 209Finally, observe that we have
N

∑

n,m=0

bnbmq−mnϕm+n =
N

∑

n,m

anamµm+n ≥
N

∑

n,m

anamµm+n+k

= q−
k(k−1)

2

N
∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k ≥
N

∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k.

The last inequality follows from (4) and the fat that q−
k(k−1)

2 ≥ 1 for q ∈ (0, 1). It meansthat {ϕn − q−nmϕn+m}n is qPD whih �nishes the proof.To prove the opposite impliation, we need some more advaned arguments: the RKHStehnique used as in [11℄ and [13℄ (for more on this subjet see [14℄).Theorem 5.5. If a sequene {ϕn}n is qCM, then there exists a measure µ on [0, 1] suhthat
ϕn =

∫

[0,1]

q
n(n−1)

2 tndµ(t), n ∈ N.Proof. Let {ϕ(n)}n be a q-ompletely monotoni sequene, i.e. (by Theorem 4.3) the se-quene satisfying onditions (qCM1), (qCM2) and (qCM3). De�ne the (positive de�nite)kernel on N by the formula
K(n, m) := q−mnϕn+m, n, m ∈ N,Now, the fatorization theorem of Aronszajn (f. [14℄, for example) implies that thereexists a Hilbert spae H and a mapping N ∋ n 7→ γn ∈ H suh that

H = Lin {γn; n ∈ N}, K(n, m) = 〈γn, γm〉.Next, we set
D := Lin {γn; n ∈ N}, T : D ∋

∑

n

αnγn 7→
∑

n

αnq−nγn+1 ∈ D.Observe that the operator T̄ (the losure of T ) is losed, symmetri and has a ylivetor, thus it admits a self-adjoint extension S in the same spae H (f. [2℄) and byspetral theorem for self-adjoint operators (f. [2℄) there exists a spetral measure E suhthat
S =

∫

R

tdE(t).The representing measure for the sequene {ϕ(n)}n is given by µ(σ) := 〈E(σ)γ0, γ0〉 forall Borel sets σ ⊂ R.Finally, standard alulations yield the inequality 0 ≤ 〈Su, u〉 ≤ 〈u, u〉. But this isequivalent to the fat that the measure µ is onentrated on the interval [0, 1] and thusthe assertion follows.Corollary 5.6. For a sequene {ϕn}n the following onditions are equivalent:1. {ϕn}n is qCM,2. {q−
n(n−1)

2 ϕn}n is CM,



210 A. KULA3. {ϕn}n is a Hausdor� q-moment sequene. i.e. there exists a measure µ on [0, 1]suh that
ϕn =

∫

[0,1]

q
n(n−1)

2 tndµ(t), n ∈ N.Proof. Impliations (2) ⇒ (1) ⇒ (3) follow from Proposition 5.4 and Theorem 5.5. Im-pliation (3) ⇒ (2) is a onsequene of the Hausdor� Theorem 2.4.Final remarks. The results presented above show that the so de�ned q-moment se-quenes an be viewed as the weighted (lassial) moment sequenes as long as 0 < q < 1.A natural question is whether this is still the ase for q > 1. The answer is negative ingeneral, but some partial results remain true. More details an be found in [7℄.The reader should also notie that we onsidered here only the one-dimensional se-quenes whereas many interesting features of the q-alulus appear while looking on thealgebra generated by two q-ommuting variables. This may motivate the investigation ofthe two-dimensional moment sequenes whih we intend to do elsewhere.
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